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ABSTRACT
Existing literature on adversarial Machine Learning (ML) focuses
either on showing attacks that break every ML model, or defenses
that withstand most attacks. Unfortunately, little consideration is
given to the actual cost of the attack or the defense. Moreover,
adversarial samples are often crafted in the “feature-space”, making
the corresponding evaluations of questionable value. Simply put,
the current situation does not allow to estimate the actual threat
posed by adversarial attacks, leading to a lack of secure ML systems.

We aim to clarify such confusion in this paper. By considering
the application of ML for Phishing Website Detection (PWD), we
formalize the “evasion-space” in which an adversarial perturbation
can be introduced to fool a ML-PWD—demonstrating that even
perturbations in the “feature-space” are useful. Then, we propose a
realistic threat model describing evasion attacks against ML-PWD
that are cheap to stage, and hence intrinsically more attractive for
real phishers. Finally, we perform the first statistically validated
assessment of state-of-the-art ML-PWD against 12 evasion attacks.
Our evaluation shows (i) the true efficacy of evasion attempts that
are more likely to occur; and (ii) the impact of perturbations crafted
in different evasion-spaces. Our realistic evasion attempts induce
a statistically significant degradation (3–10% at ? <0.05), and their
cheap cost makes them a subtle threat. Notably, however, some
ML-PWD are immune to our most realistic attacks (?=0.22). Our
contribution paves the way for a much needed re-assessment of
adversarial attacks against ML systems for cybersecurity.
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• Security and privacy; • Computing methodologies → Ma-
chine learning;
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1 FEATURE EXTRACTOR
An important part of our evaluation is represented by the feature
extractor, for which we rely on the established guidelines provided
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in [8, 9] and still widely employed in recent literature (e.g., [6]).
The underlying principle of such guidelines is to analyze several
elements of a webpage (e.g., the length of its URL), and then use
threshold-based mechanisms to determine whether such element is
‘benign’ or ‘phishing’ (e.g., a short URL is likely benign, whereas a
long one is likely phishing). Any feature can have a value within [-1,
1], where -1 is ‘benign’ and 1 is ‘phishing’. Our extractor generates
all the features reported in Table 1. We explain some of them.

• (#1) URL_length. We compute the amount of character com-
posing the entire URL. Strings shorter than 53 characters
correspond to -1 (likely ‘benign’), whereas longer strings
correspond to +1 (likely ‘phishing’).

• (#4) URL_short. If the URL starts1 with keywords related to
popular shortening services (bit.ly, goo.gl, tinyurl, ad.fly)
then this feature is set to +1, and to -1 otherwise.

• (#28) URL_pageRank. We use Open PageRank API to query
the URL’s domain. The response shows the page ranks from
0 to 10: the corresponding feature is normalized between -1
(if the rank is 10) and +1 (if the rank is 0).

• (#37)HTML_objectRatio. We capture all the objects embedded
in the webpage, and compute the ratio of internal-to-external
objects. An internal object either has its link starting with
../ or with the same ‘root’ as the website’s URL. If the ratio
is less than 0.15, then the value of this feature is -1 (likely
benign), and +1 otherwise (likely phishing).

• (#38) HTML_metaScripts. Same as #37, but for scripts, links
and metas. If the ratio is more than 0.61, the feature value is
+1 (likely phishing); if the ratio is less than 0.52, the feature
value is -1 (likely benign); otherwise, the value is set to 0.

• (#45) HTML_nullLnkWeb. We check how many links are
useless, i.e., they point to the exact same page (e.g., href=#).
The count of useless can be normalized between +1 (high
number of useless links) and -1 (no useless links).

• (#51) HTML_hiddenInput. We check if there are any hidden
input tags in the webpage. If there are, the feature value is
+1 (likely phishing), and -1 otherwise (likely benign).

• (#52) HTML_URLBrand. We check (in the HTML) if the web-
page title includes the brand name in the URL. If included,
the feature value is -1 (benign); otherwise, is +1 (phishing).

