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ABSTRACT
Recent advances in deep learning renewed the research interests in
machine learning for Network Intrusion Detection Systems (NIDS).
Specifically, attention has been given to sequential learning mod-
els, due to their ability to extract the temporal characteristics of
Network traffic Flows (NetFlows), and use them for NIDS tasks.
However, the applications of these sequential models often consist
of transferring and adapting methodologies directly from other
fields, without an in-depth investigation on how to leverage the
specific circumstances of cybersecurity scenarios; moreover, there
is a lack of comprehensive studies on sequential models that rely
on NetFlow data, which presents significant advantages over tra-
ditional full packet captures. We tackle this problem in this paper.
We propose a detailed methodology to extract temporal sequences
of NetFlows that denote patterns of malicious activities. Then, we
apply this methodology to compare the efficacy of sequential learn-
ing models against traditional static learning models. In particular,
we perform a fair comparison of a ‘sequential’ Long Short-Term
Memory (LSTM) against a ‘static’ Feedforward Neural Networks
(FNN) in distinct environments represented by two well-known
datasets for NIDS: the CICIDS2017 and the CTU13. Our results
highlight that LSTM achieves comparable performance to FNN in
the CICIDS2017 with over 99.5% F1-score; while obtaining supe-
rior performance in the CTU13, with 95.7% F1-score against 91.5%.
This paper thus paves the way to future applications of sequential
learning models for NIDS.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Net-
work security; • Computing methodologies → Temporal rea-
soning.

KEYWORDS
Long Short Term Memory, Machine Learning, Network Intrusion
Detection, Cybersecurity, Network Flows, Deep Learning
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1 INTRODUCTION
Network Intrusion Detection Systems (NIDS) are of paramount
importance for the protection of network infrastructures. Many
detailed works (e.g., [4, 15, 17, 19]) highlighted the significant ad-
vances of NIDS, which are subject of continuous improvements.
Indeed, NIDS must face significant challenges such as the ever-
changing network environments as well as skilled and motivated
adversaries. In particular, the recent promising successes inmachine
and deep learning renewed the interest in devising autonomous
defensive systems [4, 15], giving life to a next generation of NIDS.

Among the plethora of proposals that exploit Machine Learning
(ML) techniques, one promising direction seeks to leverage sequen-
tial learning methods that rely on the enticing idea that specific
network events exhibit temporal patterns. When properly applied,
sequential ML methods—and especially their “deep” variants—offer
the appreciable opportunity to automatically extract these temporal
patterns. These patterns can then be used to create conventional
anomaly- or signature-based detection systems. Despite abundant
literature, an effective and realistic deployment of sequential learn-
ing models for NIDS is yet a distant goal. For instance, identifying
temporal patterns is challenging because many factors must be con-
sidered, such as, the adopted network protocols; the web-services
employed by the network; and the possible threats that may target
the network.

Moreover, the massive size and variability of modern network
traffic data makes timely analyses based on traditional packet cap-
tures (PCAP) a difficult objective – which is further aggravated
by the increasing usage of encrypted traffic. To mitigate this issue,
many proposals (e.g., [29]) favor the inspection of Network Flows
(NetFlows) instead of PCAP data. In this context, we make an in-
triguing observation: although it has been empirically shown that
cyber-attacks exhibit temporal patterns that can be easily extracted
at the packet level, it is less clear whether this is still true at the
‘higher’ NetFlow level1. Indeed, temporal patterns within packets
are not guaranteed to exist also in the corresponding NetFlows,
which are metadata that summarize the corresponding PCAP data.

In this paper we devise a novel methodology for (i) investigating
the existence of temporal patterns in malicious NetFlows; and, if

1NetFlows are a statistical summary of packets, grouped according to a set of rules [7].
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such patterns exist, (ii) assess their effectiveness for detection pur-
poses. The primary focus of past literature on sequential ML-NIDS
is the proposal of solutions that “outperform” the state-of-the-art
according to some performance metrics; however, the investigation
of the actual benefits brought by these solutions is often neglected.
In contrast, our objective is a preliminary analysis focused on the
investigation of the existence, advantages and shortcoming brought
by using temporal patterns at the NetFlow level for NIDS. To the
best of our knowledge, this paper is the first effort that analyzes
and performs a fair comparison of sequential ML models against
their ‘static’ counterparts.

We experimentally evaluate the proposed methodology on two
well-known and recent datasets for NIDS, the CTU13 [10] and the
CICIDS2017 [26].We apply ourmethod to extract temporal patterns,
and use such patterns to train and compare two Deep Learning
(DL) algorithms: one based on Long-Short-Term-Memory (LSTM),
which leverages sequential learning; and one based on Feedforward
Neural Networks (FNN), which is a traditional ‘static’ learning
method. Our results highlight that the patterns extracted by our
method yield proficient detectors in the CICIDS2017 scenario, with
both LSTM and FNN achieving over 99.5% F1-score; whereas the
LSTM significantly outperforms the FNN detector in the CTU13
scenario, with 95.7% F1-score against 91.5%.

We are confident that this paper will shed some light on the
application of sequential learning models for NetFlow-based NIDS.
Our work thus paves the way to more reliable defensive platforms,
which can jointly combine existing detection techniques with novel
solutions that also consider the temporal axis.

To summarize the main contributions of this work:
• we devise an original method to extract temporal patterns
from NetFlows that can be leveraged by sequential ML;

• we evaluate the proposed method to explore its benefits by
performing a fair comparison of a ‘static’ FNN against a
‘sequential’ LSTM on two well-known datasets for NIDS.

The remainder of this paper is structured as follows. Section 2 dis-
cusses related work. Section 3 describes the proposed methodology
for extracting temporal patterns in malicious NetFlows. Section 4
presents the experimental settings. Section 5 evaluates our pro-
posed method. Section 6 concludes the paper with final remarks
and future work.

2 RELATEDWORK
There exist many proposals for detecting malicious traffic by means
of machine learning techniques (e.g., [4, 19]). There is also abundant
literature on time-based analyses for NIDS (e.g., [2, 36]).

This paper lies at the intersection of these two application fields.
Our objective is investigating the effectiveness of temporal relation-
ships for ML-based NIDS (ML-NIDS), hence our literature review
focuses on those proposals that leverage machine- and, specifi-
cally, deep-learning by considering also the temporal axis, usually
through Recurrent Neural Networks (RNN).

