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Abstract – Critical infrastructures like the power grid
are at risk from increasing cyber threats due to high
penetration of interconnected distributed energy resources
(DER). Compromised DER endpoints can cause events, data
breaches, communication loss, intentional device failures, and
even cascading outages. To address these challenges, this paper
explores cybersecurity issues in DER management systems
(DERMS), including state-of-the-art reviews on architectures,
communication protocols, access control privileges, data
breaches, identity management policies, attacks such as false data
injection, denial of service, distributed denial of service, malware,
threats affecting data integrity, and network vulnerabilities.
Realistic threat scenarios are outlined, followed by discussions
on futuristic solutions like the zero trust framework. The
paper presents new architectural patterns for recently released
multi-level hierarchical framework as per IEEE 1547.3 standard
to handle DERMS data and assets. The paper also discusses
potential threats compromising the Confidentiality, Integrity,
Availability, and Accountability (CIAA) properties at each level
of the IEEE 1547.3 framework. This review is unique and
comprehensive, as it covers existing research on cybersecurity
challenges in DER-related assets and outlines the necessary
capabilities to equip Intrusion Diagnostic Units (IDUs) in future
DERMS technologies, all while ensuring compliance with IEEE
1547.3 standard requirements.

Index Terms—advanced distribution management systems,
cybersecurity, distributed energy resources, distributed energy
resource management systems.

I. INTRODUCTION

MODERN power grids (or smart grids) have many
sub-systems managing multi-tiered functions. These

tiers can be classified as generation, transmission, distribution,
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and consumption of the electric power. Examples of
such sub-systems include supervisory control and data
acquisition (SCADA) system, demand response management
system (DRMS), distributed control system (DCS), and the
advanced distribution management system (ADMS). While
high penetration of DERs has the potential for grid stability
and is seen as a green alternative to power generation, it
also opens doors for cybersecurity vulnerabilities. DERs are
defined as renewable energy-based generation, storage, or
controllable load units that may interact with local electric
power systems (EPS) or microgrids to provide power. DER
fleets such as wind, solar photovoltaic (PV), electric vehicle
(EV) charging stations, and energy storage systems (ESS)
have significant energy footprints. According to the Energy
Information Administration (EIA), renewable energy (RE)
sources (i.e., wind, solar PV, etc.) contributed to 913 million
MW of electricity in 2022 across the United States [1].
Similarly, the Alliance for Automotive Innovation and the U.S.
Department of Energy (DoE) [2] states that roughly 80% of
all EV charging infrastructure is home-based and as of March
2024 in the U.S., there are 64,641 publicly available charging
locations and 168,388 available and unavailable legacy, Level
1, Level 2, and direct current (DC) fast charging ports [3].
Publicly available infrastructure is expected to increase with
the signing of the bipartisan Infrastructure Investment and Jobs
Act of 2021. However, DER penetration will also significantly
increase the cyber attack surface. An overlooked cybersecurity
challenge is the ownership model for DERs. DER types (e.g.,
wind, solar, ESS, EV) are controlled and owned by a broad
pool of private, public, and third-party entities distributed
and operate outside the purview of regulated administrative
domains [4].

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3534828

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. XX, NO. XX, XX 2025 2

A. DERMS Cybersecurity Challenges

Documented evidence suggests that DER fleet types are
vulnerable to multiple cyber attacks. Wind DERs can be
compromised indirectly by gaining remote access to the
SCADA systems operating them [5], launching worms to
issue malicious command and control messages [6], and
compromised credentials allow privilege escalation (PE)
permitting changes to critical configurations and settings
[7]. Similarly, solar PV vulnerabilities like poor credential
management, weak software supply chains (e.g., code bugs),
and default configurations can be exploited due to lack of
standardized security policies (e.g., public key infrastructure)
[8]. EVs and their infrastructure (e.g., charging stations, supply
equipment, operator interfaces) are susceptible to session
hijacking, brokenwire attacks, poorly secured smart phone
applications, and credit card skimming on supply equipment.
These vulnerabilities can lead to personally identifiable
information (PII) theft, power grid disruptions, and vehicle
battery damage [9].

The increase in DERs has brought the need for additional
monitoring and its control systems called DERMS. DERMS
is a hardware (i.e., shown through the integration of edge
devices, gateways) and software platform designed to manage
and optimize DERs. The main functions of a DERMS are:
to aggregate individual DERs, load management, market
integration, coordinate demand response programs, provide
metrics (e.g., load consumption, usage patterns), and monitor
grid assets. However, DERMS’ digital ecosystem presents
unique cybersecurity challenges.

DERMS and its multiple DER endpoints (e.g., remote
terminal units (RTUs), intelligent electronic devices (IEDs),
smart meters) are vulnerable to attacks such as spoofing
and denial of service (DoS) to compromise the integrity
and availability of asset(s). For example, a threat actor
can gain unauthorized access to DER gateways or inverters
by presenting a spoofed access mechanism (e.g., public
certificates) to modify data before they are sent. DERMS
can have multiple architecture types based on deployment
topology (e.g., networked microgrids, nanogrids): centralized,
decentralized, distributed, or (more recently) federated [10]
(see Fig. 1).

Centralized architectures represent single-point computation
where DER endpoints (e.g., controllers, sensing devices) do
not communicate with one another but relay all collected
data to a central compute node. The latency and real-time
response capabilities required (i.e., due to the rapid integration
of DERs to the grid) [12] of a centralized architecture are
largely dependent on the communication protocol(s) used
to handle data between endpoints and the central compute
node. The benefit to a centralized approach is that it controls
demand-side and generation-side units from one location,
and it has authority to integrate or shed non-critical loads
based on need [13]; therefore, autonomy is a key aspect of
this architecture type. However, it is also generally accepted
that the centralized control of DERs presents a single point
of failure that can significantly disrupt grid stability and
operation.

Decentralized architectures represent DER endpoints that
may be geographically dispersed and contain endpoints that
do not communicate with one another (i.e., non-cooperative).
Small levels of autonomy are advantageous in this architecture
although a certain level of supervision is required. Data from
these endpoints are relayed to aggregators that participate in
data exchange. The bottlenecks in this architecture type is the
bandwidth size required to handle large-scale communication
as there is a linear increase in network size and the fact that
decentralized DERs may be challenging to implement at the
control level (i.e., management and control of the system to
maintain power balance) since there is a lack of cooperation
[14].

Distributed architectures, like decentralized architectures,
are dispersed but contain DER endpoints that are cooperative
in exchanging collected data and assignment of roles.
Distributed architectures are fault-tolerant i.e., failure of a
communication link or endpoint will not significantly affect
the system as a whole. From a control perspective, distributed
endpoints can be integrated into the system with little
hassle (i.e., plug-in and plug-out of DERs) [15] but from a
communication standpoint and with endpoints being at the
same hierarchical level (i.e., no aggregator or centralized
compute nodes), the support for many communication links is
required and this presents a scalability issue. Other aspects to
consider are design complexity, implementation, performance
indices (e.g., convergence), and consensus variables to achieve
a certain objective (e.g., frequency restoration). Generally
DERs have relatively low system inertia, cyber attacks on
endpoints in distributed architecture types will have more
impacts on the stability of a bulk power system [16].

The federated architecture is a concept first presented by
the Electric Power Research Institute (EPRI) [10][17] in 2020
and later supported by four U.S. National Laboratories [18]
to allow for computation at two levels on a need basis:
at the edge (i.e., locally federated or distributed) or at a
single centralized (i.e., centrally federated) location; these two
networks can consolidate their networks and their data to
share certain services and to maintain adequate and consistent
policy enforcement. This architecture is semi-autonomous and
decision-making capabilities are given to devices at both these
levels - this is not seen in the other architecture types. The
obvious challenges to this architecture is related to privacy
- globally (i.e., model updates at the global authority) and
locally (i.e., model updates are kept private only with the
global authority) and concept drift due to cyber attacks or
diurnal/nocturnal variations [19].

We propose a Hierarchical Hybrid DERMS Federated
Learning (FL) Framework as shown in Fig. 2. “Group
0” contains inverter-based resources (IBRs) and their edge
devices (e.g., smart meters, remote terminal units (RTU)).
Data are exchanged from/to these edge devices through IEC
61850/Modbus protocols through a device-level interface that
acts as a gateway to upper-level entities. The distributed
(i.e., co-operative and dispersed edge devices) and locally
federated (i.e., co-operative with device-level authority)
architecture types align well with this group due to their
high fault-tolerance and ability to island without significant
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Fig. 1. Different DERMS architecture types. The centralized, de-centralized, distributed, locally federated, and centrally federated types are most applicable
to DERMS due to distinct modes of operation (e.g., latency, topology), latency, scalability, and robustness to cyber-physical threats.

disruptions to Level 2 and Level 3 entities (i.e., distribution
system, power grids).

“Groups 1-3” entities refer to local aggregators (i.e.,
utility-owned or third-party owned) that aggregate data from
IBRs’ edge devices to inform higher-level decisions such
as grid support functions (e.g., voltage regulation, demand
response, load shedding, etc.) We define local aggregators to
belong to smaller-scale distribution sites such as microgrids,
nanogrids, and macrogrids. The additional interface that local
aggregators exchange data is with the cloud. This refers to
hardware or software infrastructure that acts as a support for
various services such as forecasting, data analytics, and to
offload data for remote storage. Centralized or decentralized
architecture types are recommended for these groups due to
the relatively large amounts of data that are collected and used
to inform grid-level decisions. Since aggregators exercise a
degree of local control over distribution sites, they interface
with our proposed Customized FL Framework through the
IEEE 2030.5 standard (i.e., Smart Energy Profile) for various
grid support functions.

