
The Ephemeral Threat: Assessing the Security of Algorithmic
Trading Systems powered by Deep Learning

Advije Rizvani

advije.rizvani@uni.li

Liechtenstein Business School

University of Liechtenstein

Vaduz, Liechtenstein

Giovanni Apruzzese

giovanni.apruzzese@uni.li

Liechtenstein Business School

University of Liechtenstein

Vaduz, Liechtenstein

Pavel Laskov

pavel.laskov@uni.li

Liechtenstein Business School

University of Liechtenstein

Vaduz, Liechtenstein

ABSTRACT

We study the security of stock price forecasting using Deep

Learning (DL) in computational finance. Despite abundant prior

research on vulnerability of DL to adversarial perturbations, such

work has hitherto hardly addressed practical adversarial threat mod-

els in the context of DL-powered algorithmic trading systems (ATS).
Specifically, we investigate the vulnerability of ATS to adversar-

ial perturbations launched by a realistically constrained attacker.

We first show that existing literature has paid limited attention to

DL security in the financial domain—which is naturally attractive

for adversaries. Then, we formalize the concept of ephemeral per-
turbations (EP), which can be used to stage a novel type of attack

tailored for DL-based ATS. Finally, we carry out an end-to-end

evaluation of our EP against a profitable ATS. Our results reveal

that the introduction of small changes to the input stock-prices

not only (i) induces the DL model to behave incorrectly but also

(ii) leads to the whole ATS to make suboptimal buy/sell decisions,

resulting in a worse financial performance of the targeted ATS.

CCS CONCEPTS

• Computing methodologies→Machine learning; • Security

and privacy→ Systems security.
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1 INTRODUCTION

In recent years, Deep Learning (DL) has become a popular tool in

the financial sector, transforming many aspects of data analysis

and decision-making processes [40, 43, 63]. One of the standout

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1476-4/2025/06

https://doi.org/10.1145/3714393.3726490

strengths of DL models is their ability to excel in time-series fore-

casting, which is essential for predicting market trends and guiding

investment strategies [69]. In practice, these models are now inte-

gral to comprehensive systems that automate the entire “predict–

buy/sell–repeat” process, known as Algorithmic Trading Systems

(ATS) [30]. ATS have profoundly reshaped the financial landscape

by determining the timing, type, and volume of trades [79].With the

integration of DL, these systems (see Fig. 1) execute transactions at

scales and speeds beyond human capabilities, thereby minimizing

emotional biases in trading decisions [39].

However, the reliance on DL models in such critical applications

is not without risks. These models are known to be vulnerable to

adversarial perturbations—small, carefully crafted changes to input

data that can lead to incorrect predictions [19]. In the fast-paced

and competitive world of financial trading, such errors can result in

serious consequences. What if an attacker can stealthily introduce

small and short-lived perturbations to the data analysed by an ATS?

Indeed, an attacker may tamper with a single data-point (the effects

of which are unknown to the attacker—she cannot see the future!),

but the perturbation will be “overwritten” shortly afterwards with

the new (clean) data issued by the broker: a persistent influx of

perturbed data would be spotted by the organization using the ATS.

Such a threat model, denoting a realistically feasible attack, has

never been investigated before in this domain.

Indeed, as we will show, there is a lack of works that provide an

holistic perspective of the DL-specific risks to ATS. For instance,

some papers studied attacks against “time-series forecasting” which

is a problem that can be solved with DL and that is very relevant

for ATS [32, 61]. However, the way such attacks are evaluated

resembles the typical viewpoint of “adversarial machine learning

papers”, i.e., the attack is deemed successful depending on how

well it “fooled” the targeted DL model [61]. We argue that such an

evaluation procedure is not only simplistic in the general sense (it

is well known that DL models are a mere component of a much

larger system [10]), but also that an appropriate assessment of an

attack against ATS must stem from analysing the gains/losses of the
system that occur as a consequence to the DL-model’s output.

Hence, in this work we formalize the concept of ephemeral

perturbation (EP), which are particularly designed to attack the

DL models embedded in ATS. Then, we empirically assess the ef-

fects of EP against a representative ATS, built through an original

“ATS Security Framework”. We use publicly available data [6] to

develop practical DL models for time-series forecasting, which are

integrated into our ATS. After validating the performance of our

ATS and ensuring it demonstrates a reasonable level of profitability

under typical market conditions, we proceed to introduce various

EP to the system. We assess the impact of these perturbations by

1

https://orcid.org/0009-0001-7189-5660
https://orcid.org/0000-0002-6890-9611
https://orcid.org/0000-0002-3212-7167
https://doi.org/10.1145/3714393.3726490
https://doi.org/10.1145/3714393.3726490
https://doi.org/10.1145/3714393.3726490


CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Advije Rizvani, Giovanni Apruzzese, and Pavel Laskov

considering their effects on both (i) the DL models in isolation and

(ii) the overall ATS. Our findings reveal that EP can subtly degrade

the profitability of the ATS. Intriguingly, the degradation can be so

small that the ATS still leads to a gain—but inferior to the gain with-

out any EP: hence, the targeted organization will persist in using

the ATS, thereby (unknowingly) decreasing their returns over time.

CONTRIBUTIONS. This paper explores the security risks as-

sociated with DL-powered ATS, a critical yet underexplored area in

both security and financial computing literature. Specifically, we:

● highlight the oversight of financial applications in research fo-

cused on security of artificial intelligence (§2);

● introduce and formalize the concept of ephemeral perturbations (EP),

which can realistically affect DL-based ATS (§4);

● propose a framework for security assessment of ATS (§3) which

we use to study the impact of EP on an exemplary ATS (§5, §6).

We also discuss and validate our findings with an user study with

experts (§7). To foster future research, we release our resources [1].

2 RELATEDWORK

We first define the problem space of our paper by summarizing prior

related work (§2.1), and then carry out a systematic literature review

wherein we pinpoint the research gap tackled by this paper (§2.2).

2.1 Background

Our paper tackles two orthogonal research fields gravitating around

artificial intelligence (AI): applications of AI in finance, and security

of AI. We stress that the notion of “AI” encompasses both machine

learning (ML) and deep learning (DL) methods.

AI in Finance. There is a deluge of ways to use AI in finance. An

early review of various AI-based techniques is the 2010 paper by

Bahrammirzaee [14]. Since then, however, this field has substan-

tially advanced, as shown by more recent summarizations [28, 36,

41]. In particular, the advent of deep learning (DL) in this domain

caused a paradigm shift [43, 63] due to its demonstrated superiority

over traditional machine learning (ML) or statistical techniques

(for, e.g., forecasting the stock market [71]). Noteworthy applica-

tions of AI in finance, for which there is evidence of real-world

deployment [30], include: algorithmic trading [34, 51], portfolio

management [42]), credit scoring [37], fraud detection [56, 64]. In

this paper, we focus on the former: algorithmic trading systems

(ATS) are a flourishing technology in the current financial landscape.

ATS can greatly benefit from AI (and, specifically, from DL) thanks

to its capabilities of predicting future market values [39, 46, 79].

Such forecasts can then be used by the ATS to “quickly” make in-

formed decisions on whether to buy/hold/sell a given commodity.

There is evidence suggesting that modern ATS do, in fact, rely on

the forecasting capabilities of AI [3, 4].

Security of AI. The never-ending advances of AI induced many

researchers to investigate the security of learning-based algorithms.