Among the earliest successful applications of sequential learning
models to NIDS there is the 2017 proposal in [33]. Since then, several
works have proposed learning models that extract temporal rela-
tionships in the network traffic and use them for ML purposes. We
categorize and discuss such works on the basis of the approach used

to extract the temporal patterns, namely: automatic approaches,
where the temporal patterns are extracted through a pipeline that
inspects the input data and automatically learns the most signifi-
cant temporal features; manual approaches, where the temporal
patterns are extracted exclusively on the basis of the input features.

We provide an overview of the major differences among related
work in Table 1. This table shows the datasets considered, the
employed DL techniques (CNN stands for Convolutional Neural
Networks), and whether the approach is tailored for anomaly- or
misuse-based2 NIDS.

Table 1: Overview of related work on sequential ML-NIDS.

Paper Datasets Detection
method CNN RNN FNN

A
ut
om

at
ic

[12] ISCX2012, CICIDS2017 misuse ✓ ✓ ×
[21] CTU13, ISOT misuse ✓ ✓ ✓
[35] CICIDS2017, CTU13 anomaly ✓ ✓ ×
[28] CTU13 misuse × ✓ ×
[31] NSLKDD, UNSW-NB15 misuse ✓ ✓ ×

M
an

ua
l

[24] CICIDS2017 anomaly × ✓ ✓
[23] ISCX2012 anomaly × ✓ ✓
[11] UNSW-NB15 misuse × ✓ ×
[16] CTU13 anomaly × ✓ ×
[30] CTU13 misuse × ✓ ×

We do not consider works whose proposal is evaluated exclu-
sively on the (outdated andwidely deprecated [26]) NSLKDDdataset
(e.g. [3]), and that have been published recently (since 2017). Finally,
although many works use RNN for NIDS (e.g., [14]), they often ne-
glect considering temporal dependencies, hence we do not consider
such works in our analysis.

2.1 Automatic extraction of features
These works rely on an end-to-end pipeline that leverages spatio-
temporal dependencies, usually by means of CNN and RNN. The
CNN automatically learns both spatial and temporal features, thus
removing the need of manually extracting the features used to
devise the detector. In some of these proposals (i.e., [31, 35]), the
network traffic is inspected at the packet level by transforming
each packet into an image. These images are first spatially analyzed
through a CNN, and then, the feature maps describing packets are
used to extract temporal patterns by means of sequential models.

The authors of [12] proposed a Spatial and Temporal Aware
Intrusion Detection Model (STIDM) composed of LeNet-53 and a
modified version of the LSTM. LeNet-5 was used to extract spatial
features, while the modified LSTMwas used to extract temporal pat-
terns by taking into account the time intervals between packet ex-
changes. STIDM was trained on truncated flows of multiple packets
created by grouping on the tuple (SourceIP, SourcePort, DestinationIP,
DestinationPort, Protocol). We observe that it is difficult to attribute
the outstanding performance of STIDM to the CNN and/or the
LSTM from the results shown in [12]. Furthermore, STIDM works
on truncated sequences of packets, which makes determining the
existence of temporal patterns in NetFlows unfeasible.
2Note that within the ‘misuse’ category we also include approaches that use the trained
ML models to perform the detection.
3LeNet-5 is a well-known CNN architecture: http://yann.lecun.com/exdb/lenet

http://yann.lecun.com/exdb/lenet
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The approach in [35] is similar to [12], as they use the same
STIDM structure to extract spatial features and temporal patterns,
but the LSTM architecture is different. In this work, the overall
model was used to analyze sequences of packets composed of only
the first 160 bytes of every packet; then, the packets are aggregated
by following the same five-tuple of STIDM, but only the first 10
packets in each sequence are considered. Similarly to [12], from [35]
it is difficult to conclude anything about the existence temporal
patterns among NetFlows and about the true benefits brought by
the LSTM, since the results of the tested models (CNN, LSTM and
CNN+LSTM) showed comparable performance.

A different proposal for a end-to-end pipeline is in [31]. Here,
instead of chaining a CNNwith a LSTM (as in [12]), the authors first
create a block composed by these two techniques, and then stack
many of these blocks obtaining higher abstraction levels. Although
the final performance of such architecture achieves excellent results,
the method for processing the input data is poorly described, and
no information is provided as to how the temporal domain is used.

In [28], the authors used a sequence of graphs to model the time
evolution of the network traffic, in which nodes are the hosts (in
the form of IP addresses) of the network, and edges are the pack-
ets exchanged by hosts. After generating these graphs, time series
are extracted from each node by computing a set of graph-based
features (e.g., in/out-degree, or in/out-neighbors). Then, such time
series are divided in five overlapped time intervals, which are used
to train a LSTM to detect malicious (i.e., anomalous) hosts. We
observe that the approach in [28] presents a heavy burden in terms
of computational resources for its feature extraction; furthermore,
dividing a time series into fixed intervals does not allow to infer
long-lasting temporal patterns–despite obtaining encouraging de-
tection results on the considered testbed. Finally, this approach
focuses on analyzing PCAP data, and not on NetFlows.

The authors of [21] propose an approach similar to [28], but
assume NetFlows as input. A single graph was extracted from the
dataset, where nodes represent hosts (as IP addresses), while edges
represent the NetFlows exchanged by the hosts; then, a statistical
summary of the NetFlows between each pair of nodes is created.
Such statistical summary is integrated with temporal features ex-
tracted from the sequence of connection states between each pair
of nodes. Then, both the statistical summary and the temporal fea-
tures are used to make the final inference throughout a FNN. What
makes [21] intriguing is that there is an actual benefit from using
temporal features extracted from the connection states of NetFlows.
However, it also demonstrated that using only the temporal features
extracted from the connection states was not enough to achieve
good detection.

To summarize, the major drawbacks of these approaches is their
specificity to packet level analyses. Inferring spatial features from
NetFlow data may still give a benefit, but the overall detection pro-
cess must take into account the complex NetFlow semantic. Finally,
none of these works prove the existence of malicious temporal
patterns in NetFlows that are usable for ML-NIDS.

2.2 Manual extraction
These approaches use the features as they are provided in the input
data; some preprocessing may occur, but there is no automatic

feature extraction mechanism, that is, the features are not produced
by any ML method.