Finally, “Group 4” supports distributed energy management
system (DERMS), advanced distribution management system
(ADMS), and other market-relevant authorities such as virtual
power plants (VPP) to render data from Group 3 to manage,
control, and dispatch resources through the lower-levels
to individual or aggregate DERs. The centrally federated
architecture type is most applicable – since Group 4 interfaces
with Independent System Operators (ISOs) and Regional
Transmission Operators (RTOs), a degree of co-operation is
required between Group 4 entities to appropriately schedule
resources such as generators, loads, and manage bids/energy
trading tariffs, or update grid topologies for Groups 1- 3
while still functioning with a degree of autonomy and privacy.
We regard VPPs to provide energy management and bidding
services to prosumers through the final decision-making from
the utility DERMS. We leverage the cloud interface at this
group as well for the same benefits offered to Groups 1 – 3.
The primary flow modality at this group is control signals,
whereas Group 1, 2, 3 and Group 0 entities exchange data
and power flows.

We now use the Hierarchical Five-level Architecture

specified by IEEE 1547.3-2023 [11] as shown in Fig.
3 to map high-value entities, highlight relevant attacks,
and security properties requirements at each level. While
accountability (i.e., tracing malicious or benign actions
uniquely to an entity [20], the denial that an action took
place [21], or uniquely tracing actions to an entity to support
non-repudiation, deterrence, fault isolation, intrusion detection
and prevention, and after-action recovery and legal action
[22]) and availability (i.e., denial or prevention of authorized
access) are the primary requirements that are compromised
at the transmission/distribution and market levels, the lower
levels (i.e., DER process and field systems, management
systems, and third parties) are more likely to be compromised
through attack vectors such as physical intrusions and integrity
violations, and attacks such as spoofing, eavesdropping, and
man in the middle. We will expand further on these in Section
IV.

Additionally, there are several communication standard
protocols including Modbus, Distributed Network Protocol
3 (DNP3), and Smart Energy Profile 2 (SEP2) that offer
a networking bedrock for DER devices but lack effective
in-built security mechanisms. Attacks such as DoS and
malware are evolving against smart grids and DERs due
to the critical nature of these resources and as such, the
sophistication and operation of malware are of rising concern.
Eder-Neuhauser and colleagues [23] list communication
patterns for nineteen malware types and key findings indicate
that recent implementations of malware traffic blend into
normal network traffic to obfuscate their presence, and that on
internet protocol (IP) networks malware prefers transmission
control protocol (TCP) over the user datagram protocol (UDP)
for compromised devices. Indicators of compromise (IoCs)
that are presented in literature are: 1) forbidden or restricted
communication attempts that are unsolicited, and 2) the
presence of communication protocols (e.g., TCP, Hypertext
Transfer Protocol (HTTP), or Server Message Block (SMB))
that are not ordinarily present in DERMS communications,
posing a threat to DERMS and other smart grid control
systems (e.g., advanced distribution management systems
(ADMS)).
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Fig. 2. Hierarchical Hybrid DERMS Federated Learning framework. Each level starting from Level 1 (bottom-most) to Level 5 (top-most) interacts
with other levels through multiple protocols (e.g., Modbus, SEP) and accommodates different DERMS architecture types based on the factors unique to each
architecture type.

B. ADMS Cybersecurity Challenges

ADMS provide cutting-edge control capabilities to a power
grid when compared to the traditional distribution management
system (DMS). Some of these capabilities include fault
location, isolation, and service restoration (FLISR), real-time
optimization of voltage and VAR (VVO), and outage

management in addition to providing real-time analytics of
system processes. Architecturally, a typical ADMS consists
of DMS, an outage management system (OMS), and energy
management system (EMS). Dubey and colleagues [24]
categorize and characterize ADMS according to their current,
near-term, and long-term use-cases. Near-term applications of
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Fig. 3. Hierarchical Five-level Architecture specified by IEEE 1547.3-2023. Attack are given at the bottom of each level and compromised security
requirements for each level are represented at the top right of each level differentiated by colors: blue (confidentiality), green (integrity), brown (availability),
and red (accountability) [11].

ADMS focus on rendering services such as proactive demand
response (DR), optimal DER control and coordination, and
restoration from outages with intentional islanding through
a centralized network while long-term use-cases include
data-driven situational awareness and adaptive protection
through a distributed architecture. However, ADMS are known
to have challenges such as integration of multiple information
technology (IT) and operational technology (OT) modules
and a dedicated cross-functional team for operations and
management [25]. Compared to other aspects within the
smart grid, such as SCADA systems and communication
networks, studies related to the security of ADMS are scant
and require further analyses. However, cyber threats such as:
1) unencrypted communications from monitoring endpoints; 2)
unsecured access to the ADMS from non-ADMS or external
systems [26]; 3) lack of data validation; 4) unauthorized
and privileged access; and 5) inadequate security audits of
monitoring logs, can be carried over from the traditional DMS
and risk the security of the larger DERMS. Additionally many
DER devices (e.g., smart appliances) may be controlled from
a cloud- or vendor-hosted centralized application. This creates
the potential for a single security compromise to impact a large
number of DER devices which could create grid instability.

C. Related Studies

1) Smart Grid Security
Several surveys have been conducted on the smart grid

and its sub-entities such as the wide-area monitoring,
protection, and control (WAMPAC) systems, smart grid
metering networks, and cyber-physical system (CPS) testbeds
[30][36][29]. For example, Kumar et al. [32] cover
cybersecurity aspects such as privacy and threat modeling
with regards to endpoints such as AMI and smart metering
infrastructure (SMI). Specifically, the authors address threats
and mitigation measures related to SMI system-level security
(i.e., SMI networks), SMI services (e.g., demand response),
and utility/consumer privacy and confidentiality (e.g., billing
information). The paper briefly references attacks on RE
resources, but this isn’t the focus of this survey and therefore
lacks much needed detail on larger threat surface(s) brought
in by distributed generation units and DERs. A survey by
Yan and colleagues [27] addresses security for smart grid
communication infrastructures. There is important information
mentioned for DERs and DER security such as stakeholders,
standards (e.g., IEC 61850), security requirements (e.g.,
Federal Information Processing Standard (FIPS) 201), and
deploying security technologies (e.g., symmetric encryption,
key management). However, the addition of new standards,
updates in security protocols, and integration of novel systems
and threat models make this information in the study dated
and need detailed analyses by looking at the current smart
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TABLE I
COMPARING EXISTING WORKS.

Survey Scope IEEE 1547.3
5–level
Architecture
Map [11]

IEEE 1547.3 Grid Entities
Interaction [11]

Security Aspects Year

TB HS SS ST
A Survey on Smart Grid
Communication Infrastructures:
Motivations, Requirements and
Challenges [27].

Major Requirements
for Smart Grid
Communication
Infrastructures (e.g.,
Scalability, Resilience)
and Challenges (e.g.,
Security Threats,
Cost/Investment, and
Standardization).

Level 1 (IEDs and
RTUs) and Level4
(Substations).

(1) DER/Customer
Premises (Field, Process)
(2) Transmission (3)
Distribution.

✕ ✕ ✕ ✓ 2013

Cybersecurity for DERs and
Smart Inverters [28].

DERs and Inverters. Level 1 (DER
Controllers), Level
3 (Aggregators),
and Level 4.
(ISO/RTO).

(1) DER / Customer
Premises (Process, Field,
Station) (2) Transmission.

✕ ✓ ✓ ✕ 2016

A Survey on Smart Grid
Cyber-Physical System
Testbeds [29].

Testbeds. The Smart
Grid System’s Diversity
Needs Scalable, Flexible,
and Multi-domain
Capable Testbeds
that Support Robust
Performance Analysis
and Vulnerability
Assessment.

Level 1 and Level 4. (1) Distribution (2) DER
/ Customer Premises
(Process, Field) (3)
Transmission

✓ ✕ ✕ ✓ 2017

Middleware Architectures for
the Smart Grid: A Survey on
the State-of-the-Art, Taxonomy
and Main Open Issues [30].

Middleware
Architectures.
Architectures Evaluated
Based on Features,
Suitability, and
Performance. Future
Research Directions
Include Interoperability
and Security.

Level 1 and Level 4. (1) Distribution, (2) DER /
Customer Premises (Field).

✓ ✕ ✕ ✓ 2018

A Survey of Protocol-Level
Challenges and Solutions for
Distributed Energy Resource
Cyber-Physical Security [31].

Protocol-level
Mechanisms and Security
for Communication
Layer Protocols (e.g.,
Ethernet, ICMP).

Level 1 (Edge,
Field, Network).

(1) Transmission (2)
Distribution.

✕ ✕ ✓ ✕ 2018

Smart Grid Metering Networks:
A Survey on Security, Privacy
and Open Research Issues [32].

Metering Networks.
Security for Smart
Metering Infrastructure
Considering Aspects
such as Heterogeneous
Devices, Vulnerability
Management, and Data
Sensitivity.

Level 1 (Smart
Meters), Level
2, and Level 5
(Markets).

(1) Distribution (2) DER
/ Customer Premises
(Station, Field) (3)
Transmission.

✕ ✓ ✓ ✕ 2019

Industrial and Critical
Infrastructure Security:
Technical Analysis of Real-Life
Security Incidents [33].

Industrial and Critical
Infrastructure.

Level 1, Level 2,
Level 3, and Level
4.