This research field, typically referred to as “adversarial machine

learning” [17–19, 72], literally exploded in the last decade, after the

discovery that deep neural networks could be fooled by tiny pertur-

bations in the input data [19]. Thousands of papers have hitherto

studied how learning models can be affected by such “adversarial

perturbations”, which can target any given model either during

its training or inference stage, and which envision threat models

assuming attackers with various degrees of knowledge and capa-

bilities [11]. Despite all such work, however, a pragmatic solution

to “adversarial attacks” has yet to be found [10]. Moreover, despite

the numerous domains in which AI has found applications (in re-

search or in practice), most prior literature on AI security considers

attacks against models devoted to computer vision (e.g., [86]), as

highlighted in [10]. Hence, it is difficult to gauge how much previ-

ously proposed attacks can “practically” affect models embedded

in other types of systems. The only way to do so is by formalizing

specific threat models and assessing their effects.

2.2 Research Gap (Security of AI in Finance)

Prior works have investigated various security aspects of computa-

tional finance (e.g., in decentralized settings or blockchain [9, 38,

75]), and some papers are related to our focus on automated trading

(e.g., [16, 85]). However, the security of AI-specific applications in

finance has not been adequately scrutinised by prior work. This

highlights a research gap that we aim to fill with our paper.
1

To provide evidence of such a gap, we first turn the attention to

a recent work [10] revealing that, in 2019–2021, only two papers

on “adversarial machine learning” (published in top-tier security

venues) considered financial data [59, 60]. However, none of these

works focused on the financial domain: both [59, 60] used finan-

cial data as a yet-another benchmark to validate some well-known

attacks, but do not make considerations on how much the cor-

responding attacks may affect the owners of the targeted model.

Yet, to provide a compelling contribution emphasizing that the AI-

specific security aspects in finance have not been well studied, we

carry out a comprehensive analysis of prior works.

2.2.1 Systematic Literature Review (top-tier venues). We

begin by systematically reviewing prior works that have been pub-

lished in top-tier security conferences (similarly to, e.g., [10, 12]).

First, we collected the 7,266 papers that appeared in 9 top-tier

venues (ACM CCS and AsiaCCS, IEEE S&P and EuroS&P, FC, ACSAC,

ESORICS, NDSS, USENIX SEC) held 2014–2023; we only considered

full papers (and not, e.g., short or workshop papers). Then, we in-

spect the abstract of all these publications. The goal is identifying

candidates that may be related to “security of AI applications in

finance”. We disentangle this goal by defining three criteria:

● AI-related: we consider a paper to be (potentially) about “AI

applications” if the abstract of the paper mentions at least one of

the following terms: “machine learning”, “artificial intelligence”,

“deep learning”, “AI”, “ML”, “DL”.

● Finance-related: we consider a paper to be (potentially) about

“finance” if the abstract of the paper mentions at least one of:

“finance”, “econom”, “trading”.

● Security-related: we only considered security-related venues, so

we are confident that the paper is about security. However, given

that the security of AI is typically associated with the term “ad-

versarial” (e.g., “adversarial perturbations / examples / ML”), we

consider a paper to be within our scope if the term “adversarial”

is mentioned at least once in the abstract.

1

We stress that the field of “market manipulation” [78] is orthogonal to our focus: our

goal is to attack an ATS which leads to losses “only” to its owners; whereas market

manipulation focuses on inducing changes that affect a wide-array of target groups.
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We develop a script to carry out this keyword search. Overall, we

find only two papers that havematches for each criteria, namely: [44,

52]. Finally, we manually review each of these papers [44, 52] to

ascertain whether it truly deals with the security of AI in finance

(with a focus on ATS). This process was done by two authors who

independently reviewed each paper and discussed their findings.

We found that none of these works can be considered to be about

“security of AI in finance”, despite matching our criteria. Indeed,

both [44, 52] are about generic AI security, and mention “finance”

only as a potential application of AI and no finance-specific assess-

ment is carried out. Notable examples of excluded papers (which

do not meet all three criteria) are, e.g., [83], which deals with AI

in finance (despite not mentioning any AI-related term in the ab-

stract) and mentions “adversarial” to denote generative-adversarial

networks, which is just a yet-another application of AI (i.e., it is

not used to indicate a security assessment of AI); and [85], which

is about security in finance and mentions “adversarial”, but is not

about AI-specific security risks.

2.2.2 Extended Literature Review. Such a “negative result” in-

spired us to carry out a larger investigation on Google Scholar,

which we do by following three steps (which we perform once in

Jan. 2024, and a second time in May 2024 for validation):

(1) Broad Search.We search for peer-reviewed papers (excluding, e.g.,
preprints) that match queries relevant for our scope. Specifically,

we consider: “adversarial perturbations algorithmic trading”, “deep

learning stock forecasting adversarial attack”, and four queries corre-

sponding to (“adversarial attack”∧(“financial forecasting”∨“algorithmic

trading”∨“high-frequency trading”∨ “portfolio management”)). Each

of these six searches returned >10k results.

(2) Preliminary Screening. For each search query, we inspect the

returned papers to verify if the search terms occur in the consid-

ered paper. We inspected 390 papers in this way, i.e., until page

10 of the results returned by Google Scholar. (A preliminary

check showed any paper beyond page 10 did not contain all the

terms in the query.) Ultimately, we found that only 17 papers

contained all terms specified in the respective query.

(3) Detailed Filtering. We further analyse the 17 papers obtained

from the previous step, to determine if they truly addressed

ATS security. To this end, one author reviewed each paper and

shared the corresponding conclusions with another author who

acted as a validator. After this inspection, we identified only 6

papers which are relevant to security analysis of AI for ATS (e.g.,

we removed [47] because its contributions have no connection

with security). We then applied the snowball method [80] on

these 6 papers, looking for works that cite (or are cited by) them

but our results did not change.

These six papers are: [23, 25, 32, 33, 57, 61]). Despite providing

significant contributions, these six papers have two important limi-

tations from a security viewpoint:

● Powerful Attacker : 4 papers [23, 25, 33, 61] envision an adversary

with extraordinary knowledge (e.g., they know everything about

the model) or capabilities (e.g., they can arbitrarily manipulate

the input data): such assumptions may not reflect a realistic

scenario [10], given that the internal components of ATS are kept

secret, and indiscriminate manipulation of the input samples may

be deemed anomalous by the ATS which would reject the input.

Broker

MGOOGL

MAMZN

MAAPL

[...]

Models for stock
prediction

Trading
Strategy

Trading
Decisions

Trading
Data

(stock values) Resources

buy?
sell?
hold?

Algorithmic Trading System

Fig. 1: Schema of an Algorithmic Trading System (ATS). The broker (e.g., a bank)
sends stock-related data to a given organization which owns an ATS (dotted box). The

ATS includes various DL models, used to make predictions on the basis of the input

data. Such predictions are then used by the ATS to enact a given trading strategy, which
must account for the available resources and decide what to do (i.e., buy/hold/sell).

After making a decision, the resources are updated.

● Model only: 5 papers [25, 32, 33, 57, 61] consider the effects of the
attack on the model in isolation—without considering the impact

on the whole system (which is a recommendation by [10]). The

only paper that carries out a system-wide evaluation is the work

by Chen et al. [23], which considers reinforcement learning for

portfolio management—which are orthogonal to ATS (our focus).