1Our feature extractor is ‘stateless’. Once it receives a sample, the only queries per-
formed are those to some third-party services (e.g., PageRank API, DNS servers), which
can be cached to save time. Our extractor, however, does not ‘update’ a sample: if, e.g.,
a URL uses a shortening service, then the extractor uses such ‘shortened’ URL as basis,
and if the HTML changes (due to some automatic script) then such change will not be
captured. Such choice makes sense because ML-PWD must be fast: a user does not
want to wait seconds before visiting each website just because a phishing check is
made. Moreover, our decision makes our extractor suitable also to to ML-PWD that
analyze only the URL, because the webpage will not be opened in the first place (which
is common for phishing email filters) due to the high overhead.
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(Our repository includes the source-code of our feature extractor.)
We use similar thresholds as those by Mohammad et al. [8, 9], and
are the same used to create the popular UCI dataset [1]. To validate
our choice of using the same thresholds (which play a crucial role
in our evaluation), we find instructive to report the length of URLs
contained in our chosen datasets, i.e., Zenodo and Xphish. The results
are as follows: for Zenodo, there are 1500 URLs (out of 4000) which
are longer than 54 characters; for Xphish, there are 1909 URLs (out of
6523) which are longer than 54 characters. Hence, such a threshold
is still sensible for more recent datasets.

Table 1: Features � of the considered ML-PWD.

# Feature Name # Feature Name # Feature Name

1 URL_length 20 URL_shrtWordPath 39 HTML_commPage
2 URL_hasIPaddr 21 URL_lngWordURL 40 HTML_commPageFoot
3 URL_redirect 22 URL_DNS 41 HTML_SFH
4 URL_short 23 URL_domAge 42 HTML_popUp
5 URL_subdomains 24 URL_abnormal 43 HTML_rightClick
6 URL_atSymbol 25 URL_ports 44 HTML_domCopyright
7 URL_fakeHTTPS 26 URL_SSL 45 HTML_nullLnkWeb
8 URL_dash 27 URL_statisticRe 46 HTML_nullLnkFooter
9 URL_dataURI 28 URL_pageRank 47 HTML_brokenLnk
10 URL_commonTerms 29 URL_regLen 48 HTML_loginForm
11 URL_numerical 30 URL_checkGI 49 HTML_hiddenDiv
12 URL_pathExtend 31 URL_avgWordPath 50 HTML_hiddenButton
13 URL_punyCode 32 URL_avgWordHost 51 HTML_hiddenInput
14 URL_sensitiveWrd 33 URL_avgWordURL 52 HTML_URLBrand
15 URL_TLDinPath 34 URL_lngWordPath 53 HTML_iframe
16 URL_TLDinSub 35 URL_lngWordHost 54 HTML_favicon
17 URL_totalWords 36 HTML_freqDom 55 HTML_statBar
18 URL_shrtWordURL 37 HTML_objectRatio 56 HTML_css
19 URL_shrtWordHost 38 HTML_metaScripts 57 HTML_anchors

2 EXPERIMENTALWORKFLOW
We follow the standard evaluation protocol for adversarial attacks
at inference time: We first develop the targeted systems, and then
assess their robustness against our adversarial attacks.

2.1 Development of the ML-PWD
We provide a schematic of the operations for our ML-PWD in Fig. 1.
Such operations involve three phases (dotted squares in Fig. 1).

(1) Setup. The first phase is choosing a given source dataset (i.e.,
Zenodo or Xphish) and partition its samples into benign and
phishing (� and % , respectively). Then, we perform a random
split (to avoid bias) on each of these partitions by using a
80:20 ratio (common in related literature [3, 4]). In other
words, we randomly select 80% of the samples in both � and
% (i.e., �C and %C respectively), which will be used to train the
ML model. The leftout samples, �8 and %8 (corresponding to
20% of � and % , respectively), are used to assess the inference
performance of the resulting ML model. We will also use %8
as basis to craft our adversarial samples.

(2) Training. To train M, we recall that the source data is in
raw format. Hence, before obtaining the training dataset
D, the corresponding training partitions �C and %C must be
transformed into their feature representation. Hence, we
develop a feature extractor (described in §1 of this Artifact)
that is based on a given feature set � (either �D , �A , or �2 ).
Then, we preprocess both �C and %C to obtain the actual

training data D. At this point, we apply a givenML algorithm
A (either '� , !' or �# ) to such D; the resulting ML model
M (a binary classifier, which we fine tune via grid-search)
will be the detection component of the considered ML-PWD.