(1) Transmission
(2) Distribution (3)
DER/Customer Premises
(Field/Process/Station).

✕ ✓ ✓ ✕ 2021

Cybersecurity Challenges in
Distributed Energy Resources
for Smart Cities [34].

DER for Smart Cities Level 1 and Level 2. (1) Distribution (2) DER /
Customer Premises (Field,
Process, Station).

✕ ✕ ✓ ✕ 2022

DER Communication Networks
and Their Security Issues [35].

Communication
Networks

Level 1 (DER
Devices), Level 2
(Substations)

1) Distribution (2)
DER/Customer Premises
(Process, Field, Station).

✕ ✕ ✓ ✓ 2022

Federated Architecture for
Secure and Transactive
Distributed Energy Resource
Management Solutions
(FAST-DERMS) [18].

DERMS in General Level 1, Level 3,
Level 4, and Level
5

(1) Transmission (2)
Distribution. (3) DER
/ Customer Premises
(Station).

✕ ✕ ✓ ✕ 2022

Security of Wide-Area
Monitoring, Protection, and
Control (WAMPAC) Systems
of the Smart Grid: A Survey on
Challenges and Opportunities
[36].

Wide-Area Monitoring,
Protection, and Control
(WAMPAC).

Level 1, Level 2,
and Level 4.

(1) Distribution, (2)
DER/Customer Premises
(Field, Process).

✕ ✓ ✓ ✓ 2023

Distributed Energy Resources
Cybersecurity Outlook:
Vulnerabilities, Attacks,
Impacts, and Mitigations [37].

DERs in General Level 1, Level 2,
Level 3, and Level
4.

(1) DER/Customer
Premises (Field/Process)
(2) Transmission (3)
Distribution.

✕ ✓ ✓ ✕ 2023

Our Survey DERMS in General. Level 1, Level 2,
Level 3, Level 4,
and Level 5.

(1) Transmission (2)
Distribution (3) DER
/ Customer Premises
(Field, Process, Station).

✓ ✓ ✓ ✓ 2024
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grid landscape.
While these surveys have gathered valuable information on

important areas, there is little to no consideration of DERs and
sub-systems such as ADMS, EMS, OMS, etc. and the studies
offer high-level information without offering technical insights
for cyber vulnerabilities or cyber threat models. Overall,
these existing surveys do not consider in sufficient detail the
addition and security implications of DERs and their control
technologies (e.g., DERMS) to the modern power grid.

2) DER Security
There are works that specifically tackle DER security (i.e.,

cyber and physical security) such as [34][35][31][28]. Chan
et al. [35] specifically address DER communication protocols
such as Modbus, Distributed Network Protocol (DNP),
and Smart Energy Profile (SEP), and DER cybersecurity
attacks and vulnerabilities (e.g., zero-day attacks), and
mitigation measures. Similarly, Sundarajan et al. [31] have
detailed cybersecurity vulnerabilities and attacks for DER
communication architectures at the edge, network, field,
and utility command/control centers levels by mapping
the Open Systems Interconnection (OSI) model to DER
communication protocols. One of the key contributions
of this study is highlighting National Renewable Energy
Laboratory’s (NREL) layered defense strategy for DER
systems (e.g., photovoltaic inverters, wind farms) through
security controls (e.g., Transport Layer Security (TLS))
for DER communication protocols. Qi and colleagues [28]
address DER security through four “domains” - DER devices,
distribution utilities, third parties, and transmission operations.
Additionally, attack scenarios for DERs are described and
an attack-resilient framework for cyber resiliency is detailed
at the cyber, physical device, and utility levels. There is
significant value in the finer details of this study, such as
identifying patterns in DER systems that propagate faults, the
recommendation of data-driven approaches for state estimation
and anomaly detection, and coordinated hierarchical control
to improve transient performance and corrective control to
restore system stability. However, rapid developments in the
power grid are showing a system of systems trend and reviews
in this area need to be robust and comprehensive; high-risk
possibilities and robust prevention/mitigation frameworks that
leverage advanced technologies such as federated learning,
cloud and fog-based computing, and orchestration platforms
are viable options that were not considered.

The conventional power system, based on fossil fuels,
allows uni-directional power flow (PF). However, with the
incorporation of DERs in the systems, the PF has been altered
to be bi-directional. Most protection schemes are designed
for uni-directional power flow. This may prove futile in
case of reverse PF caused by a lightning event; hence, the
protection scheme should be redesigned to ensure a safe and
reliable network for different distribution grids (e.g., radial)
with constraints (e.g., minimum number of micro-phasor
measurement units (µPMUs) [38]) for different voltage levels
[39]. It is also important to have complete observability for
the monitoring of the system. State-of-the-art methods have
explored the optimal deployment of µPMUs in a distribution
network operation in multiple configurations [40][41][42]. A

comprehensive review on PMUs, µPMUs, and their optimal
placement in the power system to enhance situation awareness,
control, event identification and data mining was performed in
[43][44].

Fault detection and system protection (i.e., physical
security) can be improved with the aid of PMUs and µPMUs
[45]. Techniques to detect symmetrical and asymmetrical
faults in distribution systems and microgrids using time series
measurements from µPMUs at various locations were proposed
in [46][47][48][49]. The impact of DERs on transient stability
has been a subject of interest and it is necessary to synchronize
the DERs with the main grid for stable operation [50][51].
Linear and non-linear variants of the Kalman filter were
implemented and tested for Dynamic State Estimation in [52],
which would help access the internal states of distributed
generators, for control and monitoring of real-time microgrid.

While these works contain information (i.e., cyber and
physical studies) that are relevant to our work, they lack
comprehensiveness and adequate scenario modeling for
DER risks at multiple levels (e.g., aggregators, endpoints).
Furthermore, there is little to no information about how
DERMS at the sensing (e.g., endpoints) and control levels
(e.g., transmission) can be compromised to cause cascading
failures at the transmission-side and distribution-side. The
importance of securing the cyber aspect of an integrated
CPS like the smart grid with technologies like DERMS is
overlooked and we intend to address that in this survey.

3) SCADA/Industrial control System (ICS) Security
ICS is a broad term that refers to control systems such as

SCADA and is used to control industrial processes in various
industries (e.g., water, transportation, electrical). There are
notable survey papers when it comes to SCADA/ICS security
[33][53][54][55]. These works have power grid-relevant
areas such as communication protocols, survivability and
resilience, future trends (e.g., virtualization, software defined
networking), studies of major critical infrastructure incidents
(e.g., Havex), SCADA/ICS device vulnerabilities (e.g., buffer
overflows, insecure hardware/software supply chains), security
standards (e.g., NIST SP800-82, Guide for SCADA and ICS
Security), control and mitigation strategies for compromised
SCADA systems, and SCADA testbeds for security testing.

As SCADA and IED systems connect to open internet
networks and possibly the cloud, they are susceptible to cyber
threats. Communication based on TCP/IP simplifies the system
for fast data transfer but opens the way for worms, viruses,
and internet attacks. Cyber attacks types can be of many
types such as ARP poisoning, false data injection (FDI),
replay, flooding, and DoS. Malicious attacks against SCADA
networks cause severe damage to utilities, such as the incorrect
triggering of switches, sudden shutdowns of DERs, topological
misconfiguration, FDI attacks, protocol vulnerabilities, etc.
Thus, the entire DMS collapses resulting in blackouts.

RE-based DERs have gained popularity for several reasons,
including clean energy availability, reduced transmission
losses, and flexibility. According to the Renewable Capacity
Statistics 2024 [56] published by the International Renewable
Energy Agency (IRENA), there has almost been a 115%
growth in renewable-based power generation in the last decade
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(2014-2024). A proper monitoring and control scheme is
required to integrate the DERs into the existing distribution
system, and SCADA serves this purpose efficiently.

Similar to DERMS and DERs, SCADA/ICS systems are
components within the power grid and as such, surveys and
review papers in SCADA do not adequately address our topic
area simply because it wasn’t the research focus for these
studies; therefore, we intend to add to the existing body
of knowledge through a survey of multiple components in
addition to ICS security.

D. Research Questions & Contributions

This review paper draws on the insights from notable works
[30]-[55] but attempts to add to the existing body of knowledge
by addressing the following research questions:

1) What are the cybersecurity research challenges and
threat model scenarios in existing DER-/DERMS-related
surveys?

2) How do we map cyber threats that affect the CIAA
properties in the IEEE 1547.3 standard?

3) How to select the optimal architecture types across each
mapped level according to the IEEE 1547.3 standard?

4) What are the potential emerging intrusion detection unit
(IDU) technologies to harden DERMS against cyber
threats?

More specifically, our contributions relative to the current
state-of-the-art papers are summarized as follows:

1) Our survey proposes a novel intrusion detection
framework called the Integrated AI-ready DERMS
Edge Testbed that can be integrated with DERs and
DERMS, specifically for DER aggregators. We propose
integrating service orchestration (i.e., Kubernetes),
cloud services, and pre-trained FL models for edge
intelligence.

2) As part of our efforts to enhance DER/DERMS security,
we put forward zero trust security principles across
multiple layers within a DERMS architecture i.e.,
sensing, communication, and control. We emphasize
the importance of shifting from perimeter-based
defenses (e.g., physical security, firewalls) to zero trust
capabilities (e.g., policy engines, least access privileges).

3) We provide threat models for DERs across multiple
layers i.e., sensing, communication, and control that
are derived from real-world incidents and actively
researched by leading institutions such as the DoE.