Finally, we stress that only two papers [25, 61] release their source-

code: this remark motivates our first technical contribution (§3).

Takeaway.Despite the increasing usage of AI in ATS, the system-

wide impact that adversarial perturbations can have on AI-based

ATS is still unclear. Our contributions seek to provide a founda-

tion for future work in this domain.

3 ATS SECURITY FRAMEWORK (ATS-SF)

To the best of our knowledge (and as shown in §2), there is no

publicly available and open-source implementation of an ATS that

can be used to carry out security assessments. To fill this gap and

promote future work in this domain, we propose our “ATS Security

Framework,” ATS-SF, which we describe in this section.

Our ATS-SF framework seeks to enable the development of

exemplary ATS which can be used by researchers to simulate the

workflow of a full-fledged ATS for security assessments. We provide

a schematic of our envisioned ATS in Fig. 1, inspired by [3, 45, 67].

The ATS (i.e., the rounded dotted box) receives data (i.e., the values

of a certain set of stocks—e.g., GOOGL or AMZN) from a given broker
(e.g., a bank). Such data is then automatically analysed by various

models, which are collectively tasked to predict the “future” values

of the stocks included in a given portfolio. The output of suchmodels

is then used by the ATS according to a given trading strategy, which
will induce the ATS to make trading decisions (i.e., buy/hold/sell)

on the stock market. Ideally, the decisions made by an ATS should

yield a profit to its owners—either in the short or long term. Such a

profit can be measured either via (a) the “cumulative daily returns”,

which aggregates the gains/losses obtained after each day of use

of the ATS [8, 22]; or via (b) the “Sharpe Ratio” [66, 74], which

measures the performance of an investment by adjusting for its

risk, providing a ratio of return to volatility [70].

Remark. Our framework assumes that the ATS makes its decisions

based on historical prices only. We are aware that there may be additional

information sources (e.g., news and social media) that can be used to guide

such trading decisions [20, 24, 29, 35]. Our implementation of ATS-SF,
being open source, can be extended to account also for such data—but

we leave development of such an enhancement to future work.
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3.1 Low-level Architecture and Functionalities

The design of our ATS-SF is centered around three core environ-

ments: Asset, Model, and Trade (summarized in Fig. 2). Such a

design choice allows one to understand the effects of any change

(potentially caused by an “attack”) to each environment—enabling

a system-wide assessment. Let us explain how we devise our pro-

posed ATS-SF, for which we must introduce some notation.

Algorithmic Trading System Security Framework (ATS-SF)

Asset Environment

• Establish Portfolio (stocks)

• Select Broker (data source)

• Get Historical Market Data

Model Environment

• Choose and Setup Models

• Train and Fine-tune Models

• Generate Predictions

Trade Environment

• Determine Trading Strategy

• Set Trade-related Parameters

• Simulate Trades (and repeat)

Fig. 2: Architecture of our ATS-SF. Our framework has three environments that

allow fine-grained control on the entire management pipeline of an ATS, thereby

enabling security assessments.

Asset Environment. First, the ATS assumes that its owners have

specified a given portfolio, which we denote with 𝒫 . Such a port-

folio is identified by a set of stocks; let 𝑠 denote each stock in a

portfolio, so that ⋃𝑠 = 𝒫 . There exist various ways that can be used

to select/optimize the stocks included in any portfolio (e.g., [42, 73]).

Obviously, the ATS expects to receive, as input, data (i.e., market

values) pertaining to the stocks in 𝒫 (obtainable from either public

sources, such as Yahoo Finance [6]; or from private brokers). Such

data can come in many forms in terms of features (e.g., opening or

closing price of a given stock) and frequency (e.g., the values can

arrive on a daily basis, or even more often—the latter could be used

for high-frequency trading[68]). Our proposed ATS-SF enables the

developer to freely choose any of these options.

Model Environment. Then, the ATS must analyse the input data

and predict future values. To enable a wide-range of flexibility, we

have realised ATS-SF so that it ismodel agnostic: the predictions can
be made, e.g., via deep learning methods (such as Long-Short Term

Memory neural networks, or LSTM), or via traditional time-series

forecasting techniques (e.g., Autoregressive Integrated Moving Av-

erage, or ARIMA), or even via other types of learning algorithms

(tailored for regression). The developer has complete choice on how

to implement such models: they can, e.g., performmultivariate anal-

yses for each stock—such as using the opening and closing price to

predict the closing price; or they can have a single model that takes

as input the values of all the stocks in the portfolio, and predict a

value for each stock. Of course, depending on the adopted choices,

more operations may be required—such as training the model(s)

to fine-tune their parameters and optimize their performance. In

what follows, we will use 𝑀𝑠 to denote a model that is tasked to

predict the values of stock(s) 𝑠.

Trade Environment. Finally, the ATS must make its trading deci-

sions according to a given trading strategy (e.g., [62]), which must

account for the output of the models 𝑀𝑠 for all stocks 𝑠 ∈ 𝒫 , the
available resources (the ATS cannot “buy” any stock if there is no

capital left), and any other contextual information (e.g., the his-

torical trend of the stocks). The trading decisions are determined

by providing rules that dictate the “buy/sell/hold” signals (i.e., if a

buy signal is generated for a given stock 𝑠 and there is sufficient

available capital, the ATS will buy 𝑠). We also enable the devel-

oper to specify the portion of the portfolio used for the transaction

(helpful for risk management). When making any given trade, the

ATS accounts for the transaction fee [55] as well as the slippage

cost—both of which are user-specified. After the trade is made, our

ATS-SF updates the available resources, accounting for gains and

losses from the previous transactions as well as from the new values

of the stocks in the portfolio.

The entire procedure (i.e., receiving the input data, making the

predictions, determining the trading decisions, executing the trades,

updating the resources) is automatically repeated by our ATS-SF

unless specified otherwise. At the end of the simulation, our ATS-SF

will display the overall results of the ATS by showing: the predic-

tions of each model, including howmuch they differ from the actual

values—measurable, e.g., via the root mean squared error (RMSE);

and the daily returns and Sharpe Ratio of the ATS.

Disclaimer. ATS-SF is meant to simulate trading decisions over a pre-

defined timespan, and does not guarantee that any parameter configu-

ration will yield a net profit from the corresponding ATS (it is up to the

developer to find the optimal configuration). Moreover, we do not claim

that relying on our ATS-SF can lead to one gaining money from repli-

cating the exact trading decisions—even if the results of the simulation

show that the ATS consistently exhibits a remunerative Sharpe Ratio or

daily returns. Hence, we do not endorse using ATS-SF for real trading!

3.2 Custom ATS: Implementation & Evaluation

We used our proposed ATS-SF to develop our custom ATS, which

we will use as a baseline for our security assessment. We first

describe how we developed the models and then explain how we

developed the overarching ATS. Finally, we report the baseline

performance of our prototype.

AI-models development. First, we collect data from Yahoo Fi-

nance [6], and we consider a timespan between Jan. 2010 and Oct.