(3) Testing. The last phase is measuring the performance of M.
In our case, a ML-PWD must exhibit both a high detection
rate and a low false positive rate: indeed, no one is interested
in detectors that block legitimate websites due to excessive
false alarms. Hence, we preprocess the inference partitions
�8 and %8 (by considering the proper � ) and measure the 5 ?A

and C?A—in the absence of adversarial attacks.
The topmost priority is ensuring that M analyzing �2 achieve opti-
mal performance: indeed, models using either �D or �A are expected
to exhibit a lower performance as they are provided with less in-
formation; however, using �D or �A is expected to yield a superior
robustness in the presence of evasion attacks. (Our repository in-
cludes the best parameter configurations of each ML algorithm.)
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Figure 1: Workflow to develop our baseline ML-PWD. Each
source dataset (containing benign, �, and phishing, % , sam-
ples) is randomly split into the training (�C and %C ) and in-
ference (�8 and %8 ) partitions, used to train and test each
ML-PWD. We use %8 as basis for our adversarial samples.

2.2 Attack Simulation (from Appendix D)
The procedure to assess the adversarial attacks involves three steps.

(1) Isolate. Our threat model envisions evasion attacks that occur
during inference, hence our adversarial samples are gener-
ated from those in %8 . Furthermore, we recall that the at-
tacker expects the ML-PWD to be effective against ‘regular’
malicious samples. To meet such condition, we isolate 100
samples from %8 that are detected successfully by the best2
ML-PWD (typically using �2 ) during one of our runs. Such
samples are then used as basis to craft the adversarial sam-
ples corresponding to each of the 12 considered types of
evasion attacks.

(2) Perturb. We apply the perturbations as follows. For WA and
ŴA, we craft the corresponding WsP, apply them to each of
the 100 samples from %8 , and then preprocess such samples
by using the feature extractor. For PA and MA, we first

2This ensures that all ML-PWD are assessed against the same adversarial samples. We
provide such sampmles in the source-code.
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preprocess the 100 samples with the feature extractor, and
then apply the corresponding PsP or MsP. Overall, these
operations result in 1200 adversarial samples (given by 12
attacks, each using 100 samples).

(3) Evade. The 1200 adversarial samples are then sent to all the 9
ML-PWD (for each dataset), and we measure the C?A again.

The expected result it that the C?A obtained on the adversarial sam-
ples (generated as a result of any of the 12 considered attacks) will
be lower than the C?A on the original 100 phishing samples.

3 ATTACKS IMPLEMENTATION
Let us discuss how we implement our perturbations, and provide
some insight as to which features are influenced as a result of our
attacks. We recall that each attack family presents three variants,
depending on which features the attacker is ‘consciously’ trying
to affect. Namely: D, A and 2, i.e., features involving the URL, the
representation (HTML) or a combination thereof. All attacks are
created by manipulating (phishing) samples taken from %8 . In par-
ticular, during our first trial we isolate 100 samples from %8 that are
correctly detected by the best ML-PWD: such samples are then used
as basis for all their adversarial variants (to ensure consistency).
For simplicity, we will denote any of such samples as ? .

We start by describing MA which are the easiest to implement.
Then, we describe WA and ŴA. Finally, we describe PA, which are
the most complex to implement because they must consider sev-
eral implications (e.g., inter-feature dependencies). (Our repository
includes the exact implementation of MA and PA, and also all the
pre-processed variant of the samples generated via WA and ŴA.)