Table I compares existing studies to our survey. “Scope”
refers to the general focus area and “Security Aspects”
specifies cybersecurity topic areas covered within the general
focus area; while most of the state-of-the-art surveys present
some form of these, they do not comprehensively consider all
these aspects, especially with the integration of systems such
as ADMS and DERMS to the power system. Additionally,
the “IEEE 1547.3 5-level Architecture Map” and “IEEE
1547.3 Grid Entities Interaction” columns map the respective
survey paper to the tiered architecture proposed by the IEEE
Power and Energy Society and grid entities (e.g., transmission,
distribution) within the architecture, respectively. We’ve used

the following four criteria to compare each work for the
“Security Aspects” column: (1) are there DER and power
grid security-related testbeds (“TB”) listed/detailed? (2) are
novel hardware solutions (“HS”) or software solution (“SS”)
proposed by the authors? (3) have the authors considered
security standards (“ST”, for example, NIST Internal Report
(IR) 7628) that can be applied to the power grid?

E. Paper Organization

The paper is organized as follows: Section II offers
background information relevant to DERMS, Section III
introduces a novel system called Hybrid DERMS and
considers the most likely cyber threats to this system,
Section IV presents three emerging threat models for DERs
and offers mitigative/prevention measures for each threat
model. Section V explores the hardware security aspect
for DERs and DERMS by considering reverse engineering,
hardware trojan, and side channel attacks. Section VI
presents four potential technologies for DERMS security,
and Sections VII and VIII collectively propose the Intrusion
Detection and Federated Framework (IDFF) by looking
at FL, edge intelligence, and containerization. Section IX
discusses threats and mitigations related to the deployment
of machine-learning methods in DERMS, Section X identifies
cyber threats to vehicular DER assets (i.e., EVs) and
proposes an architecture to coordinate grid services from edge
DER devices. Finally, Section XI presents lessons learned,
Section XII offers technical challenges and future directions,
and Section XIII concludes our manuscript.

II. BACKGROUND FOR DERMS SECURITY EVALUATION

This section lists various test beds currently being used
by US National Laboratories and organizations for industrial
control systems (ICS)-, SCADA-, and DERMS-based testing,
and offers readers a glimpse into how six testbeds are used
by leading research and development institutions (e.g., Pacific
Northwest National Laboratory (PNNL)) to model and solve
challenges (e.g., evolving attack/threat models) relevant to
the current cyber landscape. Similarly, a brief listing of
seven well-known communication protocols is provided and
segregated based on the primary entities (e.g., substations,
RTUs) using said protocols.

A. SCADA/DERMS Test Beds

1) GridAPPS-D: PNNL is developing an open-source
ADMS platform called GridAPPS-D [57] that is
designed to address the operational challenges faced by
distribution utilities. GridAPPS-D provides a reference
architecture that can be used by researchers in this
field to implement existing state-of-the-art tools, adapt
existing systems, or create new systems that are
compliant with standards.

2) National SCADA Test Bed (NSTB) – The NSTB is a
joint initiative by Argonne, Idaho, Lawrence Berkeley,
Los Alamos, Oak Ridge, Pacific Northwest, and Sandia
National Laboratories [58]. Albeit being a slightly
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Fig. 4. Roadmap to navigate the paper. This paper is divided into thirteen sections with Sections II – XII as the main body.

older test bed being first released in 2008, NSTB is
used for cybersecurity applications; for example, Los
Alamos National Laboratory has research expertise in
the role quantum key distribution (QKD) to exchange
cryptographic keys that are then used in traditional
algorithms to encrypt energy sector information such as
smart grid data.

3) ADMS Test Bed – Pratt and Baggu from NREL [59]
have proposed the idea of a vendor-neutral national
“ADMS Test Bed” that provides a realistic laboratory
test setting (e.g., utility management systems and
field systems) with controller hardware-in-loop (CHIL)
[60], power HIL (PHIL), and remote HIL (RHIL)
capabilities in addition to multi-timescale simulation,
multi-vendor platforms, and an integrated data collection
and management system. Using these features, the test
bed can be used to inform field deployment decisions,
evaluate performance of ADMS VVO applications, and
to evaluate the feasibility and performance of peak
load management across multiple systems (e.g., ADMS,
DERMS, EMS).

4) Software-defined Intelligent Grid Research Integration
and Development (SI-GRID) – Developed by the Oak
Ridge National Laboratory (ORNL) [61], SI-GRID
test bed provides researchers an open research
platform to evaluate the operation and cybersecurity
of equipment that are used to support microgrids such
as DER equipment (e.g., solar panels and batteries).
The platform was used to develop and prototype
technologies such as power electronics, generation
technologies, energy storage, optimization, etc. All
system components in SI-GRID operate under 100
volts but mimic the physics behind higher-voltage
components.

5) PowerCyber – Researchers at the Iowa State University
(ISU) [62] are currently developing a high-fidelity
and open-access test bed to secure the power
grid by providing features such as vulnerability
analyses at the substation and control center levels,
impact analysis quantification, and risk modelling and
mitigation. This CPS security test bed interfaces with
industry-grade SCADA systems with a real-time digital
simulator (RTDS) and EMS software to conduct cyber
attack/defense evaluations and cyber training.

6) CyberStrike STORMCLOUD - Sandia National
Laboratory’s (SNL) DER Cybersecurity Worksgroup
(founded in 2017) provides recommendations and best
practices for DER cybersecurity and is resposible for
developing this testbed. CyberStrike STORMCLOUD
[63] in particular is geared towards EV supply
equipment (EVSE), solar, and wind DERs and will
assist stakeholders in understanding the cyber risks in
OT. Simulated equipment in this testbed are focused
on providing authentication/authorization, integrity,
availability, and encryption technologies to secure
DERs. STORMCLOUD is currently not publicly
available and requires attendees to participate in
workshops and lectures/lessons covering topics such as
open-source intelligence (OSINT), DoS attacks, web
exploitation, etc.

B. Communication Protocols

The primary communication protocols relevant to
substations are as follows:

1) Generic Object Oriented Substation Event (GOOSE)
is a protocol that enables the transfer of multicast
messages that relay substation event data issued by
IEDs to other IEDs and is based on Ethernet (IEEE
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802.3). For more information on GOOSE, please refer
to [64][65][66][67][68][69][70][71][72].

2) Inter-control Center Communication Protocol
(ICCP) was first introduced by the Electric Power
Research Institute (EPRI) in 2001 to accommodate
communications between control centers, substations,
and operators [73] (e.g., Transmission System Operator
(TSO), Independent System Operator (ISO)). For more
information on ICCP, please refer to [74][75][76].

3) Distributed Network Protocol (DNP) (i.e., IEEE 1815)
is used to handle data and control communications
between substations and their operating devices such as
RTUs and IEDs, and the master control station or control
center [77]. For more information on DNP, please refer
to [78][79][80][81][82][83][84][85][86].

The primary communication protocols used by endpoints
such as RTUs, inverter-based resources (IBRs), and DERs are
as follows:

1) Smart Energy Profile (SEP) 2.0 (i.e., IEEE 2030.5)
is specified to allow interoperability between multiple
smart energy devices in a customer’s home to the power
grid and is primarily built using TCP/IP [87]. For
more information on SEP (e.g., threats, attacks, primary
functions), please refer to the following resources
[87][88][89][90][91][92].

2) Modbus is the most long-standing and widely used
protocol for automation devices such as DER endpoints
(e.g., smart inverters) regardless of network or bus
types (i.e., architecture agnostic) [93]. It enables
communication through a client/server architecture for
intra-device communication using TCP/IP, serial, or
through the User Datagram Protocol (UDP) [94]. For
more information on Modbus, please refer to the
following resources [95][96][97][98][99][100].

3) Manufacturing Message Specification (MMS) (i.e.,
(IEC) 61850) was initially designed to provide remote
access or control to field devices. For more information
on MMS, please refer to the following resources
[101][102][103][104][105] [106][107][108].

4) Building Automation Control Network (BACnet) is a
data communication protocol that enables interoperation
and compatibility between multiple devices and
device types within building automation and control
environments. Though not directly related to DERMS,
a microgrid that handles multiple energy resources such
as solar, wind, or geothermal heat pumps (GHP) can
power a smart building that uses BACnet. For more
information on BACnet, please refer to the following
resources [109][110][111].

III. HYBRID DERMS – A SECURITY PERSPECTIVE

While Section II has provided an overview of testbeds and
communication protocols relevant to DER/DERMS security,
we will continue the discussion in this section by proposing
a conceptual diagram of Hybrid DERMS and listing five of
the most likely cyber threats facing this concept architecture.
Hybrid DERMS is designed to accommodate the high

penetration of DERs in terms of smooth market operations,
flexible resource scheduling, and accurate forecasting.

As discussed by Strezoski et al. [12][112], there are multiple
DER management solutions, all frequently called DERMS,
but aimed to achieve completely different goals for different
stakeholders. They range from centralized software solutions,
called Utility/Grid DERMS, aimed for Distribution System
Operators (DSOs) and distribution grid planners and engineers
to completely decentralized solutions for aggregation of
DERs or EVs, and providing basic programs, such as
demand response, energy efficiency, or offering aggregated
DER power on wholesale markets. These solutions are
called DER/EV Aggregators. Generally, DERMS architecture
types are classified under centralized or decentralized types,
and have DER management solutions that have unique
aims and a body of stakeholders that benefit from using
them. Stakeholders that benefit from centralized architecture
types are DSOs and planning/innovation departments in
distribution utilities and typical objectives for centralized
types are to relieve congestion problems, secure grid edge
stability, and optimize existing and new assets. Similarly,
market participants, prosumers and DER aggregators are
stakeholders that use the decentralized architecture which
provides aggregate DERs for local energy management,
optimizes energy portfolios, minimizes imbalance costs, and
integrates distributed generators (DGs). Further details on
these architecture types are given in [12]. However, none of
these solutions alone can fully address the challenges posed by
integration of high amount of DERs. To accurately plan for the
integration of DERs, forecast their impact on the distribution
grid, defer capital investments in grid assets, utilize DERs
as flexible resources, harness their aggregated potential, and
monetize their flexibility, a concept of “Hybrid DERMS” is
proposed in [12].