In [23], the authors use a bidirectional LSTM model to predict
whether a communication was atypical or not. Specifically, they
leverage Natural Language Processing by transforming NetFlows
into ‘tokens’, where a token is defined as either a network port
or a byte-port tuple. Then, these tokens were grouped by IP-pairs
within hourly bins to form time-ordered sequences. This allowed
the LSTM to learn a model of the benign traffic, which is used
to detect anomalous communications. We observe, however, that
the NetFlow semantic was used only to extract information on
the byte-port tuple, which is a limitation in large networks with
high diversity in the traffic. Moreover, having sequences focused
on IP-pair and of limited duration does not imply that the learned
temporal patterns (if any) are truly effective for NIDS.

In [24], the authors extend [23] by evaluating five different meth-
ods for aggregating NetFlow tokens in time-ordered sequences.
They showed that different aggregation methods do not play an
important role in training sequential models, due to negligible per-
formance differences. While this observation might be true in their
specific context, it is not applicable for our case. Indeed, we want
our ML-NIDS to learn the temporal pattern of attacks, thus splitting
the corresponding attack NetFlows is not viable: by doing so, we
would break the temporal patterns (if they exist).

In [16], the authors propose a Recurrent Variational Autoen-
coder to detect botnet connections through anomaly detection.
Their model is trained on certain botnet types and tested on un-
seen ones, showing good detection performance and demonstrating
generalization capabilities. We point out that the generalization
capabilities of some ML methods (and, specifically, of RNN) are an
appreciable characteristic. However, the sequences used in [16] are
created by aggregating NetFlows on their source IP, and then each
sequence is reduced by summarizing NetFlows, therefore inducing
loss of data which may break any temporal pattern.

In [30] a behavioral LSTM is devised to counter botnet attacks
by analyzing the long-term traffic characteristics. Here, NetFlows
are first aggregated into sequences according to a 4-tuple (source
IP, destination IP, destination part, protocol); then, each NetFlow
is vectorized with the behavioural model on the basis of three
features: size, duration, periodicity. Although this work evaluates
the prominent issues in training LSTM (e.g., data imbalance), it
manually cherry picked the best features for detection. We do not
make such assumption in this paper.

The LSTM is used also in [11] to detect and classify malicious
network packets. The authors evaluate the semantic of categorical
features through embedding layers. Their results show that such
layers do not improve the detection, and that the binary classifi-
cation of LSTM achieves optimal performance (99.75% F1-score).
However, the LSTM is trained on sequences of fixed length, and
no information on how to determine such length is provided. As
in [30], this paper cherry-picks the optimal thresholds that ensure
best results on their specific testbed, with low practical value.

To summarize, these works have little realistic usage, and do not
allow to assess the effectiveness of the extracted temporal patterns.
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3 PROPOSED SOLUTION
Our goal is to investigate the existence of temporal patterns in mali-
cious NetFlows, and then explore the benefits of using these patterns
in detecting malicious activities via machine learning. Hence, our
first objective is the extraction of such temporal patterns. To this
purpose, we propose an original method based on expert knowl-
edge and network data analytics. Then, we need to verify if the
extracted patterns are useful for detection purposes.

As explained in Section 2, many state-of-the-art approaches for
extraction of temporal patterns have significant limitations. Thus,
we propose an original method that aims at mitigating such deficien-
cies. The intention is to give more guarantees that the underlying
temporal characteristics of different attacks are truly captured by
the generated sequences, and are hence usable for efficient detec-
tion. In the remainder of this work, we will use the term ‘scenario’
to denote a complete ‘attack scenario’, i.e., a sequence of NetFlows
that describes a specific attack scenario.

We first describe the threat model, the characteristics of the net-
work environment and the assumptions required by our method
(Section 3.1). Thenwe present our proposedmethod for creating sce-
narios (Section 3.2 and outline the characteristics of the sequential
ML model (Section 3.3).

3.1 Threat Model and Assumptions
This paper makes the following assumptions about the attacker’s
side, the considered network environment, and the input data re-
quired for creating the attack scenarios.

Attacker. We assume an attacker with the goal of either stealing
sensitive data from, or disrupting the services provided or used
by, the targeted organization. As is common in NIDS scenarios,
the attacker is assumed to have established a foothold within the
targeted network by compromising one (or more) of its most vulner-
able hosts. The attacker does not have any information about the
defensive mechanisms monitoring the organization; for example,
the attacker does not know the datasets used to train ML-based
NIDS. The attacker can interact with the network services acces-
sible from within the organization network, but they do not have
direct access to the NetFlow-exporter nor to any defensive system.

Environment.We assume the typical network environment span-
ning from dozens to hundreds of hosts that perform multiple net-
work activities. The traffic generated by these hosts is first captured
as PCAP data, and then transformed into NetFlows by means of
any NetFlow-generation software4. These extracted NetFlows are
then analyzed by the NIDS, possibly after some preprocessing op-
erations. We assume that the traffic generated by the most critical
servers of the organization (to which the attacker has no access) is
analyzed by dedicated mechanism.

Input Data. Our method requires a collection of NetFlows that
are labelled according to the malicious network activities that they
represent (or as ‘benign’ if they are not related to illegitimate ac-
tions). For each NetFlow, our method requires the following pieces
of information: the timestamp, the Source/Destination ports, the pro-
tocol, the duration, the direction of the connection with respects to
the network environment (i.e., inbound, outbound, or bidirectional),
and optionally the specific attack type denoted by the label. Any
4Exemplary NetFlow software: https://qosient.com/argus/.

additional piece of information is not required, but – if available –
it can be freely added to the list of considered features to provide
more fine-grained results.

In summary, our proposed method makes the assumptions typ-
ical of NIDS scenarios, and only requires the essential pieces of
information obtainable from any NetFlow-generation software. The
availability of labelled data is also a standard assumption inmachine
learning tasks.

3.2 Extraction of Attack Scenarios
Our method uses expert knowledge that can be applied to existing
labelled NetFlow data to extract the attack scenarios.

The fundamental idea is to use the available information on a
given set of NetFlow data to extract these scenarios. Such informa-
tion can be readily acquired from the labels or the documentation
of a dataset; or after exploratory data-analytics procedures. Our
intuition is that if a specific attack presents temporal patterns, then
such patterns should not depend on the benign traffic. Hence, we
propose to isolate the specific attack types and, for each type, focus
on the time-interval containing the malicious samples.