3.1 ML-space Attacks (MA)
These attacks are the easiest to implement. Indeed, we simply follow
the same procedure as done by most prior works (e.g., [5, 7]) that
directly manipulate the feature representation �? of a sample ?

right before it is analyzed by the ML-PWD. We do this without
taking into account any inter-dependency between features and/or
any physical property that the actual webpage must preserve: this
is compliant with our assumption that the attacker has access to the
ML-space. Specifically, for each MA we apply the following MsP:

• MAD : The attacker targets URL-related features. Hence, we
manipulate �? by setting features based on �D equal to -1,
which denotes a value that is more likely associated with
a benign sample. In particular, we set to -1 the features in
Table 1 with the following numbers: (1-17,19-21,27,30-35)

• MAA : Same as above, but the targeted features are within �A .
Hence, we set to -1 the features in Table 1 with the following
numbers: (36-40,42-52,54-57)

• MA2 : We set to -1 all features involved in MAD and MAA .
We remark that the attacker is not aware of the feature importance
(because it would require knowledge of M). Hence, although some
manipulations will likely ‘move’ �? towards a benign webpage, it is
not guaranteed that M will actually classify such �? as benign: if the
manipulated features are not important, then even MsP may have
no effect (and such phenomenon does happen in our evaluation,
e.g., the ML-PWD using '� with �2 on Zenodo against MAA ).

Of course, we could set all features to -1 (e.g., all �D and �A ).
Doing this, however, would obviously result in a perfect misclas-
sification (and hence not interesting to show). Moreover, it would

not be sensible even for the attacker. Indeed, MA assume no knowl-
edge of M and of D, meaning that an attacker may suspect the
existence of a honeypot [10]. For instance, D may contain some
samples with all features set to -1 (i.e., benign) that are labelled
as phishing—for the sole purpose of defeating similar attacks in
the ML-space. Hence, it is realistic to assume that even an attacker
capable of MA would not exaggerate with their perturbations.

3.2 Website Attacks (WA and ŴA)
We recall that we perform two families of attacks in the website-
space: WA and ŴA. The peculiarity of both of these attacks (both
relying on WsP) is that the attacker does not have access to the
ML-PWD. Hence, they are not able to manipulate �? , and they are
not even able to observe �? .

3.2.1 WA. These attacks resemble the pragmatic example provided
in Appendix B of the main paper.

• WAD : We set the URL to a random string starting with
“www.bit.ly/”, followed by 7 randomly chosen characters
(which what this popular URL shortener does).

• WAA : For XPhish, we change theHTML by adding 50 invisible
internal links (i.e., having the same root domain of the web-
site);3 for Zenodo, we wrap all links within an “onclick”, i.e.,
we change: <a href=’link’> into <a onclick=”this.href=’link’”>.4

• WA2 : We do both of the above for each dataset.

3.2.2 ŴA. These attacks envision an attacker that knows how
the feature extractor within the ML-PWD operates (see 1). Such
knowledge can be acquired, e.g., if the attacker has (or is) an insider
that provided them with such intelligence. However, the attacker is
still confined in thewebsite-space, and hence can only applyWsP (to
generate ?). For a meaningful comparison, we assume an attacker
who is aware of how the features targeted in WA are “extracted”
within the ML-PWD. Hence, we craft each ŴA as follows:

• �WAD :The attacker, having knowledge of the extractor, knows
that by using an URL shortener they will affect all features
related to the URL (i.e., �D ); furthermore, they know the
threshold (53) that makes an URL to be considered as ‘be-
nign’. Such length is well above that of an URL generated via
any shortening service. As such, these attacks are an exact
replica as �WAD (the only difference is that the attacker of�WAD is more confident than the one in WAD ).

• �WAA : The attacker manipulates the HTML in the same was
as in WA2 . However, the attacker also knows the threshold
(0.15) of internal-to-external links that yields a benign value
of the HTML_objectRatio feature. Hence, the WsP manipu-
late the HTML of each ? by introducing as many links (or
wrappings) as necessary to meet such threshold.

• �WA2 : The attacker does both of the above.
We stress that the attacker cannot observe �? . Indeed, doing this
would require the attacker to completely replicate the feature extrac-
tor, which is costly, and may not even be possible (some third-party
3The exact string we inject is: “<a href=’#’ style=’display:none’> can not see</a>”, which
is the second string shown in our pragmatic example (Appendix B in the paper).
4Such WsP, if applied to textual link, would remove the underline of such a link,
therefore being visible to a user; however, it is possible to make it invisible by editing
the CSS properties. Our feature extractor is agnostic of such properties, so we do not
do this: the results would be equivalent.
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services may require subscriptions to be used). As such, the attacker
is aware of how to craft WsP that are more likely noticed by the
ML-PWD, but evasion is not guaranteed.