2023. Then, we consider a portfolio 𝒫 of 38 stocks, which is an

holistic representation of the stock market. For each stock 𝑠 ∈ 𝒫 ,
we develop a specific model, 𝑀𝑠 ; hence, our ATS encompasses 38

models. Each model relies on LSTM (due to their recognized capa-

bility for similar tasks [31]). To develop each model, we perform

a temporal cut to our data by applying an 80:20 split (a common

practice [50]), identifying the training:testing partitions; moreover,

each LSTM is tasked to predict the next “close price”, done by means

of a multivariate time-series analysis of 5 features (“high”, “low”,

“open”, “close”, “volume” – all used in, e.g., [27]) analysed over a

temporal window of 𝑤 = 50 days (used, e.g., in [54]); we assume

trades done on a daily basis. We then train all our models on the

training set, trying out various configurations to optimize their

performance (e.g., changing number of layers, or neurons per layer)

and measure their performance on the test set: the RMSE (over the

entire test set) is 4.03 on average (slightly better than that achieved

by [50]), confirming the quality of our models. We report the stocks

in our portfolio and the RMSE achieved by each LSTM in Table 1.

Table 1: Stocks considered in the portfolio of our custom ATS. For each stock,

we report the RMSE achieved by the its model over the test period. (Avg RMSE=4.03)

Stock RMSE Stock RMSE Stock RMSE Stock RMSE Stock RMSE Stock RMSE

GOOGL 6.36 AMZN 4.52 AAPL 4.55 BP 1.17 BA 6.83 MMM 3.23

PEP 3.48 JNJ 2.50 PFE 1.14 HON 10.20 GE 1.87 T 0.44

MRK 3.34 ABBV 5.14 PG 3.60 VZ 0.85 TMUS 2.89 HSY 9.62

KO 0.97 WMT 1.47 JPM 3.32 DUK 2.27 SO 1.98 EXC 1.17

BAC 1.11 GS 14.11 V 9.85 AEP 1.70 AMT 9.27 PLD 3.49

XOM 2.95 CVX 4.34 COP 3.37 SPG 3.56 BHP 2.19 RIO 2.26

VALE 0.69 FCX 1.75

Connecting the models to the ATS. After we have developed

each model, we combine them together inside the ATS. To this end,

4
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we consider the well-known “moving average crossover” trading

strategy [13] which compares the predicted value (of the following

day) with the previous predictions of each stock 𝑠 ∈ 𝒫 to generate

the trading decisions. Specifically, we use the previous predictions

to calculate the moving average in the short-term (5 days) and

in the long-term (20 days): a buy (sell) signal is given when the

short-term average crosses above (below) the long-term average;

otherwise, no signal is generated, defaulting to a hold decision.

Depending on the signal, a trade can be made if there are enough

resources: for our simulation, we set an initial capital of 100, 000$

(common [66, 68]), and we specify a transaction cost of 0.005$ per

share [2]; the slippage cost is set at 0.02 to account for the difference

between the expected and actual execution prices [53]. Furthermore,

to helpmanaging risk and ensuring diversificationwhenever a trade

is made, only a fixed portion of 10% of the current portfolio value

is used. If no resources are available (i.e., if there is not enough

capital for a “buy” signal, or there are no stocks for a “sell” signal), a

signal is ignored. After each trading day, the portfolio is evaluated

to calculate the daily returns, reflecting the changes (in percentage)

of the portfolio value w.r.t. the previous day. Similarly, the Sharpe

Ratio is calculated by comparing the excess return of the portfolio

with its volatility, thereby evaluating the risk-adjusted performance

of the portfolio; to this end, we set the risk-free rate to 5.05% (given

that our simulation spans over ≈2 years, and the 2-year treasury rate
was 5.05% according to [5] on Oct. 23rd, 2023). Finally, to prevent

lookahead bias, the trading signals are shifted backward by one day,

so that they are based only on data available up to that day [15, 77].

Performance Evaluation. We let our ATS simulate trades for the

entire test window: from Dec. 2021 to Oct. 2023 (recall that we

partition our 13 years of historical market data in train:test with a

80:20 split). We report the baseline performance of our ATS in Fig. 3.

Specifically, Fig. 3a shows the aggregated performance of the LSTM

models (for all 38 stocks in the portfolio), denoting that, overall, our

models are accurate at predicting the closing price. Then, Fig. 3b

shows the cumulative daily returns over the entire ATS operation

time, from which we see that the ATS is generating a profit of

approximately 25% over two years. Finally, Fig. 3c shows the Sharpe

Ratio: after the first days (which denote some stark fluctuations due

to quick distribution of resources in the capital), the Sharpe Ratio

of the ATS stabilizes and consistently remains above 0, denoting

that the decisions made by the ATS are, ultimately, benefiting its

potential owners—at least according to our simulation.

Takeaway. Our ATS has an appreciable performance, which

would justify its deployment in the real world (further validated

by our user study in §7.1). Such a property makes our ATS a good

test subject for our security assessment.

4 PROPOSED THREAT MODEL

Recall (§2.2) that prior related work envisioned threat models as-

suming powerful adversaries. As a result, the corresponding attacks

were often very effective—at least from a “model only” perspec-

tive (e.g., the FGSM attack described in [32] degraded the model’s

performance by reducing its accuracy from 95% to 60%).

While such scenarios are not impossible, we argue that “some”

real attackers may rely on easier and more subtle strategies to

exploit the AI models deployed in ATS. We explain our vision by

proposing our original threat model—and then compare it to the

“adversarial attacks” envisioned in prior works (§4.4).

4.1 Target System

The system (i.e., the “defender”) targeted by the attacker resembles

the exemplary ATS described in §3. For completeness, we formalize

its key points here.

We consider an ATS whose decisions are driven by data received

by a given broker—which is considered to be trusted. Such data is

in the form of historical market-related values (e.g., closing price,

opening price), which pertain to a portfolio (𝒫) encompassing a

certain set of stocks; without loss of generality, we assume a daily

frequency of broker-ATS communications [23]. The ATS integrates

models tasked to predict the future values of a specific stock 𝑠 ∈ 𝒫 ,
so that𝑀𝑠 is the model devoted to predicting the values of 𝑠; without

loss of generality, we assume that each stock has a specific model.

A model 𝑀𝑠 produces an output by analysing the previous 𝑤

values of stock 𝑠 in a time-series fashion: given a point-in-time 𝑡 ,

𝑀𝑠 returns the prediction of 𝑡 + 1 as: 𝑀𝑠(𝑡 + 1) = 𝑓 (𝑠, 𝑡, 𝑤), where
𝑓 is the function learned by 𝑀𝑠 during its training phase; ideally,

𝑀𝑠(𝑡 + 1) should approximate the actual following value of 𝑠, i.e.,

𝑀𝑠(𝑡 + 1) ≈ 𝑠𝑡+1 (measurable via, e.g., RMSE [76]). The ATS takes

all predictions of each model into account and then, depending on

a given trading strategy and available resources, will enact certain

trading decisions (e.g., buy/sell/hold any given stock). It is implicitly

assumed that the ATS is expected to yield a profit to its owners

(otherwise, they would not use it in the first place!).

4.2 Envisioned Attacker

Our attacker has limited knowledge and capabilities, which implic-

itly increase the real-world likelihood of our threat model [10].

● Knowledge. The attacker know that the targeted ATS analyzes the

historical market-data sent by the broker. However, the attacker

does not know the entire portfolio considered by the ATS. Specif-

ically, the attacker only knows a single stock 𝑠′ ∈ 𝒫 (for instance,

assuming the ATS considered in our implementation which has

a portfolio with the 38 stocks in Table 1, the attacker will only

know, e.g., that 𝒫 includes GOOGL). Moreover, the attacker lacks

any knowledge on the models (including 𝑀𝑠′ ) integrated in the

ATS, including the length of the analysis period 𝑤.