However, many obstacles must be overcome to increase the
likelihood that the extracted scenarios are effective for detection.

A well-known issue in the application of ML-based approaches
for NIDS is the strong unbalancing between the normal ‘benign’
traffic, and the malicious traffic. Indeed, contrarily to other domains
where ML is applied, in cybersecurity the illegitimate samples repre-
sent rare events (e.g., [2, 5]) which are several orders of magnitude
inferior to the normal events occurring in a network. A strong data
imbalance affects all types of ML applications; however, our time-
sensitive context further aggravates this problem, because finding
temporal patterns in the minority class is more difficult.

Therefore, in designing our proposedmethodology for extracting
the attack scenarios, we must first mitigate the unbalancing in
the data. By doing so, we can improve the quality (in terms of
detection efficacy) of the extracted temporal patterns. To mitigate
the unbalancing problem, we leverage two observations:

(1) the majority of the benign traffic that skews the distribution
of a dataset presents similar characteristics, i.e., same proto-
cols or same (service) ports5, and can be partially discarded
to increase the ‘weight’ of the malicious patterns;

(2) some attacks exhibit periodic behaviours (also referred to
as beaconing [2]), and are executed in time intervals that, if
found, can be used to “split” the scenario.

By combining these two observations, we propose to identify
one or more separate scenarios for each attack type; such scenarios
contain only those samples (benign and malicious) generated at the
precise time intervals. Hence, we focus on pinpointing one or more
time intervals for each attack, and then create a dedicated scenario
for each time interval by including only those NetFlow samples
occurring within the corresponding intervals. The remaining traffic
samples are then discarded.

Let us illustrate our idea with a concrete example, graphically
depicted in Figure 1. Here, we assume that there exists a “Botnet
Scenario” that starts from time 𝑡 + 5 (denoted with the NetFlow
5This is the assumption underlying anomaly-based NIDS, where a representative
model of the benign network traffic is constructed through statistical analyses [15, 19].

https://qosient.com/argus/
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Figure 1: Example of attack scenarios creation. Any NetFlow not included in the attack scenarios is discarded.

𝑥𝑡+5), and ends at time 𝑡 +14 (denoted with the NetFlow 𝑥𝑡+14). Our
approach retains all NetFlows occurring within such time interval
(spanning over 10 time-steps), regardless of their nature (benign or
malicious). Specifically, the extracted “Botnet Scenario” will include
two botnet NetFlows (𝑥𝑡+5, 𝑥𝑡+6) followed by two benign NetFlows
(𝑥𝑡+7, 𝑥𝑡+8), and then by, in order, another botnet NetFlow (𝑥𝑡+9),
two benign NetFlows (𝑥𝑡+10, 𝑥𝑡+11), a botnet NetFlow (𝑥𝑡+12), a
benign NetFlow (𝑥𝑡+13), and the final botnet NetFlow (𝑥𝑡+14) The
NetFlows not included in such scenario (e.g., those from 𝑥𝑡 to 𝑥𝑡+4
and from 𝑥𝑡+15 to 𝑥𝑡+18) are discarded. Then, at time 𝑡 + 19, the
“SQL Injection Scenario” begins.

The time intervals of an attack can be identified by analyzing the
temporal distribution of malicious NetFlows (e.g., through the use
of autocorrelation [27]). However, such intervals can be obtained
also from a dataset documentation (e.g., [26]).

When identifying the time-intervals of the attack scenarios, it is
important to avoid ‘removing’ excessive amounts of benign samples:
such occurrences may lead to oversimplified attack scenarios that
are not sufficiently representative for detection purposes. If the
extracted scenarios do not include at least some benign samples, we
recommend increasing the length of the time-intervals to include
more benign activities; alternatively, it is even possible to create
dedicated ‘benign’ scenarios. We anticipate that, in our evaluation,
we demonstrate that this latter technique can be used without
affecting the learning phase of the sequential models.

Nonetheless, there may also exist some circumstances that lead
to scenarios with an overabundance of benign samples (e.g., long
duration attacks such as DDoS). Completely solving this issue is
unfeasible. Hence, to mitigate this problem, we recommend to con-
figure the loss function (i.e., the weights) of the ML model to assign
a heavier penalty to misclassifications of malicious scenarios.

Let us explain the motivation behind such design choices. The
ML literature proposes many techniques for dealing with imbal-
anced datasets. Some prominent examples involve: under-sampling
the majority class or over-sampling the minority class [6]; Synthetic
Minority Over-sampling Technique (SMOTE) (e.g., [34]); and weigh-
ing the loss function. However, with the exception of weighing of
the loss function (which is the approach adopted in the proposed
method), all these techniques artificially modify the input data and
cannot be readily applied. Indeed, manipulating the network data
with under/over-sampling may lead to biased and overfit models
that learn unrealistic patterns, which may present good results on
the ‘modified’ source dataset, but with impractical performance in
realistic applications. We argue that these techniques are effective
for training successful ML models that do not take into account

temporal relationships. However, in our time-sensitive context, we
have to ensure that the generation of synthetic data - or the removal
of real data - does not interfere with the actual temporal patterns
that denote the network activities.

Our method is among the first attempts in this domain, and
presents much room for improvement. The major advantage of the
proposed method, that is, creating specific attack scenarios, is that
it should improve the quality of the learning phase by reducing the
noise caused by the benign traffic. However, we stress that there is no
guarantee that the extracted scenarios capture meaningful temporal
relationships that are truly useful for detection purposes. This is
why we must resort on ML methods to validate if the proposed
method is effective or not.

3.3 Sequential ML for NIDS
To assess the quality of the temporal patterns hopefully contained
in the attack scenarios (described in Section 3.2), we employ the
de-facto sequence model for practical applications, gated RNN [8].
Among the possible architectures of gated RNNs, we chose the Long
Short-Term Memory (LSTM), due to its successful results achieved
in literature (e.g., [18, 32]).

The successful principle at the base of the LSTM is an internal
and context-aware self-loop, which dynamically adjusts its time
scale on the basis of the sequence provided as input [25]. The ability
of automatically adjusting the time scale makes LSTM a suitable
candidate for our objective. Indeed, we stress that our method does
not know whether temporal patterns (among malicious NetFlow
data) exist or not. Moreover, even if such patterns exist, the method
does not know when they occur and how long they last. Hence,
we require a technique that is able to learn both long-term and
short-term dependencies in the input scenarios. As an additional
benefit, LSTM are among the best models for dealing with the so
called vanishing gradient problem [9], which is a major obstacle
when training RNN methods.

