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Algorithmic Trading

65-73% of US equity are traded
algorithmically

$38.4 billion
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Market Size (in USD billion)

Sources: Benzinga, Quantified Strategies (2025)



How Algorithmic Trading Systems (roughly) Work
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Simplified schema of ML-driven ATS

% Benefits: ML enables faster, data-driven trading with higher predictive power

Challenges: ML introduces new risks such as adversarial perturbations
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What if attackers could subtly manipulate the
data ATS relies on?

Data

ﬁ—» ATS
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Common Threat Model for ATS Related Attacks

Knowledge Capability

Everything Everything
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Realistic Threat Model for ATS Attacks

Attacker has limited knowledge and capabilities

Knowledge Capability
* Targeted ATS analyzes market-data

* Slightly change value of the known
sent by the broker

stock for just a single point in time
 (e.g., doable with man-in-the-
middle)

* Knows (guesses) at least one stock
analyzed by the ATS
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Ephemeral Perturbation

i€ Features “&r Attackers Challenges (RQ)
e Short-lived  When to inject the perturbation?
* Small enough to go undetected * How small can the change be

and still have impact?
* Which stock?

* Designed for time-series models
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Baseline Pipeline of Our Algorithmic Trading System
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Our ATS in Operation

Model-Level Performance (Aggregated RMSE) System Performance (Cumulative Returns)
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RMSE very low - Our models perform well! +25% Cumulative Return = System performs well
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Attack Design

* Which Stock?
L] GOOGL

*  When to Attack?
Indiscriminate: Random day

@ Targeted: News-driven day

* How much?
O Perturbation = +1 USD wrt of the true value
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Attack In Operation
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—— Predicted Value
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Here is the Attack!
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Impact on RMSE: minimal change from 6.3692 -> 6.3662
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Attack Impact (At a System Level)
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Attacking Each Day (Individual Evaluation)

Impact to the Cumulative Returns

-

(-

o
1

e

o

w
]

In over 60% of the days, a single-
day perturbation reduces
cumulative returns!
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It's Not Just About Fooling the Model

Adversarial Perturbations should be taken seriously in Finance

Ery
Perspective What It Shows o Fu"’Ctio,,
att@rs
ML View RMSE = OK
System View —15% returns

Systematic Literature Review:
7,266 papers reviewed - DL-specific threats in financial systems are critically underexplored

[7 Framework is open-source: github.com/AdvijeR/ep-ats

Validated by practitioners:
Seven experts confirmed the realism of both the system and the threat model
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https://github.com/AdvijeR/ep-ats
https://github.com/AdvijeR/ep-ats
https://github.com/AdvijeR/ep-ats
https://github.com/AdvijeR/ep-ats
https://github.com/AdvijeR/ep-ats
https://github.com/AdvijeR/ep-ats

Was it a glitch?
Was it a bad strategy?
Or was it... an attack?
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