As shown in Fig. 5, a Hybrid DERMS comprises of a Utility
DERMS, DER and EV Aggregators, Microgrid Controllers,
and Electricity Market Operators, integrated into a unique
solution for managing emerging distribution grids with DERs
dispersed all over the grid, and across different voltage levels.
By integrating DER and EV Aggregators and Microgrid
Controllers through a Utility DERMS, DSOs can enhance
their awareness of small-scale, dispersed DERs and EVs.
The Utility DERMS enables operators and grid engineers to
have real-time visibility into the grid, including the impact
of behind-the-meter (BTM) DERs and EV chargers. This
integration allows DSOs to utilize the flexibility of all available
resources, communicate with large-scale DERs and level
3 EV chargers, and leverage small-scale resources through
aggregators to optimize the grid and avoid technical violations.
Furthermore, if or when, regulations permit aggregated DERs
to participate in electricity markets, the integration of a Utility
DERMS with DER Aggregators and Local Electricity Market
Operators becomes of a high importance. Namely, the Utility
DERMS validates and checks the schedules of DERs and
DER Aggregators against technical grid constraints, a task that
only a grid-aware software can perform effectively, and in that
way keeps the grid in an optimal operational condition, while
utilizing DERs in the most effective way.
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Fig. 5. Hybrid DERMS. In addition to the flexibility (i.e., DER scalability, communication) this architecture supports, the integration of centralized and
decentralized operation provides broader functionalities (e.g., management and optimization of DERs) across multiple levels [12].

There is no doubt that a Hybrid DERMS concept is the
future of DER management, as all of these separate solutions
are tremendously more effective when integrate together, and
there have already been various pilot projects with highly
promising results [12][112]. However, a Hybrid DERMS
concept carries a fair share of challenges as well, and cyber
attacks are probably the most challenging aspect. As described
previously, to work effectively and efficiently, a Hybrid
DERMS assumes proper communication on several levels.
First, a Utility DERMS should communicate downstream
with DER and EV Aggregators, Microgrid Controllers, as
well as with large-scale DERs. Second, DER Aggregators
and Microgrid Controllers should communicate downstream
with small-scale DERs, building management systems, and
EV chargers, and upstream with a Utility DERMS. Finally,
both a Utility DERMS and Aggregators should be able
to communicate with Electricity Market Operators. This
complicated communication infrastructure introduces new
points of vulnerability and potential cyber threats. The main
cyber threats that shall be considered before deploying a
Hybrid DERMS are as follows:

• Resource availability: Hackers may attempt to
overwhelm the Hybrid DERMS system (either through
aggregators or through multiplying communication
signals directly to/from DERs) with numerous
unnecessary information flows, causing service
disruptions and rendering the system (at least
temporarily) unavailable. These attacks directly endanger
grid operations, market transactions, and/or customer
services, but may also endanger signals from Hybrid

DERMS to protective equipment, causing unnecessary
tripping, blackouts, and/or disruptions to entire areas of
a distribution grid.

• Interoperability and integration risks: As Hybrid
DERMS integrate multiple systems (i.e. Utility DERMS,
DER and EV Aggregators, Microgrid Controllers, local
DER automation, etc.), that can be developed by
different vendors, ensuring secure and safe data flow
and exchange is a significant challenge. Incompatibilities,
vulnerabilities in different interfaces, or improper
configuration of the communication infrastructure can be
exploited by hackers to gain unauthorized access and/or
manipulate the data. This can consequently threaten
to endanger both grid operations as well as customer
services.

• Supply chain risks: Similar to the previous threat,
as Hybrid DERMS rely on various software and
communication components developed mostly by
different vendors, compromised components introduced
through the supply chain can lead to security threats
and system breaches. It would cause a domino effect,
threatening to endanger the entire system causing
damages to entire distribution grid infrastructure.

• Unauthorized access: Hackers may try to gain
access to the Hybrid DERMS system (either through
breaching a Utility DERMS’ security, or through
gaining unauthorized access to aggregators’/microgrids’
managing software), endangering the security of sensitive
data, control functions, or communication channels.
This can lead to unauthorized manipulation of DERs,
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grid operations, and/or market transactions, as well
as endangering the safety and security of the entire
distribution grid, by manipulating data in key applications
such as SCADA, State Estimation, and relay protection
screening.

• Data breaches: A Hybrid DERMS handles a huge
amount of data, including customer information, energy
usage data, and distribution grid protection settings
and information. A data breach can lead to exposure
of sensitive information, privacy violations, misuse of
customer data, and even malfunction of protective devices
leading to massive blackouts.

IV. THREAT MODELING FOR DERS

This section will discuss three threat scenarios, and their
respective preventive (i.e., steps taken prior to an attack) and
mitigative (i.e., steps taken after an attack to reduce impact)
measures based on the threat models presented by the DoE
[113]. Subsection 1 covers DER aggregation risks, Subsection
2 details malicious DER configurations, and Subsection 3
covers manipulation of communication data, all with their
respective threat models (e.g., indicators of compromise (IoC),
vulnerabilities, risk, attacks, and mapping to Microsoft’s
STRIDE) and prevention/mitigation measures. FDI attacks are
a significant part of threat scenario 3 (i.e., Subsection 3) as
there is significant research done to model, remediate, and
prevent FDI attacks due to its practicality. These measures
can be combined with the core framework principles outlined
in the NIST Framework for Improving Critical Infrastructure
Cybersecurity [114] to manage cyber risk to DERMS and
DERs. The core framework principles are identify, protect,
detect, respond, and recover. For instance, preventive measures
like encryption or firewall implementations would be classified
under the “protect” principle; this is because they function as
safeguards to ensure the reliable delivery and maintenance of
critical services such as power distribution, demand response
management, and load shedding.

A DERMS can be broken down into three layers -
sensing, communication, and control layers- similar to the
framework initially proposed by El Rewini et al. [115][116]
for automotive environments. The sensing layer consists of
monitoring devices (e.g., IEDs, RTUs, phasor measurement
units (PMUs)) and DER smart metering equipment that
remotely monitors system states, transmit data about physical
events (e.g., line-to-ground or line-to-line faults), and
measure DER power contribution to the grid. Secondly,
the communication layer consists of protocols that enable
inter- and intra-system communication (e.g., device to device,
device to substation, substation to Regional Transmission
Organizations (RTOs)). This layer acts as a bridge between
the sensing and the third layer (i.e., control layer) so there
is bidirectional communication between remotely deployed
sensors and the main stations that aggregate data from these
sensors. Finally, the control layer is responsible for translating
digital commands issued from a centralized entity (e.g.,
substation or control center) into real-time process control to
operate sensors’ actuators, change switching capabilities, or
manipulate overcurrent or fault protection settings.

Various threat scenarios exist at multiple levels of a DERMS
system. For instance, threats to the DERMS aggregator
may cause widespread disruption due to cascading outages.
Similarly, spoofed DER data and man in the middle attacks
can impact monitoring and state estimation systems leading
to misinformed decision-making or even more drastic failures
during periods of high demand. When evaluating threats,
it is important to consider features such as likelihood of
a successful compromise (including various threat vectors
such as unsolicited emails, malicious attachments, unencrypted
communications, etc.), severity of the consequences of those
compromises across different dimensions (e.g., grid resilience,
economic impact, safety, cascading impacts to other critical
infrastructures). Enumerating these requires developing an
understanding of potential sources of threats and their
nature (e.g., insider, nation-state, non-adversarial) using threat
modeling.

Threats are defined as the potential for a threat agent (e.g.,
black hat hackers) to exploit information system vulnerabilities
or a threat vector to be exploited (e.g., unauthenticated
communication sessions) due to vulnerabilities [117]. As we
will see later in this section, depending on the vulnerability
types and exploitation methods, different attacks are possible.
Threat modeling as defined by the National Institute of
Standards and Technology (NIST) [118] is “a form of risk
assessment that models aspects of the attack and defense sides
of a logical entity, such as a piece of data, an application,
a host, a system, or an environment”. Threat modeling
subsequently allows for the prioritization of the mitigation
measures and controls that are most likely to bring risk
levels within organizational tolerances. For the purposes of
this paper, threats to any cyber-physical energy system are
considered as threats also to DERMS and DERs.

A. Threat Scenario 1 – DER Aggregation Risks

1) Threat Model
A DERMS consists of multiple DERs (e.g., solar, wind,

battery energy storage systems, EVs) that can either be
connected to a utility grid or can function as part of a
separate microgrid. A DER aggregator combines real-time
data from numerous BTM DER units to inform decisions
at the DSO level. DER aggregators may have bidirectional
communication with both load (i.e., energy supply) and DER
generation units, and may exercise some control over demand
response needs. If one of these DERs is compromised, the
utility or microgrid it supports can still be made stable
through the other DERs. However, large-scale outages or
instabilities in the grid at device/aggregator levels could occur
when multiple large-scale DERs or DER aggregators are
attacked simultaneously through various cyber attacks (e.g.,
denial-of-service, self-propagating malware). These attacks
can exploit vulnerabilities in multiple DERs, significantly
increasing the impact of the attack. For example, the smart
inverter/DER control parameters can be compromised to
modify specific values by configuration change patch methods.
As mentioned earlier in this section, this threat scenario is
aggregator-centric and market operations-centric. Since DER
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TABLE II
POSSIBLE ATTACKS, PREVENTION/MITIGATION MEASURES, AND IMPACTS FOR DER AGGREGATION RISKS THREAT SCENARIO.