We propose the use of an unidirectional 𝑛-stacked version of
the LSTM. We provide a schematic depiction of such architecture
(in a 2-stacked version) in Figure 2, which reports the exemplary
case of the Botnet attack scenario shown in Figure 1. As described
in [20], having a stacked version of a RNN helps the model to look
at the input data from different time-scales. This is possible since
the input of each layer is the hidden state of the previous layer,
with the sole exception of the very first layer which receives the
actual input 𝑥𝑡 .

As shown in Figure 2, in a 𝑛-stacked version of a LSTM, the input
at time-step 𝑡 is fed into the first layer, and it is then used (alongside
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Figure 2: Exemplary architecture of a 2-stacked LSTM.

the hidden state of the previous time-step ℎ1
𝑡−1) to produce the Cell

state 𝑐1𝑡 (we use the superscript for identifying each layer). Then,
for all the upper 𝑛 − 1 layers, the input at time-step 𝑡 is the hidden
state of the previous layer, that is, for a layer 𝑖 ≥ 2, the input at
time-step 𝑡 is ℎ𝑖−1𝑡 . This mechanism allows to bring the actual input
into different time scales before making the final inference.

A common problem in any ML approach is the risk of realizing
an overfit model. Depending on the input data and the chosen ML
algorithm, different techniques can be used to remove (or mitigate)
such issues (e.g., [13]). Similarly, the activation function of the
LSTM layers can be chosen arbitrarily: common solutions are, e.g.,
the sigmoid or the rectified linear unit (ReLU).

The model is used in a many-to-many fashion, that is, each
NetFlow in a scenario is classified as either benign or malicious.
This final classification is achieved through a single fully-connected
neuronal layer placed after the last LSTM layer.

4 EXPERIMENTAL SETTINGS
We experimentally evaluate the proposed methodology. Recall the
twofold goal of our paper: investigating the existence of malicious
temporal patterns in NetFlows; and verifying whether sequential
learning models really learn and benefit from these patterns. To
this purpose, we need to first devise a sequential learning model
using some input data, and then compare its performance against
a baseline ‘static’ ML model (using the same input data), but that
does not consider any temporal relationship.

We describe the experimental settings to highlight the realistic
value of our testbed. We present the chosen datasets in Section 4.1,
the implementation of the proposed method and the realization of
the final detectors in Section 4.2.

4.1 Datasets and Preprocessing
We base our evaluation on two well-known and labelled datasets of
enterprise network traffic that include different types of attacks and
that are appreciated in the NIDS domain: the CTU13 [10] and the
CICIDS2017 [26]. We present the motivations of our choice below.

CTU13. This dataset is extensively used in literature (see Table 1)
and contains thirteen collections of real network traffic data (in the
form of NetFlows) mixed with traffic generated by different botnet
families. We choose the CTU13 for two reasons that make it as a
valid benchmark for realistic evaluations. First, in each collection,
a specific botnet family performs multiple malicious actions (e.g.,
Port Scan, Click Fraud, DDoS); hence, each collection embeds a

large variance of malicious events–and potentially many different
temporal patterns. Second, the volume of benign traffic with respect
to the malicious one is several orders of magnitude greater, making
the dataset highly imbalance.

We perform a preliminary analysis of the CTU13. We discover
that the majority of the benign traffic in CTU13 is produced by
20 internal hosts and involve few services. Hence, we exclude the
NetFlows (which are all benign) of these hosts to partially mitigate
the unbalancing problem. We recall that our focus is investigating
the existence of temporal patterns among malicious NetFlows, and
removing such samples does not interfere with our methodology.
Furthermore, these hosts can be seen as more critical to the organi-
zation, and in real networks they would be protected by dedicated
defensive mechanisms, therefore aligning with the assumptions
made in our threat model (see Section 3.1). As successfully done in
related NIDS literature (e.g., [1]), we select the following NetFlow
features6: duration, source/destination ports, direction, protocol,
total packets, packets per second, total amount of bytes, amount of
source bytes, ratio of bytes per second, ratio of bytes per packet.

CICIDS2017. This benchmark dataset contains synthetic benign
traffic and common types of attacks, with the peculiarity that dif-
ferent types of attacks are carried out in distinct time intervals. We
choose the CICIDS2017 because, with respect to the CTU13, it is
more recent, it has a larger variety of attacks and it is less class
imbalance. Moreover, its documentation specifies the time interval
of each type of attack, which we leverage for our method.

We conduct an exploratory analysis of the CICIDS2017, where
we determine the features for our experiments: duration, protocol,
source/destination IP (as either internal or external to derive the
direction of the connection), total packets, source/destination ports,
total amount of bytes, ratio of packets per second, ratio of bytes per
packet, minimum/maximum/average inter arrival time. This feature
set differs from the one adopted in the CTU13, but it includes the
features required by our approach.

4.2 Implementation and Detectors
After preprocessing the datasets, the next step is the extraction of
the attack scenarios with the proposed method (see Section 3.2). Its
application produces a set of attack scenarios, which we summarize
in Table 2. Let us describe the table by focusing on its leftmost part:
the dataset is the CICIDS2017 for which precise information on the
time interval of the attacks is available. We use such information
to create the scenarios. For instance, Day 2 is split into 4 scenarios
(Botnet1, Botnet2, Port Scan, and DDoS). We observe that our method
reduces the amount of benign NetFlows: in Day 2 they decrease
from 687k to 382k. Furthermore, instead of dropping Day 1, we
use its benign traffic to create two benign scenarios to demonstrate
that their use can yield better performance.

To assess the quality of the extracted patterns for detection
purposes, we devise a baseline detector that relies only on the
“static” features of NetFlows for the final inference, that is, it does
not take into account any temporal relationship. The rationale is
that, if the baseline ‘static’ detector and the proposed ‘sequential’
detector have comparable overall performance, but their specific

6Note that our chosen features extend the basic essential features required by our
method (see Section 3.2).