● Capabilities. The attacker can introduce some perturbations by

manipulating the communications between the broker and the

ATS (this is doable, e.g., via a man-in-the-middle attack—which

are feasible in this context [61]). However, to avoid being detected,

such perturbations must be “small” (if the price of one stock is

substantially different, the ATS may reject the input [7]) and also

“short-lived,” i.e., the attacker cannot send perturbations over

many days (a single “small” deviation can be acceptable, but the

owners of the ATS would react if they constantly receive wrong

data from the broker). The attacker has no access to the ATS

(which could be used for, e.g., query-based attacks [10]).

Our attacker has one goal: induce the targeted organization to gain
less money. This is a realistic assumption: given the competitive

nature of the financial market, an adversary may want to gain an

advantage by reducing the earnings of their competitors (even if

such competitors keep gaining money). From the viewpoint of the
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Fig. 3: Baseline ATS.We show the profitability of our self-developed ATS. The LSTM models effectively predict (avg RMSE=3.89) the future close price of the stocks in the portfolio

(Fig. 3a). The ATS uses these predictions for its trading strategy, leading to trades that net a profit over-time, shown by increasing cumulative daily returns (Fig. 3b) and underscored

by the Sharpe Ratio consistently above 0 (Fig. 3c).

ATS, such an effect can be measurable, e.g., by a Sharpe Ratio that,

despite being inferior to the baseline value, is still above 0.

4.3 Strategy: Ephemeral Perturbations

To reach their goal, our attacker has only one option: “guess” an

ephemeral adversarial perturbation (EP). Such an EP must be small

enough to avoid raising suspicion—in the short-term (to avoid im-

mediate reactions by the target organization) and in the long-term

(if the ATS profitability drops excessively, then the organization

would replace/stop using it). We formalize this strategy.

The attacker manipulates the values of the stocks that they know

are analysed by the ATS, 𝑠′ ∈ 𝒫 , which will likely lead to the corre-

sponding model (𝑀𝑠′ ) to output a different result, which may (or

may not) induce the ATS to make a suboptimal trading decision.

Our EP should last only a single time-point (i.e., only one day).

Therefore, using an EP requires the attacker to make two choices:

● “when” the EP should be used—i.e., which day 𝑡 to attack,

● “how large” the EP should be—i.e., what is the “adversarial” value
2

received by the ATS (and which will be analysed by 𝑀𝑠′ ) for the

perturbed stock 𝑠′ ∈ 𝒫 .
Hence, we can formally express an EP as a function:

EP(𝑠, 𝑡,𝑚) = 𝑠′𝑡 ≠ 𝑠𝑡 (1)

where 𝑠𝑡 is the value of 𝑠 at time 𝑡 , 𝑠′𝑡 is the adversarial value of 𝑠𝑡

after the application of the EP, and𝑚 is a parameter which regulates

the magnitude of the perturbation.

4.4 Comparison with prior threat models

We have already established that, at a high-level, prior works that

considered “AI-specific attacks” in the context of computational

finance have limitations (§2.2). Here, we perform a low-level com-

parison of our proposed threat model with respect to those en-

visioned in the ten works we found during our literature review,

namely: [23, 25, 32, 33, 44, 52, 57, 59–61].

First, we observe that our attacker shares some traits with the

“myopic” attacker proposed in [11], for which the targeted ATS is

an “invisible” ML system [10]. This is a crucial observation: our

attacker cannot query the targeted model, and does not know any-
thing about the targeted model. Such a consideration automatically

puts our attacker in a different league than “white-box” attackers

that rely on knowledge of the learned model gradients to craft an

adversarial example (this is done, e.g., in [23, 32, 33, 44, 57, 59–61]).

Moreover, even “black-box” attacks (envisioned in [60]) which rely

2

An attacker can modify 𝑠𝑡 in any way, but ‘large’ changes (i.e., those leading to an 𝑠
′

𝑡

s.t. ⋃︀𝑠𝑡 − 𝑠
′

𝑡 ⋃︀ ≫ 0) would raise suspicion.

on querying the target model so as to craft a surrogate model that

can then be used to apply the strategies for white-box attacks (by

leveraging the transferability of adversarial examples [26]) cannot

be staged by our attacker. We stress that Nehemeya et al. [61] as

well as Goldblum et al. [33] also consider a “black-box” setting for

their attack with no querying involved: they simply assess how

much a perturbation to a given model can transfer to another model

that uses a different algorithm/parameters. It is not explained (in

either [33, 61]) how an attacker can, in the real-world, obtain such a

surrogate model; however, we have reason to believe that it requires

substantial resources (e.g., an insider of a company using the ATS

can obtain some information about the models’ specifics).

Second, we observe that our attacker can only attempt a short
lived (and small) perturbation. This is substantially different from,

e.g., the attack proposed by Dang et al. [25], in which it is stated

that “we suppose that the attacker is allowed to perturb all inputs

at test time”. For instance, consider the models we developed for

our custom ATS (§3.2): each model receives as input a time-window

of 𝑤 = 50 values. Our attacker can only change one value (i.e., the

last one) whereas the attacker envisioned by Dang et al. [25] would

be able to perturb all 50 values received as input by our models.

Third, our attacker can only operate during the inference phase
of the model. In other words, our attacker is not capable of staging

“poisoning attacks” which require the manipulation of data used to

train the model—as done by Liu et al., and also by Nasr et al. [52, 60].

Simplicity. Compared to previously proposed attacks, ours is

much more simple to realize: our attacker knows nothing of the

targeted system, and only manipulates one value sent by the

broker. We are not aware of any previously proposed attack that

leverages a similar concept as our “ephemeral perturbations” in

the financial context—motivating our upcoming evaluation.

5 SECURITY ASSESSMENT

We combine our previous two contributions, and use the ATS de-

veloped with our ATS-SF (§3) to assess the impact of perturbations

stemming from our threat model (§4). We do so via two case stud-

ies, which entail either “indiscriminate” (§5.2) or “targeted” (§5.3)

attacks. We first describe the common setup (§5.1).

5.1 Common Setup

Our two case studies share some assumptions. First, they both

involve the same ATS, i.e., the one we developed in §3.2 (which we

showed is able to generate a profit to its owners—see Fig. 3).

Recall that our attacker knows only one stock 𝑠′ ∈ 𝒫 . For both
case studies, 𝑠′=GOOGL and, specifically, its closing price: this is
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the Cumulative Returns of the ATS drops (inducing a monetary loss) w.r.t. the baseline—despite the

EP affecting only one day.

Fig. 4: Exemplary results of an EP.We showcase what happens if a DL predictor and overarching ATS are targeted by some of our proposed EP. The blue line represents the

baseline performance (y-axis), whereas the others represent the effects of various EPs (targeting the same day, but with different𝑚) over our test timeframe (x-axis).

a sensible choice, since GOOGL is a strong asset that is likely to

be included in many portfolios, and the closing price is crucial for

making educated predictions at the end of the day. In both cases,

the attacker also knows that the ATS receives their input data from

Yahoo Finance (i.e., the broker): hence, the EP will manipulate the

closing price of GOOGL provided by Yahoo Finance. Importantly,

whenever we apply an EP to the clean data, we ensure that the

ATS receives the EP only on the attacked day (𝑡). The EP will be

deleted the following day (because it is overwritten by the new data

issued by the broker; see §4.3): hence, on day 𝑡 +1, the time-window

analyzed by the ATS has only correct stock values.
The major difference of our two case studies lies in two crucial

aspects of an EP: when to launch an EP-based attack (i.e., how to

choose 𝑡 ); and how to craft the EP (i.e., how to choose𝑚). This will

be explained in each case study.