3.3 Preprocessing Attacks
These attacks are the most complex to realize from a research per-
spective and in a fair way. Let us explain.

Challenges. The underlying principle of PsP (the backbone of
PA) is affecting the preprocessing space of the ML-PWD. Tech-
nically, since we are the developers of our own feature-extractor
(i.e., the component of the ML-PWD devoted to data preprocess-
ing), we could simply directly manipulate our own extractor, i.e.,
by introducing a ‘backdoor’. However, doing this would prevent
a fair generalization of our results: for instance, it is possible to
develop another feature extractor, having the same functionality
but whose operations are executed in a different order. Hence, to
ensure a more fair evaluation, we adopt a different approach: we
apply the perturbations at the end of the preprocessing phase, but
we do so by anticipating how a perturbation in the website-space
(a WsP) could affect the preprocessing-space, thereby turning a
WsP into a “physically realizable” PsP. To this purpose, we assume
the viewpoint of an attacker. For instance, we ask ourselves: “if an
attacker wants to affect URL features by using an URL shortener,
how would the feature extractor react?”.

Scenario. In PA the attacker knows and can interfere (through
PsP) with the feature extraction process of the targeted ML-PWD.
However, the attacker is not aware of what happens next: the ML-
space and the output-space are both inaccessible by the attacker
(from both a read and write perspective). Hence, once the PsP has
been applied and �? is generated, the attacker cannot influence �?
any longer. For each PA we do the following:

• PAD : we anticipate an attack that targets URL features, and
specifically URL_length, by using an URL shortener. Hence,
we can foresee that operations (in the website-space) can lead
to alterations of all the features involved with the URL (i.e.,
�D ). For instance, doing this would make weird characters
(if present) to disappear from the URL. However, doing this
would induce to alterations also to �A . For instance, some
objects originally considered to be ‘internal’ would become
‘external’. Hence, we implement PAD by setting the following
features (from Table 1) to -1: (1-3,5,6,8,10-16,22,23,25,26,28-
30), whereas the following features are set to +1: (4,27,36-
38,41,44,48,52,54,56).

• PAA : we anticipate an attack that targets features related to
the representation of a website—in our case the HTML, and
specifically the HTML_objectRatio feature. We foresee that
an attacker can interfere with such feature in many ways, for
instance by removing links, adding new ones, or changing
those already contained in the webpage. All such changes
will affect many features, such as the HTML_freqDom: be-
cause populating the HTML with (fake) internal links would
change the ‘frequent domains’ included in the HTML. Such
changes can also affect the links in the footer of the webpage
(HTML_nullLnkFooter ); or the anchors (HTML_anchors); but
also others. We implement PAA by setting the following fea-
tures (from Table 1) to -1: (36–38,41,51,54,56,57); whereas we
set (39,40) to 1 and 46 to 0.

• PA2 : they are a combination of the two above. We expect
the attacker to use a URL shortener, and also infterfer with
the HTML_objectRatio. However, we cannot simply set the
features to the same values as PAA and PAD , because one
of the two will prevail. In our case, shortening the URL will
be ‘stronger’, because the URL will change (to that of the
URL shortener) and hence the internal objects will become
‘external’. Hence, we implement PA2 by setting the following
features (from Table 1) to -1: (1-3,5,6,8,10-16,22,23,25,26,28-
30), whereas the following features are set to +1: (4,27,36-
38,41,44,48,52,54,56).

Nevertheless, we remark that such PsP may not yield an �? that
is a perfect match with a �? generated via WsP (i.e., those of ŴA).
Indeed, some inconsistencies may be present—likely due to ‘inaccu-
rate’ anticipations from our (i.e., the attacker’s) side. Such inconsis-
tencies are sensible. An attacker with access to the preprocessing-
space can theoretically replicate the entire feature extractor, and
use it to exactly pinpoint how to generate PsP that are an exact
match with WsP (i.e., �?=�? ). However, doing this would be very
expensive. Furthermore, it would defeat the purpose of using PsP:
the attacker does not want that �?=�? , rather, they want a PsP that
is ‘stronger’; otherwise, why use PsP in the first place?