On the Evaluation of Sequential Machine Learning for Network Intrusion Detection ARES 2021, August 17–20, 2021, Vienna, Austria

Table 2: The distribution of benign and malicious NetFlows in the datasets before and after the application of the method
described in Section 3.2. In the table, #B stands for number of benign and #M for number of malicious.

CICIDS 2017
NetFlows in the dataset NetFlows in processed scenarios

File # NetFlows # Mal Scenario #B train #M train #B test #M test
Benign1 191235 0 81958 0Day 1 516243 0
Benign2 170135 0 72915 0
Botnet1 105288 1460 45538 212
Botnet2 9607 107 4019 145
Port Scan 88585 117607 47173 41196Day 2 687858 284758

DDoS 42946 101443 39294 22588
DoS GoldenEye 10202 7690 24456 2384

DoS Hulk 16802 153596 14358 58670
DoS slowhttptest 19655 3974 14227 1527Day 3 663612 233635

DoS slowloris 54111 3878 8323 1911
FTP-Patator 73355 5027 23262 2866Day 4 436088 13782
SSH-Patator 55133 3522 22772 2366

Web Brute Force 43062 867 18188 640Day 5 448382 2214
Web XSS 15984 417 6794 235

Summary 2752183 534389 Summary 896100 399588 423277 134740

CTU 13
NetFlows in the dataset NetFlows in processed scenarios

File # NetFlows # Mal Scenario #B train #M train #B test #M test
Menti 558919 4630 Menti 62306 2986 26369 1614
Murlo 2954230 6126 Murlo 273249 3641 116251 2417
Neris1 2824636 40959 Neris1 156026 24280 68013 9261
Neris2 1808122 20941 Neris2 99614 16821 46569 3333
Neris3 2753884 184979 Neris3 86236 51890 33908 25290
Nsisay 325471 2168 Nsisay 32228 1602 14140 359
Rbot1 4710638 26822 Rbot1 317008 12451 126869 14329
Rbot2 1121076 1768 Rbot2 53924 825 22288 1177
Rbot3 1309791 106352 Rbot3 112684 74743 48939 31388
Rbot4 107251 8164 Rbot4 5598 5070 1500 3073
Virut1 129832 901 Virut1 8331 549 3501 306
Virut2 1925149 39993 Virut2 141886 23225 62048 8714

Summary 20528999 443803 Summary 1349090 218083 570395 101261

classification patterns differ, we can prove that temporal patterns
among malicious NetFlows indeed exist in our scenarios.

For the sequential detector, we use a 2-stacked LSTM. Tomitigate
overfitting, the LSTM leverages the dropout technique to yield a
smoother model that is less sensitive to small variations in the
(unseen) input data. Moreover, we use the sigmoid as activation
function. The LSTM has the same structure as in Figure 2.

For the static detector, we consider a Feedforward Neural Net-
work (FNN). To avoid bias and favor a fair comparison, we build
the FNN with the same number of hidden layers of the LSTM; we
apply the dropout mechanism after each layer, and we use ReLU as
activation function. We report such FNN architecture in Figure 3,
which can be directly compared to the LSTM in Figure 2.

We observe that both the LSTM and the FNN project the Net-
Flows in two latent spaces, the blue ellipsis.While the LSTMprojects
sequences of NetFlows in two distinct and subsequent time scales,
the FNN separately transforms each NetFlow into two subsequent
projection spaces. The models should have a similar expressiveness
(i.e., optimization functions) which is beneficial for a fair compari-
son.

Figure 3: FNN architecture.

We focus on binary classification, that is, each sample can be
predicted to be either benign ormalicious.We consider two datasets,
so we devise a total of four models, i.e., one FNN and one LSTM
per dataset. We report in Table 2, the partitioning of the training
and testing sets. We use the first 70% of each scenario for training

and the remaining for testing (to avoid temporal bias [22]); the only
exceptions are some scenarios of CICIDS2017, where wemust resort
to different splits to ensure at that at least 70% of the malicious
NetFlows are put in the training set. We remark that both the LSTM
and FNN are trained on the same training data, and tested on the
same test data. Note also that we keep the Benign1-2 scenarios of
CICIDS2017 only for training the models.

5 EVALUATION AND RESULTS
The goal of the experiments is verifying the existence and effective-
ness of the temporal patterns extracted with the proposed method;
we do not want to propose a superior technique. Hence, we train7
the LSTM and FNN on each dataset (as described in Section 4.2),
and we perform two types of experiments, which we briefly outline.

Direct comparison. Here, the focus is studying the classification
patterns learned by the two models (LSTM and FNN). We do so
by analyzing the results of both models on the same testing set.
The idea is that different performance implies different learned
patterns used for detection. We present and discuss the results of
these experiments in Section 5.1.

Ensemble comparison. To truly verify if the two models (FNN
and LSTM) learn different patterns, we create a third ‘ensemble’
model that includes both models. More specifically, we join the FNN
with the LSTM model through the logical or. Then, we compare
this ensemble (denoted as FNN+LSTM) with the stand-alone LSTM
model, and test them on the same test data. The intuition is as
follows: if we combine the LSTMwith the FNN and the performance
matches the performance of the stand-alone LSTM, then it will mean
that the FNN and LSTM learn the same detection patterns (and vice
versa). These experiments are discussed in Section 5.2.

5.1 Initial Assessment (FNN vs LSTM)
We first compare the performance of the sequential LSTM against
the static FNN. We evaluate the two classifiers on every scenario of
each dataset. We report the results in Table 3, showing the perfor-
mance metrics of interest: the F1-score; and the complete confusion

7We report more experimental details in Appendix A.
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matrix, where fp (fn) stands for false positives (negatives), and tp
(tn) stands for true positives (negatives). We consider a positive
as a malicious sample. We split the classification results for each
scenario to allow a more fine-grained comparison of the two ap-
proaches. The green rows report the aggregated results on the
corresponding dataset.