5.2 First Case Study: Indiscriminate Attack

In this case study, we consider a “naive” attacker that does not

make advanced consideration on their choice of either 𝑡 or𝑚. This

is useful to examine “best case” scenarios for the defender.

Setup. To simulate this scenario in a bias-free way, we craft EP

for all days of the considered test window. Of course, we will assess
each day separately, but the intention is to get a broad understand-

ing of the effects that an EP can have on our ATS on a “randomly

chosen” day. For the magnitude, we take inspiration from [32], and

consider an EP s.t. 𝑠′𝑡=𝑠𝑡 + 2𝜎𝜔
𝑠 , where 𝜎𝜔

𝑠 is the standard deviation

of the value of stock 𝑠 across the time window 𝜔 . In [32] it is as-

sumed that𝜔=𝑤; however, our attacker does not know 𝑤. Hence, we

consider three cases: 𝜔=(30,40,50), i.e., one case (𝜔=50) wherein the

attacker is ‘lucky’ and correctly guesses 𝑤; and two cases in which

the attacker makes a wrong guess. We report in Algorithm 1 (at the

end of the paper) the pseudocode of our EP-crafting procedure.

Results. We craft our “indiscriminate” EP for all the 666 days of

the test window. We report an exemplary effect of the EP applied to

the 90th day of the test window in Figs. 4. Specifically, Fig. 4a shows

how the EP affects the LSTM devoted to GOOGL: we can see that the

EP induces this model to make a wrong prediction for a single day

(i.e., the 90th); however, after this day, all other predictions are not

affected because the EP is sanitized after the ATS receives the “fixed”

data from the broker. From the perspective of the RMSE, this EP has

barely any impact (from 6.3692 to 6.3662, 6.3662 and 6.3652 for 𝜔=

50, 40, 30 respectively). However, the situation changes when we

analyse the impact of this EP on the whole ATS, shown in Fig. 4b.

We can see that, from day 91, the cumulative returns of the ATS

start to deviate (i.e., they are worse) from the baseline. This is due

to the ATS making a different trading decision on day 91 (due to

the EP): such a decision propagates for the entire length of the

test window. While this is the impact for just one day of our test

window, we found that similar EP are effective in the wide majority

of our considered test window: for 𝜔= 50, 40, 30 the Sharpe Ratio

is lower than the baseline for 628, 646, 635 days out of 666 days,

respectively—i.e., over 94% of our EP decrease the SR compared to

the baseline (this is also confirmed by mostly inferior cumulative

returns). These results are shown in the boxplots in Fig. 5, showing

the aggregated impact (relative to the baseline Sharpe Ratio and

cumulative returns) of all our EP on our ATS. As it can be seen

by the notches of each boxplot (below 0 for the Sharpe Ratio, and

below 1 for the Cumulative Returns), the wide majority of our EP

substantially decrease the baseline profitability of the ATS.

5.3 Second Case Study: Targeted Attack

Here, we consider a more sophisticated approach: the attackerwaits
for an opportunity that would allow to craft a “meaningful” EP.

This is useful to investigate worst case scenarios for the defender.

Setup.To simulate the abovementioned scenario, we consider an

EP launched on days 47, 62, 495, 518, 552, 580 of the test window. On

these days important real-world events occurred that were related

to Google. For instance, on day 62 (i.e., Feb. 8, 2022) the company

announced that it would pause hiring for two weeks, whereas on

day 518 (i.e., Apr. 17, 2023), its AI chatbot, Bard, gave an incorrect

answer in a promotional video. As a matter of fact, the value of

GOOGL dropped significantly on day 63 (by 7.5%) and day 519 (by

9%).We explain our reasons for considering these six days in Table 2.

On such days, a savvy attacker may find it opportune to attack an

ATS. We consider two potential scenarios for targeted attacks. First,

an attacker trying to “conceal” the price drop by reporting the

previous value. Second, an attacker (potentially) “overestimating”

the effects of the news by reporting a very high drop (with respect

to the previous day), which we fix at 10% in our proof-of-concept

experiment; of course, different percentages could be possible.
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Fig. 5: Overall impact of our untargeted attacks. For each attacked day (of our 666 testing window), we compute: the difference between the Sharpe Ratio (SR) achieved by the

ATS at the end of the simulation (i.e., at day 666) with the baseline SR (Fig. 5a); and the ratio between the cumulative returns (CR) achieved by the baseline ATS respect to when it is

attacked by an EP. We then plot the distribution of these “impacts”. For the SR (Fig. 5a) numbers below 0 means that the SR was degraded by the EP; whereas, for the CR (Fig. 5b),

numbers below 1 means that the CR was degraded by the EP. Overall, the attack is very successful: for each considered magnitude (𝜔=30,40,50) the EP leads to a lower sharpe ratio

and inferior cumulative returns in most cases. This is evident by looking at the notches of the boxplots (indicating the mean).

Table 2: Targeted Attacks: chosen days and explanations.We selected six specific

dates (during which the ATS was operational) on which GOOGL stock prices dropped

due to real-world events. The table reports the real-world price drop of the closing

price of GOOGL (as reported on the following day) with respect to the attacked day.

Day Date Drop Reason

47 Jan 24, 2022 7.2% The company reported weaker-than-expected earnings.

62 Feb 8, 2022 7.5% The company announced that it would be pausing hiring for two weeks.

495 Apr 17, 2023 9% Its AI chatbot, Bard, gave an incorrect answer in a promotional video.

518 May 10, 2023 4.3% The company reported weaker-than-expected earnings.

552 Jun 13, 2023 3.8% The company announced that it would be slowing its pace of hiring.

580 Jul 11, 2023 4.1% The company announced that it would be laying off employees.

Results. We measure the impact of the targeted attacks via the

relative change (w.r.t. the baseline) in the cumulative returns (CR),

shown in Table 3. The “overestimate” scenario inflicts a substantial

loss to the ATS, decreasing the baseline CR by up to 28%, which

makes the ATS almost unprofitable. In contrast, the “conceal” sce-

nario is not very malignant (the CR may even increase).

Table 3: Impact of Targeted EP. CR difference (w.r.t. the baseline) for “conceal” and

“overestimate” atk scenarios.

Atk Day 47 62 495 518 552 580

Conceal 2.0 -4.0 4.5 -0.5 -1.5 4.5

OverEst -22.0 -28.0 -17.5 -23.5 -24.5 -20.0

Takeaway. We derive two lessons learned from our results.

(1) Some EP can lead to an unrecoverable loss by the targeted
organization. Our EP (which, in all cases, are launched in only

one day, and involve only a tiny change of the closing price of

one stock of the portfolio) lead to a worse SR w.r.t. the baseline.

(2) The effects on the ATS cannot be appreciated with model-only
evaluations. The EP affect the LSTM only for one day. Then, the

effects of the EP disappear: the LSTM behaves exactly as if noth-

ing happened—despite the ATS making the organization “gain

less money” due to the EP.