4 PROOF-OF-CONCEPT: ATTACKS AGAINST A
COMPETITION-GRADE ML-PWD

To further prove the impact of our ‘cheap’ attacks (i.e., WA), we
tested them on a real ML-PWD that is used in a (currently ongoing
at the time of writing the paper) well-known Machine Learning Se-
curity Evasion Competition (MLSEC [2]). Such competition is held
yearly, and is organized by leading tech-companies that provide
cybersecurity services reliant on ML methods. The 2022 edition of
MLSEC envisions a challenge in which participants are asked to
evade ML-PWD. We took this opportunity to assess whether our
attacks had any impact against such ‘competition-grade’ ML-PWD.
Short story: they do. A demonstrative video can be found at the
homepage of our website (which also includes the source-code).

4.1 Challenge
Participants of the phishing evasion challenge are given 10 ‘phish-
ing’ webpages, which are provided in their raw HTML form. The
purpose of the challenge is to manipulate such webpages so that
(i) they render exactly as the originals, and (ii) they evade a ML-
PWD. Specifically, the organizers provide 8 different ML-PWD,
which the participants can use as a black-box: by sending an input
(i.e., the HTML of a phishing webpage), they are given an output
(i.e., the probability that such webpage is malicious—according to
the specific ML-PWD). Such ML-PWDs only analyze the HTML of
the webpage (which must render exactly as the original).

Put simply: the objective of the challenge is to tweak the HTML
of the 10 webpages with imperceptible modifications that decrease
the confidence of the 8 ML-PWD.

4.2 Method
Of course, the setting described above perfectly describes the black-
box scenarios envisioned in adversarial ML papers: query the detec-
tor, and use the response as a guide to craft a more evasive phishing

4
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Figure 2: Effectiveness of the most likely attacks (WAA on XPhish) against the ML-PWD provided by the organizers of MLSEC [2].

webpage. Our primary attacks (WA), however, are query-less. Be-
cause we are aware that the target ML-PWD analyzes the HTML
(recall that this is an assumption of our threat model), we then craft
our ‘adversarial’ phishing webpages by using exactly the same WAA

used in our paper for XPhish: we add 50 invisible internal links. We
apply these WsP to all the 10 webpages provided by the organizers
of the challenge, and then test whether they had any impact to the
real ML-PWD involved in the challenge.

4.3 Results
By taking into account all webpages against all ML-PWD, our
attacks induced a drop of 3.4% in the confidence of the ML-PWD,
indicating that our WsP had some effect. However, while some
ML-PWD were not very affected, others incurred a significant drop.

Specifically, we focus our attention on the first and third ML-
PWDprovided by the organizers of MLSEC.The results of our proof-
of-concept experiments are shown in Figs. 2. These graphs show
phishing probability (y-axis) given as output by the corresponding
ML-PWD for each of the 10 webpages of the challenge (x-axis). We
report two bars: the blue bar are the results of the original webpages,
whereas the red bars are the results after applying our WsP.

4.4 Discussion
These two detectors were significantly less certain after our WsP,
with an average confidence drop of 17.5%. We observe that in most
cases, the confidences were still above 0.5 (i.e., the webpages would
still be classified as ‘phishing’). A more detailed look, however,
reveals that these detectors were completely fooled by some
webpages (i.e., their confidence dropped to below 0.5). We report:

• Page #3: from 0.90 down to 0.43 for the 1st and 3rd detectors.
• Page #6: from 0.90 down to 0.49 for the 1st detector.

We also attempted the same WAA by changing the number of fake
links, and also by considering a different string5. When applied
to, e.g., webpage #3, adding 280 links dropped the confidence to
below 0.2; whereas adding a slightly different string (the first one
shown in our pragmatic example in Appendix B) 280 times, the
5We also considered the ‘wrapping’ WsP for Zenodo: the effects were negligible—
probably because these ML-PWD factored such links into their ‘count’ (i.e., the attacker
made a wrong guess).

confidence dropped to 0.2 for the first and third detector, and to
0.49 for the seventh detector. The seventh detector was also fooled
by adding such alternative string 50 times to webpage #4, causing
a confidence of 0.46 (down from 0.68). The source-code is available
in our Artifact, and the experiments are entirely reproducible.