Let us discuss these results, starting from the CICIDS2017 dataset.
By looking at the overall results (green rows), the performance of
both LSTM and FNN is similar, and comparable to the state of the
art (e.g., [12, 35]). However, by inspecting the performance in the
individual scenarios, we can observe some interesting phenomena.
Consider the two Botnet scenarios of CICIDS2017 (highlighted in
yellow): here, the LSTM learns different classification patterns than
the FNN, achieving 81% (87%) F1-score against a 93% (81%) in
the Botnet1 (Botnet2) scenario. What is remarkable in these two
scenarios is the fact that the malicious samples are from the same
botnet type. If we turn the attention to the DoS slowloris and the
Port Scan scenarios, the LSTM has almost the same fn of the FNN
in the DoS slowloris scenario, but fewer in the Port Scan scenario.
These two different types of attacks further highlight that, against
some attacks, the LSTM appears to be more effective. The intriguing
observation is that a Port Scan typically generates a large volume
of (malicious) traffic in a short timeframe; on the contrary, the DoS
slowloris generates a small volume of traffic but in long timeframes.
Despite these differences, the LSTM seems to adjust its internal
time scale (see Section 3.3) for achieving superior performance.

We now focus on the CTU13. Here, on average, both models
achieve good performance with over 91% F1-score, in-line with the
state of the art (e.g., [1]). The LSTM performs better than the FNN
in terms of F1-score, and it exhibits a lower amount of fp, but also
slightly higher fn, making it a more precise detector for practical
purposes. Let us observe the results for the individual scenarios. In
the Nsisay scenario both models achieve similar poor performance
(below 45% F1-score). The most remarkable differences involve
the Neris3 and Virut2 scenarios (highlighted in yellow). In Neris3,
the LSTM has a lower number of false-negatives, but it also has a
larger number of false-positives; on the other hand, Virut2 is the
only scenario where the FNN outperforms the LSTM, and this is
clear from the F1-scores of the models. Indeed, the Virut2 scenario
is the most ‘problematic’ scenario for the LSTM due to the huge fn.
However, everywhere else the LSTM learns different classification
patterns that produce superior detection results.

Takeaway: the different performance in the individual scenarios
on both datasets may suggest that the LSTM learns different
classification patterns than the FNN. Hence, for some specific
attacks, the application of the proposed method (and its usage
for LSTM-detectors) may yield better NIDS.

5.2 Verification (FNN+LSTM vs LSTM)
Despite the differences shown in the previous experiments, we still
cannot be truly sure that the LSTM and FNN have learned different
patterns for their classification8. As an example, consider the case
of Botnet1 in the CICIDS2017 dataset: the FNN has 10 fn, while the
LSTM has 35 fn. The question is: are these 10 fn by the FNN also

8The objective is verifying if the temporal relationships are truly useful for ML-NIDS.

included in the 35 fn by the LSTM? If this is true, then the two
models will have learned (very) similar classification patterns; on
the other hand, if this is not true, then the two models will have
learned (arguably) different classification patterns.

To this purpose, we join the LSTM model with the FNN model
with the logical or operator to create a new ensemble (FNN+LSTM).
More specifically, for a given test-sample as input, the output will
be malicious if at least one model of the ensemble makes a mali-
cious classification; conversely, the output will be benign only if
both models agree on a benign classification. Such design choice
should reduce the number of fn. We do not retrain the models of the
ensemble: we simply input a (test) sample to each trained model,
and then join the output with the logical or.

We test the LSTM+FNN ensemble on both datasets and report
the results in Table 4. For each dataset, the three columns of the
FNN+LSTM report the F1-score and the number of fn and fp for each
attack scenario; we summarize the overall results in the last row
(green row). The two rightmost columns report the difference (Δ)
of each performance metric between the FNN+LSTM and the stand-
alone LSTM: hence, in the±fn and±fp columns, a negative (positive)
value means that the ensemble LSTM+FNN is better (worse) than
the stand-alone LSTM.

Let us discuss Table 4, starting from the CICIDS2017 results.
Here, we highlight (in yellow) Botnet1 and DoS slowhttptest scenar-
ios because they show the greatest improvement of the FNN+LSTM
ensemble over the stand-alone LSTM. In these scenarios, the ensem-
ble has lower fn than the LSTM, and the same fp (only 1 more for
the Botnet1). This is possible because the FNN used in the ensemble
correctly identifies the malicious NetFlows that are misclassified by
the LSTM. We observe an interesting phenomenon in four scenar-
ios, i.e., DoS slowhttptest, Botnet1-2 and Port Scan. The ensemble has
not only lower fn than the stand-alone LSTM, but also lower than
the stand-alone FNN (see Table 3). This means the ensemble also
benefits from the LSTM because it correctly identifies malicious
NetFlows misclassified by the FNN.

We now focus on the CTU13. Here, the FNN+LSTM ensemble
does better than the stand-alone LSTM in terms of number of false-
negatives. However, the latter has a higher F1-score, i.e., 95.703%
vs 90.803%. This is due to the more conservative nature of the
ensemble in detecting malicious events, which may reduce the fn,
but may increase the fp. A more in-depth analysis of each scenario
outlines that the ensemble reduces the fn in almost all cases. No-
tably, in Neris1 and Virut2 scenarios (in yellow) the FNN+LSTM
ensemble has significantly lower fn than the stand-alone LSTM, but
it also has over 2k more fp. The rationale is that the FNN is better
in detecting malicious NetFlows, which benefits the FNN+LSTM
ensemble. However, we also observe that the ensemble also bene-
fits from the LSTM. This is clear if we compare the overall number
of false-negatives of the FNN+LSTM ensemble with those of the
stand-alone FNN (see Table 3): the former has only 597, while the
latter has almost four times that amount with 1947.
Takeaway: the LSTM and FNN appear to have learned different
classification patterns, confirming that the application of our
method to sequential ML models does influence their detection.
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Table 3: Results of the LSTM and FNN on the two datasets.