6 ADDITIONAL EXPERIMENTS

We further enrich our security assessment by carrying additional

experiments (§6.1) and providing a low-level analysis on some

“negative results” (§6.2).

6.1 More Trading Strategies

In our evaluation, we used our EP to attack only one ATS (§5.1).

Here, we expand our evaluation by considering two additional ATS

relying on different trading strategies.

Setup. We consider the same set of 38 LSTM models used to

develop our “primary” ATS (§3.2). However, instead of using the out-

put of these models as input to an ATS that leverages the “moving

average crossover” trading strategy, we consider two different trad-

ing strategies—both adopted also by prior work (e.g., [49, 82, 84]):

● Rate of Change [58]: this computes a reference metric called “Rate

of Change” for every stock in the portfolio. By following best

practices [58], we compute such a metric as follows: given a stock

𝑠, its “Rate of Change” (𝑅𝑂𝐶𝑡
𝑠 ) on day 𝑡 is 𝑅𝑂𝐶𝑡

𝑠 = 𝑠𝑡−𝑠𝑡−14
𝑠𝑡−14

∗ 100,
with 𝑠𝑡 being the value of stock 𝑠 at time 𝑡 . To trigger a buy signal,

the 𝑅𝑂𝐶 must be above 1; for a sell signal, the 𝑅𝑂𝐶 should be

below -1; otherwise, no decision is made (i.e., default to hold).

● Bollinger Bands [21]: the fundamental principle of this trading

strategy is to make a decision depending on where the predicted

value of a stock falls in a given reference “band”. In our case, we

use the default parameters [48]: we compute the 20-day mov-

ing average of the closing price of each stock, and choose an

upper/lower bound by adding/subtracting twice its standard de-

viation: if the prediction of the model is above the “upper” bound,

then this triggers a buy signal; if it is below the “lower” bound,

then this triggers a sell signal; otherwise, it is a hold.

We set the same initial conditions as in our “primary” ATS for both

of these additional ATSs, and we let them run over the same test

period. At the end of the simulation, in the absence of attacks, the

Sharpe Ratio of both of these ATS is above 0. Specifically, for the

ATS using Bollinger Bands, its Sharpe Ratio=0.26, whereas for the

ATS using the Rate of Change, its Sharpe Ratio=0.72. In both cases,

8



The Ephemeral Threat: Assessing the Security of Algorithmic Trading Systems powered by Deep Learning CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

however, the Sharpe Ratio is lower than the one achieved by our

“primary” ATS (see Fig. 3c). In contrast, the cumulative returns of

the Bollinger Bands ATS are almost negligible (-0.3%) despite its

positive Sharpe Ratio (this is because this trading strategy adopts a

very conservative approach); whereas for the Rate of Change they

are higher (49%) than our “primary” ATS. This is because the Rate

of Change is a very risky trading strategy which, in our case, “paid

off”; however, such a huge risk factor leads to a lower Sharpe Ratio.

Results. Our EP are agnostic of the ATS (and of its underlying

DL models), hence we test these two ATS against the exact same EP

used against our “primary” ATS. The complete results are provided

in Fig. 7 (for the Rate of Change trading strategy) and in Fig. 8

(for the Bollinger Bands trading strategy). To allow a high-level

comparison, both of these figures have the same structure of Fig. 5.

We can see some intriguing results.

● EP vs Rate of Change. In terms of cumulative returns, over 49% of

our EP led to a net loss with respect to the baseline (see Fig. 7b).

In contrast, only 20% of our EP led to a reduction of the Sharpe

Ratio (see Fig. 7a), with an absolute (negative) difference that

could go below -1.2 than the baseline. Such a discrepancy is due

to the high-risk nature of this strategy: despite inducing a lower

net revenue, the Sharpe Ratio was not excessively affected.

● EP vs Bollinger Bands. For the cumulative returns, 18.8% of our

EP led to a net loss with respect to the baseline (see Fig. 8b).

Intriguingly, however, 62% of our EP led to a drop in the Sharpe

Ratio. And, in fact, the notches of the boxplots in Fig. 8a are

all below the saddle point (of 0). These effects can be explained

by the fact that the Cumulative Returns of this trading strategy

were almost 0 without any EP, hence it makes sense that the

introduction of an EP may not have excessive effects on this

metric (and, actually, induce the ATS to gain more money, as

remarked by the notches being over 1). While this ATS may

appear to be “more robust” against EP than the others, its baseline

profitability was also vastly inferior.

We can conclude that evaluating such system-wide properties of

EP is fundamental to gauge their practical effects. Importantly: the

two ATS considered in this expanded assessment were relying on

the exact same DL models of our “primary” ATS. This shows that,

e.g., in some cases the perturbations can have little impact (e.g.,

against the ATS using the Rate of Change).

6.2 Negative Result: A lesson learned

Here, we use one of the EP of our “primary” ATS to further high-

light the importance of assessing the system-wide properties of

adversarial perturbations (including, of course, our EP) against ATS.

Specifically, we focus on the EP that we craft for day 551 of our

simulation. We showcase the effects of such an EP on the LSTM

(analysing GOOGL) in Fig. 6. We can see that the predicted value

of the LSTM for day 552 is around 101, but introducing the EP on

day 551 leads the model to predict a value that is about 106. The

value of the stock on day 551 was 105, i.e., below the value predicted

due to the EP, but above the value predicted without an EP. Yet,

despite the perturbation clearly leading to a wrong prediction by

the considered model, such an EP had no impact on the overarching

system—neither in terms of the Sharpe Ratio (which was 1.37, i.e.,

the same as the baseline), nor for the cumulative returns (which

were 24%, i.e., they slighly increased from the baseline 23.7%).
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Fig. 6: Negative result. This EP, introduced for day 551, affected the LSTM model (as

shown) but did not lead to any change in the profitability of our “primary” ATS.

We use such a negative result as a scaffold for two considerations.

● First, the EP led the LSTM to produce a different output—hence,

from an “adversarial ML point of view”, the EP was successful.

However, such an EP had no impact on the overarching ATS.

● Second, the EP induced a similar effect as those of adversarial

perturbations envisioned by prior work. For instance, in [25, 61],

the goal was to craft a perturbation that induced the model to

output a wrong prediction in terms of buy/sell, with the logic that

“if the model predicts that the price drops, then it is a sell signal—

hence, my perturbation should induce the model to predict that

the price increases” (and viceversa). This is a sensible goal: as

a matter of fact, the trading strategies of our ATS also leverage

similar rationales. However, as we showed, such an EP has no

impact on our ATS—and prior works did not evaluate the impact

of their perturbations on the overarching system.

The reason why this EP led to no impact is because, on that day, the

ATS decided that it was better not to do anything with the GOOGL

stock—defaulting to “hold” with or without the EP. For instance,

the baseline system (which predicted a price drop) may not have

had any GOOGL stock to sell; whereas the “attacked” system (seeing

a price increase) may not have had enough resources to purchase a

GOOGL stock. Moreover, even when a buy or sell signal is triggered,

this does not mean that the ATS will carry out such an operation:

besides available resources, there is also the risk factor to consider.

Perhaps, in the case of buy, the ATS may have preferred to buy

another stock for which the corresponding LSTM (which was not

attacked) predicted a huge increase.