Interestingly, these results align with those shown in our main
paper: our query-less WA attacks cannot bypass any ML-PWD, but
in some cases they can induce a miss-classification.

5 COMPLETE BENCHMARK TABLES
We carry out our experiments by developing original software
tools, all written in Python3 by leveraging well-known libraries
(e.g., scikit-learn, Tensorflow). The ML-PWD using '� and !' are
assessed on a systemmounting an Intel XeonW-2223@3.6GHzwith
32GB RAM. For the �# , we use an nVidia P100 GPU. (Our results
have been reproduced during the ACSAC artifact evaluation.)

Baseline. Table 2 shows the average (and std. dev.) 5 ?A and C?A of
all 18 ML-PWD across the 50 trials when no attack occurs. Boldface
denotes the best ML-PWD on each dataset. We highlight the high
standard deviation of some detectors (e.g., the �# analyzing �A on
Zenodo), which justifies our decision to perform many trials.

Table 2: Performance in non-adversarial settings, reported
as the average (and std. dev.) C?A and 5 ?A over the 50 trials.

A �
Zenodo Xphish

C?A 5 ?A C?A 5 ?A

�#

�D 0.96±0.008 0.021±0.0077 0.55±0.030 0.037±0.0076

�A 0.88±0.018 0.155±0.0165 0.81±0.019 0.008±0.0020

�2 0.97±0.006 0.018±0.0088 0.93±0.013 0.005±0.0025

'�

�D 0.98±0.004 0.007±0.0055 0.45±0.022 0.003±0.0014

�A 0.93±0.013 0.025±0.0118 0.94±0.016 0.006±0.0025

�2 0.98±0.006 0.007±0.0046 0.97±0.007 0.001±0.0011

!'

�D 0.95±0.009 0.037±0.0100 0.24±0.017 0.011±0.0026

�A 0.82±0.017 0.144±0.0171 0.74±0.025 0.018±0.0036

�2 0.96±0.007 0.025±0.0077 0.81±0.020 0.013±0.0037
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Table 3: Evasion Robustness of the ML-PWD on the Zenodo dataset. The cells report the average (and std. dev.) C?A over the 50
reiterations. Lines correspond to the ML-PWD, while rows correspond to a specific attack.

A � no-atk WAD WAA WA2 �WAD �WAA �WA2 PAD PAA PA2 MAD MAA MA2

�#

�D 0.96±0.007 1.00±0.000 0.93±0.020 1.00±0.000 1.00±0.000 0.95±0.018 1.00±0.000 1.00±0.017 0.95±0.018 1.00±0.017 0.18±0.222 0.95±0.018 0.18±0.222

�A 0.86±0.013 0.88±0.013 0.87±0.056 0.87±0.055 0.88±0.013 0.44±0.153 0.83±0.051 0.54±0.108 0.29±0.120 0.31±0.118 0.88±0.013 0.02±0.095 0.02±0.095

�2 0.97±0.009 0.92±0.036 0.93±0.020 0.94±0.063 0.92±0.036 0.92±0.016 0.83±0.115 1.00±0.011 0.90±0.031 0.99±0.017 0.51±0.131 0.92±0.036 0.15±0.211

'�

�D 0.96±0.007 1.00±0.000 0.96±0.008 1.00±0.000 1.00±0.000 0.96±0.008 1.00±0.000 0.54±0.183 0.96±0.007 0.54±0.183 0.04±0.098 0.96±0.007 0.04±0.098

�A 0.90±0.013 0.90±0.013 0.88±0.024 0.88±0.025 0.90±0.013 0.71±0.053 0.80±0.025 0.59±0.086 0.47±0.082 0.30±0.088 0.90±0.013 0.04±0.155 0.04±0.155

�2 0.97±0.009 0.98±0.064 0.94±0.012 0.94±0.171 0.98±0.063 0.94±0.010 0.94±0.191 0.65±0.101 0.94±0.010 0.21±0.134 0.07±0.115 0.92±0.012 0.03±0.158

!'