Attack Vulnerabilities IoC LoA/Risk IEEE
1547.3
Impact

Prevention or
Mitigation

Primary
Compromised
Property

STRIDE
Mapping

Refs.

DoS Unauthorized Physical
Access, and Weak
Credentials

System Shutdowns,
Unusually High Network
Traffic

Medium/⇑ Levels 3,
4, & 5

Network
Monitoring,
Access Control
Mechanisms, OT
Firewalls

Availability (D) [119],
[120],
[121],
[122]

Ransomware
or Malware

Unverified Email
Payloads, Unauthorized
Physical Access, Poorly
Written Code

Suspicious Network
Traffic, Unauthorized
System Operations,
System Shutdowns

High/⇑ Levels 3,
4, & 5

Backup
Systems/Data

Availability
Accountability

(D) [123],
[124],
[125]

Load-changing
or
Load-altering

Access to System
Topology via OSINT,
Compromised EV/EVCS

Unexpected Variations in
Power in Voltage or
Frequency, Changes in
Electricity Demand

Low/ ⇐⇒ Levels 1
& 2

Isolate or
Disconnect
Compromised
DER Devices

Confidentiality (E) [126],
[120],
[127]

Modified
Firmware

Unauthorized
Physical/Remote Access
or Poor Config. Settings

Frequency Fluctuations
or Voltage Sags

Medium/⇑ Levels 1
& 2

Trusted Supply
Chain Vendors,
Access Control,
Firmware Rollbacks

Integrity (T) [126],
[128],
[129],
[130]

Trojan Unverified Email
Payloads, Unauthorized
Physical Access,
Compromised Supply
Chain Components

Overworked Systems,
Unauthorized Control
Operations, System
Shutdowns

High/⇑ Levels 3,
4, and 5

Demilitarized
Zones, Intrusion
Detection Systems

Confidentiality
Availability

(I) [131],
[132],
[133],
[134],
[135]

aggregators inform decisions at the system-level (e.g., DSOs,
TSOs), operations such as short-term energy forecasting and
generator availability, energy trading, dispatching adequate
generation to meet daily demands, etc. will suffer unfavourable
consequences. According to the reliability rules set by the
North American Electric Reliability Corporation (NERC)
for power systems [136], steps should be taken to
anticipate multiple contingencies (e.g., overloads, inadequate
transmission line capacities) and deploy prevention/mitigation
measures to keep the grid stable.

It should be noted that these attacks may not be mutually
exclusive of one another. For example, attackers can install
malware in a DERMS system that could cause DERs
and DERs loads to malfunction or shutdown (e.g., the
BlackEnergy attack in Ukraine [137]), could execute stealthy
FDI attacks to deceive state estimators by changing power
system variables to remain within thresholds thus contributing
to a load changing attack [120], or could penetrate the
system through hardware trojans to enable additional attacks.
Furthermore, Konstantinou et al. performed a firmware
modification attack by reverse-engineering a relay controller
(i.e., a sensing-layer device) to show that modifications to
its boot level configurations can make it operate abnormally
or even disable it (eg. DoS). Table II lists the attacks,
vulnerabilities, indicators of compromise (IoC), impact, and
mitigation strategies for this threat scenario. To assess the
consequence of these attacks, we utilize likelihood of attack
(LoA), risk, and impact as qualitiative metrics. LoA is the
likelihood of occurrence of an attack (high, medium, or low)
and the primary level of impact is categorized according to
the “Hierarchical DER System Five-level Architecture” as
specified by IEEE 1547.3 [11] (also see Fig. 3). Level 1
entities include AMI and DER edge devices, Level 2 refers
to load and energy management systems, Level 3 covers
third party systems such as ADMS and aggregators, Level
4 refers to ISOs/TSOs, and Level 5 handles energy market

interactions. Impacts are designated based on findings from
the average attack for each scenario and does not specifically
consider the worst-case scenario. The STRIDE mapping (i.e.,
Spoofing, Tampering, Repudiation, Information Disclosure,
DoS, and Elevation of Privilege) is applied to the threat
models in this section to demonstrate that IT threat models
can be adapted to OT threat scenarios. We use the definition
of risk outlined by NIST - “The extent to which an entity
is threatened by a potential circumstance or event” and
is categorized by arrows (double-sided, down, or up). For
instance, trojan attacks have a higher likelihood of occurrence
as nation-state level threats have launched remote access trojan
(RAT) attacks on utilities (e.g., poetRAT) and a high risk
of threatening the operational capabilities of power systems
through denial-of-service attacks. Also, since Trojan attacks
(e.g., BlackEnergy) primarily compromise confidentiality and
availability, they will have secondary or tertiary consequences
on existing energy suppliers, immediate industrial processes
(e.g., level 3 - load management systems, level 4 - outage
management systems), and macro-level entities such as in
level 5 (i.e., energy markets). The primary STRIDE mapping
category for Trojan attacks is Information Disclosure (I) since
sensitive information can be obtained through whale-phishing
[138] and side-channel leakages (e.g., overt channel, covert
channel [139]). Similarly, levels 3, 4, and 5 are also at
medium to high likelihoods of being compromised by DoS
and ransomware attacks and the primary STRIDE mapping
for these attacks is Denial of Service (D).

2) Prevention & Mitigation Measures

Multiple preventive and mitigative measures exist for attacks
in Threat Scenario 1. Deploying demilitarized zones (DMZs)
or firewalls can limit threats by preventing lateral movement
within a target network. DMZs work hand-in-hand with
firewalls in defining security policies, functionalities, and
optimal placements [140]. Servers that communicate with
external networks can be placed within DMZs to provide
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isolation and protection of internal networks. Similarly,
functionalities such as stateful inspection of network traffic,
packet filtering, and circuit-level gateways can be implemented
within a next-generation firewall (NGFW) tailored for OT
networks. NGFWs can incorporate additional context beyond
traditional firewalls, such as application-level context, context
about the communicating device or user, or corporate policies
regarding acceptable content. A similar mitigation measure
at the physical level is to disconnect or otherwise isolate
compromised DER devices from the rest of the distribution
grid.

A major issue being faced by different industries such
as IT, telecommunications, and the energy sector is the
deployment of unsecured or untested hardware that have
supply chain weaknesses. For instance, hardware, software,
or firmware backdoors can be inserted by malicious threat
actors or suppliers during manufacturing to exploit devices
after they are deployed for various applications. Therefore, it
is essential to work with trusted supply chain vendors and
third parties that have exercise adequate cyber hygiene to
ensure device-level security. Supply chain risk management
(SCRM) will enable utilities/aggregators to safeguard critical
systems from compromises that may arise due to suppliers,
supply chains, products, or their services. According to NIST’s
Cybersecurity Supply Chain Risk Management Practices for
Systems and Organizations publication [141], the following
measures will help in controlling supply chain risks: access
enforcement (all entities in a supply chain have appropriate
access mechanisms in place), accountability management
(traceability of actions and actors in a supply chain),
information flow (communication of information to various
participating entities), secure remote access mechanisms, and
auditing/monitoring of external systems (systems outside the
networks of the acquirer).

B. Threat Scenario 2 – Malicious DER Configurations and
Control Requests

1) Threat Model
Like computing and telecommunications equipment, devices

integrated with DERs (e.g., programmable logic controllers
can be misconfigured and this can lead to compromised
DERs. This misconfiguration can be done unintentionally
(e.g., default settings, lack of training or awareness of best
practices) or intentionally (manipulation of settings such
as firewall rules and timeout settings [4]) during factory
shipments, servicing schedules, installation of new equipment,
or through unverified system patches. This can either cause
the DER device(s) to be non-functional or operate erroneously
(e.g., execute malicious control commands from compromised
aggregators or utility personnel). Control settings for DER
endpoints can be compromised through Edit Parameters or
Parameter File updates by malicious grid operators in DER
control servers. This attack is a DER control misconfiguration
attack leveraging the new required grid support functions
defined in IEEE 1547-2018, such as DER ride-through and
trip threshold settings, causing inverter tripping during a
grid disturbance. The nefarious control setting of multiple

inverter-based DER sites can result in a regional blackout.
One way malicious updates can be installed is through
malicious and stealthy control software that modifies the
control logic for DER control devices [143]. It is important
to note that PE is considered as an attack in this threat
scenario and not as a vulnerability [147]. As stated by
Sen and colleagues [142], privilege escalation attacks can
be carried out by exploiting PE vulnerabilities. This attack
ranks high in risk as once access privileges are escalated
to the root level, the threat actor can move laterally across
other network assets to carry out other attacks such as DoS
and FDI to disrupt grid operation. This threat scenario is
device-centric and communication protocol-centric as physical
access to devices and unsecured hardware/software supply
chains provide fairly easy avenues for threats to tamper
with DER assets and access sensitive information. Privilege
escalation and malicious update attacks map to Elevation of
Privilege (E) in STRIDE but impact different levels of IEEE
1547.3 framework; for example, malicious updates can be
targeted at grid support functions (e.g., power factor) of DER
edge devices (e.g., solar inverters) to violate the parameters
that are defined for these grid support functions to cause
undesirable behaviors or make the devices operate outside
the limits specified by the parameters [148]. Since privilege
escalation attacks primarily gain access to privileged local
accounts (e.g., compromising the confidentiality of account
passwords and usernames) before progressing to move within
internal networks, gaining access to entities in levels 2, 3, and
4 will be most lucrative to retrieve sensitive information such
as operational knowledge of the grid [149] as the entities in
these levels are responsible for important functions such as
grid protection schemes (i.e., level 2), aggregation (i.e., level
3), and outage management (i.e., level 4).