Lesson Learned. ATS are complex systems and their profitabil-

ity depends on a plethora of factors. Carrying out model-only

evaluations may overestimate the efficacy of a given attack. This

is why we advocate future work to expand their scope and carry

out system-wide assessments—which are enabled by our ATS-SF.

7 DISCUSSION

Our paper has addressed security issues that may affect the ATS de-

ployed by real organizations, and seeks to provide a foundation for

further research in this field. Here, we reflect on our contributions

by outlining the opinion of experts in the financial industry (§7.1),

by discussing the limitations of our work (§7.2), and by providing

additional analyses of our threat model (§7.3).

7.1 User Study with Experts

In Sept–Dec 2023, we reached out to 7 experts who work in the

FinTech industry and have experience in the field of AI for finance,
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including ATS. We presented our research to the experts and asked

for their opinion via three questions:

● Is our ATS practical in terms of its performance?

● Does our threat model reflect a feasible scenario?

● Does our EP represent a security risk?

We acknowledge that, due to the small size of our sample we cannot

claim that the answers we received fully reflect the opinion of a

broad range practitioners worldwide. For confidentiality reasons,

we cannot provide the complete answers we received or further

details about our respondents.

Overall, the responses of our interviewees were positive for all

three questions. The answers confirmed that the positive Sharpe

Ratio would justify the deployment of such an ATS for real-life

trading, and that our chosen portfolio is reasonable. It was also

noted that our threat model constitutes a tangible risk; some experts

even acknowledged the likelihood of man-in-the-middle attacks

between brokers and ATS and hence the risk of EP. Finally, some

experts even remarked that organizations may use ATS in a “fire

and forget” fashion, i.e., once the ATS is shown to yield some profit

in the short-term, it will be deployed for several months until its

performance is re-assessed. This implies that a hard-to-identify EP

would adversely affect the trading decisions for a long time.

7.2 Limitations and Disclaimers

Our ATS-SF framework (§3) seeks to establish the means for secu-

rity assessments of DL-based ATS. To enable a fine-grained control

over its functionality and for better understanding of the opera-

tional characteristics of ATS, we have chosen to implement such a

framework from scratch despite the existence of toolkits/platforms

for ATS simulation, e.g., Backtrader [67] or Quantiacs [3]. We ac-

knowledge that off-the-shelf tools may attain better real-world

fidelity or offer more advanced capabilities for portfolio manage-

ment. A comprehensice comparison of our framework with such

tools is beyond the scope of this work.

Our security assessment is meant to provide a proof-of-concept

evaluation of the potential impact of our threat model (§5). We

cannot claim that any operational ATS is affected by EP in the same

way as shown in our experiments; nor we claim that the attack

is “universally devastating”. However, research on the security

of AI in finance is scarce (as we showed in §2), and our findings

reveal that even when the impact on the model is negligible, the

overarching systemmay still be significantly affected. Such a factual

consideration was not apparent from prior work (e.g., [61]).

Finally, our focus is in DL-based ATS. However, there are other

ways to develop predictive models for stock price prediction (e.g.,

ARIMA [65, 71]): security assessment of these methods is outside

our scope—but our resources enable one to evaluate these tech-

niques, too (we provide examples in our repository [1]).

7.3 Additional Analyses on our Threat Model

We analyse some aspects of our threat model that can be used to

extend our findings, but also as intriguing avenues for future work.

Robustness considerations. Our EP entails applying an imper-

ceptible change to a single data point. Albeit we assume that such

a change is introduced with a malicious purpose, it is entirely pos-

sible that such perturbations are caused by “neutral” events. For

instance, a broker’s may have received wrong data which is trans-

mitted to the ATS. Hence, evaluating the effects of EP can be useful

not only as a security assessment, but also as a means to investi-

gate the overall robustness of ATS against data perturbations. We

leave development of countermeasures against EP to future work

(facilitated by our tools). Given our results, we believe a pragmatic

defense to EP to be an intriguing avenue for this research domain.

More knowledge of the Portfolio Our threat model assumes

the attacker knows only one stock in the portfolio (𝑠′ ∈ 𝒫), but
this can be extended. The attacker could instead know a subset

𝑆 ′ ⊆ 𝒫 , allowing them to choose multiple stocks 𝑠 ∈ 𝑆 ′ for crafting
EPs. This increased knowledge could lead to stronger effects. How-

ever, obtaining such information is costly (i.e., the attacker cannot

access the ATS from within). The attacker might infer portfolio

details through privacy violations or insider actions [81], which are

avenues for future work.

Alternative Goals and Strategies Our threat model envisions a

constrained attacker aiming to harm an organization by reducing

the yield of its ATS. Other methods exist to achieve this goal. For

instance, an attacker with some control over communications be-

tween the broker and the ATS might launch a Denial of Service

attack, preventing trades on a specific day. However, such a strategy

is conspicuous, and the organization would likely react—which may

lead to the attacker being detected. Conversely, it is also possible

that the attacker uses the EP for “poisoning” a DL model: if an

EP is not sanitized, it can be stored by the ATS. Such an EP can

lead to changes in the predictions of multiple days (i.e., the EP can

potentially affect all the following 𝑤 days), but it can also have

more collateral effects if the EP is used in the re-training process of

the models. Our ATS-SF enables future work to investigate these

ancillary adversarial scenarios.

8 CONCLUSIONS

We elucidated the vulnerability of DL systems in finance to a

novel, subtle type of adversarial perturbation, which we defined

as “ephemeral perturbation” (EP). Compared to the limited prior

works that studied the security of DL applications in computational

finance, our research showed that our EP (which stem from a more

constrained attacker than those envisioned in prior threat models)

have an almost negligible impact on the performance of the affected

DLmodel, but can reduce the profitability of a DL-powered algorith-

mic trading system (ATS). The latter finding is of crucial importance:

security assessments studying the impact of data perturbations on

the whole system are scarce in the financial context.

Future work should pay more attention to this application do-

main of DL—e.g., by devising countermeasures against our proposed

EP; or assessing the effects of EP in high-frequency contexts, whose

transactions occur every second (instead of daily); or even by re-

laxing some of the underlying assumptions of our proposed threat

model, and studying their effects on the ATS end-to-end. Our pro-

posed security assessment framework (ATS-SF) and our resources

enable downstream research to carry out all such analyses.

Open source. Our experiments are reproducible, and our re-

sources are available in a publicly available repository [1], in

which we also report additional experimental results and visual-

izations of our assessment, as well as “how-to” guides.
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Fig. 7: Overall impact of EP against the ATS using the Rate of Change trading

strategy. For each attacked day (of our 666 testing window), we compute: the difference

between the Sharpe Ratio (SR) achieved by the ATS at the end of the simulation (i.e.,

at day 666) with the baseline SR; and the ratio between the cumulative returns (CR)

achieved by the baseline ATS respect to when it is attacked by an EP. We then plot the

distribution of these “impacts”.
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Fig. 8: Overall impact of EP against the ATS using the Bollinger Bands trading

strategy. For each attacked day (of our 666 testing window), we compute: the difference

between the Sharpe Ratio (SR) achieved by the ATS at the end of the simulation (i.e.,

at day 666) with the baseline SR; and the ratio between the cumulative returns (CR)

achieved by the baseline ATS respect to when it is attacked by an EP. For Fig. 8b, we

normalized the values between 0 and 1 before making the plot (since the baseline CR

was a negative number)
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