�D 0.97±0.005 1.00±0.000 0.95±0.005 1.00±0.000 1.00±0.000 0.96±0.005 1.00±0.000 0.73±0.071 0.96±0.006 0.73±0.071 0.00±0.000 0.96±0.006 0.00±0.000

�A 0.80±0.013 0.80±0.013 0.65±0.043 0.64±0.040 0.80±0.013 0.54±0.027 0.56±0.022 0.61±0.007 0.08±0.013 0.01±0.010 0.80±0.013 0.00±0.000 0.00±0.000

�2 0.98±0.005 0.82±0.035 0.95±0.015 0.32±0.079 0.80±0.038 0.93±0.014 0.32±0.132 0.46±0.053 0.91±0.032 0.06±0.025 0.00±0.000 0.76±0.036 0.00±0.000

Table 4: Evasion Robustness of the ML-PWD on the Xphish dataset. The cells report the average (and std. dev.) C?A over the 50
reiterations. Lines correspond to the ML-PWD, while rows correspond to a specific attack.

A � no-atk WAD WAA WA2 �WAD �WAA �WA2 PAD PAA PA2 MAD MAA MA2

�#

�D 0.65±0.028 0.91±0.276 0.65±0.029 0.91±0.275 0.90±0.299 0.65±0.029 0.90±0.300 0.60±0.165 0.65±0.028 0.60±0.165 0.14±0.346 0.65±0.028 0.14±0.346

�A 0.79±0.013 0.80±0.013 0.35±0.018 0.34±0.017 0.80±0.013 0.86±0.033 0.88±0.020 0.46±0.065 0.69±0.038 0.46±0.064 0.81±0.013 0.00±0.000 0.00±0.000

�2 0.95±0.010 0.88±0.066 0.93±0.012 0.84±0.113 0.89±0.046 0.89±0.020 0.87±0.058 0.90±0.107 0.58±0.059 0.82±0.163 0.04±0.198 0.01±0.011 0.04±0.196

'�

�D 0.56±0.037 0.84±0.330 0.56±0.036 0.84±0.330 0.84±0.330 0.56±0.034 0.84±0.331 0.57±0.238 0.56±0.037 0.57±0.238 0.01±0.053 0.56±0.037 0.01±0.053

�A 0.95±0.008 0.95±0.009 0.84±0.003 0.84±0.043 0.95±0.009 0.80±0.038 0.94±0.009 0.84±0.049 0.55±0.090 0.95±0.055 0.95±0.008 0.00±0.000 0.00±0.000

�2 0.95±0.009 0.90±0.020 0.92±0.006 0.77±0.047 0.90±0.017 0.86±0.018 0.92±0.015 0.90±0.065 0.68±0.013 0.86±0.097 0.88±0.026 0.00±0.001 0.00±0.000

!'

�D 0.30±0.014 0.21±0.332 0.30±0.015 0.22±0.341 0.26±0.364 0.30±0.015 0.24±0.359 0.64±0.256 0.30±0.014 0.64±0.256 0.00±0.000 0.30±0.014 0.00±0.000

�A 0.78±0.011 0.78±0.011 0.57±0.014 0.56±0.047 0.78±0.011 0.60±0.030 0.63±0.010 0.80±0.029 0.04±0.006 0.45±0.068 0.78±0.011 0.00±0.000 0.00±0.000

�2 0.86±0.014 0.47±0.094 0.81±0.011 0.36±0.102 0.73±0.126 0.73±0.018 0.63±0.150 0.65±0.157 0.23±0.014 0.32±0.109 0.00±0.000 0.00±0.000 0.00±0.000

Evasion Performance We report the complete results of all
the 12 considered evasion attacks against all the 18 considered ML-
PWD in Table 3 (for Zenodo) and Table 4 (for Xphish). These tables
also include the performance in non-adversarial settings computed
on the 100 phishing samples (drawn from %8 that are used as base
for the adversarial samples). We remark that we chose such 100
samples by randomly selecting 100 samples which were correctly
detected by the best ML-PWD on each dataset. As such, the C?A

reported in the no-atk column can slightly differ from the one in
Table 2 (which is computed on the entire %8 ).

Runtime. We report in Table 5 the runtime for training and
testing all our ML-PWD in non-adversarial scenarios. The values
denote the average runtime (and standard deviation) across the 50
trials. Training the '� and !' uses all cores/threads of our CPU.
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