Table III lists three attacks that are relevant to this threat
scenario.

2) Prevention & Mitigation Measures
Cryptography remains a viable method for defense through

encryption, message authentication codes, hashing, or the
exchange of proper cryptographic keys [144]. However, there
is a tradeoff between adequate security mechanisms and the
computational requirements and energy usage required to
support said mechanisms. In consumer and enterprise IT, this
tradeoff is often negligible, but it becomes more significant
when considering low-power embedded devices.

A preventive measure to detect suspicious behaviour
from DER endpoints is through side-channel analysis of
power variables to “fingerprint” the behavior of the device
during normal (baseline) and suspicious operation. Acceptable
threshold and tolerances during baseline operation are
measured and then compared to detect anomalous behaviour
due to, for example, malicious updates [145].

C. Threat Scenario 3 – Manipulation of Communication
Data

1) Threat Model
DERs and their operating devices can be considered as part

of the internet of things (IoT) paradigm and are thus equipped
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TABLE III
POSSIBLE ATTACKS, PREVENTION/MITIGATION MEASURES, AND IMPACTS FOR MALICIOUS DER CONFIGURATIONS AND CONTROL REQUESTS THREAT

SCENARIO.

Attack Vulnerabilities IoC LoA/Risk IEEE
1547.3
Impacts

Prevention or
Mitigation

Primary
Compromised
Property

STRIDE
Mapping

Refs.

Privilege
Escalation/Elevation

Uninitiated Remote Code
Execution, Change in
Program Flow, Unsolicited
Customer DER Messages

Medium/⇑ Levels 2,
3, & 4

Access Control
Mechanisms, Traffic
Monitoring

Confidentiality
Accountability

(E) [119],
[125],
[142]

Malicious
Updates or
Malicious
Software

Unauthorized
Physical or Remote
Access, Hardware
or Software
Backdoors,
Unencrypted
Communications

Disconnected or Disabled
DER Devices

Low/ ⇐⇒ Levels 1
& 2

Update Monitoring,
Software Integrity
Checks/Code-signing,
Cryptography, Side
Channel Analysis

Confidentiality
Integrity

(E) [121],
[143],
[144],
[145],
[130]

Data
Modification
& Data
Alteration

Manipulated System Data High/ ⇐⇒ Levels 1
& 2

Real-time State
Estimation, Min. Device
Protection, ML-based
Anomaly Detection

Integrity (T) [126],
[146]

TABLE IV
POSSIBLE ATTACKS, PREVENTION/MITIGATION MEASURES, AND IMPACTS FOR MANIPULATION OF COMMUNICATION DATA THREAT SCENARIO.

Attack Vulnerabilities IoC LoA/Risk IEEE
1547.3
Impacts

Prevention or
Mitigation

Primary
Compromised
Property

STRIDE
Mapping

Refs.

Spoofing Unauthorized
Access to Security
Certificates

ARP Poisoning,
System Variables
Operating Beyond
Thresholds

Medium/ ⇐⇒ Levels 1
& 2

TLS Security,
Certificate
Management

Confidentiality
Accountability

(S) [146][150]

MITM Unencrypted
Communications,
Legacy Devices and
Open Ports

ARP Poisoning,
Stolen Ports

Medium/ ⇐⇒ Levels 3
& 4

TLS Security,
Certificate
Management, Session
Renegotiation

Confidentiality
Accountability

(E) [146],
[151], [152]

FDI Legacy or Poorly
Secured Devices

Erroneous Decisions
by Automation
Devices, DER Outage

High/⇑ Levels 1,
2, & 3

Encryption,
Statistical, Temporal,
or Distance-based
Anomaly Detectors

Integrity (T) [153],
[154],
[155],
[156], [157]

TABLE V
REVIEW OF EXISTING FDIA MODELING APPROACHES IN THE ENERGY SECTOR (1).

Attack Vectors on Targeted Features and
Devices/Systems

Countermeasure(s) Remarks Ref.

Stealthy Attacks on Buses and Superbuses w/
Knowledge of Susceptance.

Securing Meter Measurements & Obscuring
Susceptance from Adversaries.

Limited Knowledge of Jacobian Matrix. FDI Successful Only If
Transmission Line Susceptances are Known.

[158]

Attacks Possible on Smart (e.g., voltage angles)
and Traditional System Variables (e.g., current
flows or bus voltages).

DSP-based Thresholding. Assumed That FDI Attacks Classify as Anomalies
in High-frequency Fourier Coefficients Than Regular
Measurements.

[159]

Attacks Carried out on AMI or SCADA
Communication Channels and Endpoints.

Lightweight Watermarking and
Thresholding.

Data Streams from Meters are Watermarked and Passed Through
a Threshold to Identify Tampering.

[160]

Hack Endpoints and DC Power Flow Linear
Approximation to Model Stealthy Attacks.

Semi-supervised ML for Classification. Detection Based on Autoencoders and GAN. [161]

Attacker Types Based on Minimal, Moderate,
and Maximum Knowledge of Attacked Devices.

Signature- and Anomaly-based IDS. Detections Possible for Illegal Read/Write Operations From/To
Smart Meters (Tampering).

[162]

”Generalized” DC Power Flow Linear
Approximation.

State Forecasting-based Anomaly Detection. Autoregressive (AR) Models for One-step Ahead Prediction. Two
Thresholds Used to Validate Hypothesis Tests.

[163]

FDI Modeled with Limited Network
Information.

Increase Attack Cost and Ensure Protection
for Pre-determined No. of Compromised
Measurements.

Validation Performed on IEEE 14-bus System using a
Load Redistribution (LR) Attack Model. Inputs: Network
Topology, Network Parameters, and Connected Load Information.
Considered Stealthy as the FDI Vector is Always Kept Under
Residual.

[164]

Intrusion On Frequency And Voltage Control
Inputs Of The Droop Controller In AC
Microgrid.

Proposed Distributed Adaptive Secondary
Control Strategy To Restore Rated Voltages
And Frequency Post-FDI Attacks.

Two Case Studies for When One and All DGs are Attacked
are Adopted. Results Indicate that the Proposed Control Strategy
Returns Frequency and Voltage Values to Stable Measurements.
Validated Through Matlab/HIL Simulations.

[165]

Disruption Of Voltage Stability And Internal
Power Balance.

Distributed Control Strategy Based On
Consensus Theory For Attack Detection,
Localization And Improved Resilience
Against FDI Attacks.

Primary and Secondary Control Loops Tested During Attacked
Frequency/Voltage Measurements. Consensus Solution Shows
Gradual Stabilization to Reference Value (< 3 seconds) for
Attacked Measurements.

[166]

Disruption of Voltage Regulation And Current
Sharing Among DGs In DC Microgrids.

Multi-agent System Based Extended State
Observer And Fault Tolerant Controller
For Maintaining Asymptotic Stability
Post-attack.

Five Test Scenarios Deployed to Validate Resiliency. FDI Attacks
Test Scenario Validated Using Step and Sinusoidal Attacks.
Results Indicate Little to No Fluctuation and Fast Recovery to
Nominal Value.

[167]

Manipulation Of Voltage And Current
Measurement To Disrupt The Primary And
Secondary Central Loop Of Each DG In DC
Microgrids.

Two-Layer ANN Based Approach For
Mitigating Impact Of FDI Attacks On
Voltage Regulation Followed By Ensuring
Proper Load Distribution Among DGs.

Modeled FDI Attacks Types were Sequential, Random, and
Simultaneous for Current/Voltage Measurements.

[168]
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TABLE VI
REVIEW OF EXISTING FDIA MODELING APPROACHES IN THE ENERGY SECTOR (2).

Attack Vectors on Targeted Features
and Devices/Systems

Countermeasure(s) Remarks Ref.

Disturbing The Operation Of The
Secondary Control Layer By Manipulating
Bus Voltage Of The DC-DC Converter.

AI-based (ANN) Approach For Immediate
Detection And Mitigation Under
Communication Delay And Time Varying
FDI Attacks.

Modeled FDI Attacks Types were Random, Simultaneous,
Non-simultaneous, and Time-varying. Results Indicate ANN has
Errors < 5% in Estimating Injected Values for All Types.

[169]

Simultaneous Attack On The Local
Measurements And Sensor Information
Transmitted Through The Communication
Channels To The Controllers.

Energy Based Detection Using Intrinsic
Mode Function And Event Driven Mitigation
Strategy For Reconstruction Of The Falsified
Signals.

Three FDI Attacks Types (Concurrent, Communication Link, Control
Input) Were Tested. Authors Propose a “Detection Index” to Detect
Anomalies Based on Energy Usage Ratios Between Distributed
Agents. Erratic Increases in Energy Usages Indicate FDI Attacks.

[170]

Falsification Of Sensor Measurement To
Disrupt The Electricity Market Operation
Thereby Causing Loss/Profit To A
Particular Utility/Consumer.

Blockchain-based Approach For Secured
Peer-to-peer Energy Market Operation.