CICIDS 2017
Scenario F1-score % tp fn tn fp
Botnet1 81.755 177 35 45494 44
Botnet2 87.542 130 15 3997 22
Port Scan 99.558 41179 17 46824 349
DDoS 99.572 22588 0 39100 194

DoS GoldenEye 99.707 2384 0 24442 14
DoS Hulk 99.955 58653 17 14322 36

DoS slowhttptest 98.444 1487 40 14220 7
DoS slowloris 99.843 1910 1 8318 5
FTP-Patator 99.600 2866 0 23239 23
SSH-Patator 98.666 2366 0 22708 64

Web Brute Force 99.456 640 0 18181 7
Web XSS 99.153 234 1 6791 3
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Summary 99.669 134614 126 267636 768

CTU 13
Scenario F1-score % tp fn tn fp
Menti 95.153 1600 14 26220 149
Murlo 95.640 2369 48 116083 168
Neris1 93.384 8793 468 67235 778
Neris2 90.524 3162 171 46078 491
Neris3 95.911 24901 389 32174 1734
Nsisay 41.445 109 250 14082 58
Rbot1 98.105 14080 249 126574 295
Rbot2 94.873 1101 76 22245 43
Rbot3 99.909 31352 36 48918 21
Rbot4 100.000 3073 0 1500 0
Virut1 87.117 284 22 3439 62
Virut2 80.851 6863 1851 60648 1400

Summary 95.703 97687 3574 565196 5199
Botnet1 93.735 202 10 45521 17
Botnet2 81.569 104 41 4013 6
Port Scan 99.773 41152 44 47030 143
DDoS 99.817 22588 0 39211 83

DoS GoldenEye 99.916 2384 0 24452 4
DoS Hulk 100.000 58670 0 14358 0

DoS slowhttptest 98.303 1477 50 14226 1
DoS slowloris 99.974 1911 0 8322 1
FTP-Patator 99.930 2866 0 23258 4
SSH-Patator 99.705 2366 0 22758 14

Web Brute Force 99.844 640 0 18186 2
Web XSS 99.788 235 0 6793 1Fe

ed
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Summary 99.844 134595 145 268128 276

Menti 84.960 1610 4 25803 566
Murlo 63.267 2413 4 113453 2798
Neris1 85.188 9087 174 65027 2986
Neris2 84.533 3189 144 45546 1023
Neris3 97.353 24605 685 33255 653
Nsisay 44.673 174 185 13894 246
Rbot1 84.926 14299 30 121823 5046
Rbot2 79.619 1170 7 21696 592
Rbot3 98.688 31355 33 48138 801
Rbot4 99.854 3073 0 1491 9
Virut1 75.943 292 14 3330 171
Virut2 87.553 8047 667 60427 1621

Summary 91.497 99314 1947 553883 16512

Table 4: Results of the FNN+LSTM ensemble, and comparison (Δ) with the stand-alone LSTM.

CICIDS2017
Testing data FNN+LSTM ΔScenario # NetFlows # Mal F1-score % fn fp ±fn ±fp

Botnet1 45750 212 89.936 2 45 -33 1
Botnet2 4164 145 91.558 4 22 -11 0
Port Scan 88369 41196 99.556 9 358 -8 9
DDoS 61882 22588 99.572 0 194 0 0

Dos GoldenEye 26840 2384 99.707 0 14 0 0
DoS Hulk 73028 58670 99.969 0 36 -17 0

DoS slowhttptest 15754 1527 99.443 10 7 -30 0
DoS slowloris 10234 1911 99.869 0 5 -1 0
FTP-Patator 26128 2866 99.600 0 23 0 0
SSH-Patator 25138 2366 98.666 0 64 0 0

Web Brute Force 18828 640 99.456 0 7 0 0
Web XSS 7029 235 99.366 0 3 -1 0
Summary 403144 134740 99.703 25 778 -101 10

CTU13
Testing data FNN+LSTM ΔScenario # NetFlows # Mal F1-score % fn fp ±fn ±fp

Menti 27983 1614 82.688 2 673 -12 524
Murlo 118668 2417 62.562 4 2884 -44 2716
Neris1 77274 9261 84.099 130 3323 -338 2545
Neris2 49902 3333 82.624 33 1355 -138 864
Neris3 59198 25290 95.938 86 2048 -303 314
Nsisay 14499 359 50.228 139 297 -111 239
Rbot1 141198 14329 84.654 11 5180 -238 4885
Rbot2 23465 1177 79.268 7 605 -69 562
Rbot3 80327 31388 98.664 33 816 -3 795
Rbot4 4573 3073 99.854 0 9 0 9
Virut1 3807 306 74.568 4 202 -18 140
Virut2 70762 8714 87.040 148 2403 -1703 1003

Summary 671656 101261 90.803 597 19795 -2977 14596

6 CONCLUSIONS
In this work, we investigate the use of Long Short-Term Memory
(LSTM) neural networks to learn temporal patterns among Net-
Flows as a result of cyber-attacks. We review and highlight the
limitations of related work, which has not truly studied the effec-
tiveness of temporal patterns for NetFlow-based NIDS. Hence, we
propose an original method that can be used to extract temporal
patterns from labelled NetFlow data. We then apply this method to
train a ‘sequential’ LSTM classifier, and compare its performance
against a ‘static’ Feedforward Neural Network (FNN) to verify if
temporal patterns are truly significant for ML-NIDS.

Our evaluation spans over two recent ML-NIDS datasets, CI-
CIDS2017 and CTU13. The results highlight that LSTM achieves

comparable (∼99% F1-score) or better (95% vs 91% F1-score) per-
formance in detecting malicious NetFlows than the FNN. However,
against some specific attacks, the LSTM proves to be significantly
better, yielding lower false negatives and lower false positives.

We verify if the proposed method influences the detection by
creating an ensemble of the FNN+LSTM models, and compare it
against the stand-alone LSTM. This additional set of experiments
further confirms that the LSTM and FNN models learn different
classification patterns, which translate to different performance that
can be exploited to mitigate some types of attacks. Such comparison
confirms that, if properly extracted (e.g., with the proposed method
and sequential ML-models), temporal patterns can truly be effective
at enhancing the performance of ML-NIDS.
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Our paper paves the way to more secure and effective NIDS,
which rely not only on ‘static’ ML methods, but also by sequen-
tial approaches that leverage the underlying relationships among
distinct network traffic samples.
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A APPENDIX A
When preprocessing the datasets, we one-hot encode the categorical
features: source/destination ports, the direction and the protocol.
The numerical features are normalized in the range [0, 1]. We grid-
search the most optimal parameters of each model, which we report
in Table 5).

Table 5: Hyperparameters (CICIDS2017: left; CTU13: right).

parameter LSTM FNN LSTM FNN

learning rate 0.001 0.001 0.001 0.001
# epochs 30 20 100 100
dropout 0.2 0.3 0.2 0.2
batch size 1 512 1 1024
optimizer Adam Adam Adam Adam

truncated BPTT window N/A N/A 512 N/A
LSTM1 size 256 N/A 256 N/A
LSTM2 size 256 N/A 256 N/A
FC1 size N/A 256 N/A 512
FC2 size N/A 256 N/A 512
FC size 2 2 2 2
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