FDI Attacks Shows Effective Consensus Price Cannot be Reached
Even After a High No. of Iterations, Therefore Disrupting the Energy
Market. However, the Success Probability of this FDI Attack is 1%.

[171]

Attack On The Advanced Metering
Infrastructure (AMI) Of Hybrid Microgrid.

Deep-Learning Based Intrusion Detection
And Prediction Of Power, Energy Market
Price And Load Demand.

LSTM Used as an IDS and for Load Forecasting and Forecast
Error Estimation. If Error Lies Outside LSTM’s Prediction Interval,
FDI Attacks is Suspected. Results Indicate that Increasing LSTM’s
Prediction Interval Reduces Its Sensitivity to FDI Attacks.

[172]

Manipulation of The Voltage and Current
Information of The Power Converters to
Disrupt Load Sharing Among DERs And
Voltage Regulation at Interfacing Buses.

Recurrent Neural Network (RNN)-Based
Scheme For FDI Attacks Detection and
Localising The Targeted DERs.

The Non-linear Autoregressive Exogenous (NARX) Model Used Can
Effectively Distinguish between Fluctuations in Measurements Due
to Transient Load Changes and FDI Attacks. Performance Validated
Through OPAL-RTDS HIL Testing.

[173]

Manipulation Of The Reference Frequency
And Voltage Signals To The Droop
Controller.

Detection Of FDI Attacks On The Droop
Control Using Local Information Of
Deviation In Voltage And Frequency
Followed By Differentiating Between Cyber
Intrusion And Physical Faults.

Proposed Method Validated for IEEE and CIGRE LV Distribution/Bus
Systems. Results Indicate a Detection Rate of 20 Samples/Cycle (5
ms).

[174]

Injection Of False Data On The Output
Current Of The Distributed Generation
Units In Collaborative DC Microgrids.

Adaptive Nonlinear Observer For FDI
Attacks Detection And Mitigation While
Considering Communication Delay,
Uncertainty, And Sensor Noise.

Valid For 2 Scenarios with 4–agent and 8–agent DG units. FDI Attacks
Modeled as Time-delayed, Sinusoidal, and Ramp Functions.

[175]

Manipulation of the Reactive Power
Data of Individual DGs to Change
The Reference Values Of the Secondary
Controller.

Mitigation And Imparting Resiliency Against
FDI Attacks Using A Credibility-based
Synchronous Framework Based on Local
Data.

Data from an Attacked DG Unit is Detected and Verified Based on a
Threshold through Local/ Neighboring DG Units. Attacked DG Unit
and Its Data are Isolated Post-detection.

[176]

Intrusion of the Communication Link
Among the Microgrid Agents to
Manipulate the Voltage Output of
Individual Agents Thereby Disturbing
the Voltage Distribution and the Global
Reference Voltage Level of the Overall
Microgrid.

Distributed Bank of Sliding Mode Observers
Used to Replace Corrupted Voltage
Information of Converter With Actual
Ones.

Superior to the Conventional Consensus Algorithm Due to its
Capability of Reducing Voltage Fluctuations in the Presence of FDI
Attacks.

[177]

Malicious Propagation of False Data
Malware in the Load Bus Communication
Network of DC Microgrid.

Defense Mechanism Based On Game
Theory Model Between the Attacker and
the Defender. Propagation of the Data
Malware On System Operation Reduced By
Solving the Game Theory Problem Using
Evolutionary Algorithms.

Attacker’s Objective is to Maximize Benefit and Defender’s Objective
is to Minimize Total Loss. Natural Aggregation Algorithm (NAA) is
Used to Find the Optimal Strategy for Attacker/Defender.

[178]

with networking capabilities primarily supported by the
protocols mentioned in Section II. As a result, communicated
data may be intercepted, manipulated, or injected to misinform
system operators or automation systems. These compromises
are known as data integrity attacks and can directly impact
grid health by causing operators to respond in an inappropriate
manner. The impact of such attacks is becoming ever more
relevant as artificial intelligence or machine learning (AI/ML)
approaches are leveraged to enable automated responses and
advanced analytics. General AI approaches may be able
to collaboratively (with each other and human operators)
determine optimal actions that can be taken to stop, mitigate,
or even retaliate against a cyber attack, and can incorporate
much more contextual knowledge that can aid in identifying
threats that might otherwise be missed. This is the approach
being taken at Argonne National Laboratory in work such as
[179].

However, these approaches can be undermined by improper
data such as during online training, where the data may
be poisoned [180][181]. One way by which in-transit data
can be poisoned is through man-in-the-middle attacks, which

affect the address resolution protocol (ARP) [146][150][182].
The adversary changes their media access control (MAC)
to match the victim’s IP address or through stolen ports,
where open ports are used to steal network traffic to perform
active or passive attacks. SunSpec Modbus is vulnerable to
this attack when X509 certificates are used (IEEE 2030.5
(SEP2), IEEE 1815 (DNP3-SA, which is a new version
mandating IEC 62351-5)). Two additional means by which
man-in-the-middle attacks are carried out are through address
resolution protocol (ARP) poisoning where the adversary
changes his/her media access control (MAC) to match the IP
address of the victim, and through stolen ports where open
ports are used to steal network traffic to carry out active or
passive attacks [151]. FDI attacks can be carried out with full
or partial system knowledge by modifying system variables
such as meter readings, control commands, and state estimates.
Such attacks can lead to critical failures especially in times
of peak demand or extreme stress (e.g., natural disasters),
or misinform utilities and customers of demand and supply
needs through what is known as an “energy deceiving” attack
[183]. Park and colleagues [152] provide an example of a
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firmware modification attack using Lockheed Martin’s Cyber
Kill Chain (CKC) model. The first five steps of CKC (initial
access, execution, persistence, evasion, and discovery) are
assumed to have been achieved through backdoor injection,
while the authors validate a man-in-the-middle attack through
the access of the network layer of a smart inverter through
TCP/IP. According to de Carvalho and Saleem [146], SunSpec
Modbus and DNP3 are vulnerable to man-in-the-middle and
spoofing attacks, in addition to denial-of-service and data
modification attacks as these protocols lack adequate security
measures. SEP2 implements cryptography and is considered
a more resilient protocol, although it is still susceptible to
DoS attacks. This threat scenario is primarily communication
protocol-centric simply due to the nature of the threat surfaces
- if data in transit is intercepted with minimal resistance (i.e.,
lack of session/device authentication or encryption), there is
inadequate security features that are enabled/configured by
the respective communication protocol. Table IV lists the
respective attacks and their corresponding vulnerabilities and
IoCs for this threat scenario.

There might be ambiguity behind data modification/data
alteration, FDI, and man-in-the-middle attacks which can
be clarified as follows. FDI attacks are different from data
modification attacks in that they cause state estimators to
output erroneous values and can be modeled in multiple
ways [191] whereas data modification attacks modify data
in transit before they arrive at a destination [192] and do
not typically have a modeling approach. Data modification
attacks are usually active (i.e., compromise integrity) while
man-in-the-middle can be active or passive in nature
(i.e., compromise confidentiality) [81], therefore respectively
mapping to the Tampering (T) and Elevation of Privilege (E)
categories of STRIDE.

DER operation can be manipulated through FDI attacks that
inject falsified data on top of the actual signal/information
at different stages i.e., (i) information shared among the
DERs; (ii) switching signals generated by the controller
for maintaining the required voltage/current profile; (iii)
voltage/current signals fed back from the interfacing
buses/observer; (iv) data transmitted to the IEDs for
representing the status of the switches; and (v) reference signal
for the primary current loop controller for the DER(s). As
detailed earlier, the wider usage of DERs of varying types
and sizes and the threat surface of microgrids is increased
due to the high volumes data being transmitted through the
communication infrastructure. In the distributed architecture,
any false data injected in the communication layer between
the DERs has a cascading effect on the DERs and may
ultimately lead to deploying contingencies. The notable works
carried out on disturbing the DER operation through FDI
attacks has been elaborated in Tables V and VI. FDI attacks
are primarily detected by using statistical or distance-based
models [154]. The former is done by using Chi-squared tests
and other statistical measures (e.g., kurtosis, skew) within state
estimation processes to identify potentially anomalous data
points. The latter measures the Euclidean distance between
the estimated and the observed data obtained through state
estimation variables (e.g., frequency, amplitude, and sampling

frequency).
2) Prevention & Mitigation Measures

Examples of prevention/mitigation measures to spoofing
and man-in-the middle attacks include implementing the
TLS handshake and cryptography mechanism to ensure data
integrity, confidentiality, and authentication, and to deny-list
any revoked certificates that are fake or have expired. TLS
secures communication between servers and clients using
symmetric encryption techniques (private key encryption)
though this adds overhead to the communication channel and
the server. As of TLS 1.3 (released in 2018), there is reduced
latency and enhanced security through reduced round-trip
TLS handshake time and advanced cryptographic algorithms
respectively.

Certificates from devices requesting a connection to the
server can be managed by a certification authority (CA). The
server can periodically publish lists of certificates that are
deemed invalid or fake through certificate deny-listing. In
IP-based networking, this is typically called as certification
revocation lists (CRLs). Although this mitigation measure has
not been widely applied in power systems, it is still a viable
method for authenticating DER endpoints.

These threat scenarios can be mapped to the 3-layered
sensing, communication, and control layers as shown in Fig.
6. The most significant threat vectors (i.e., the means by which
a threat actor can infiltrate the DER system) for each layer are
listed. Threats from scenarios 1 and 2 can be mapped to the
sensing and communication layers as they primarily involve
the compromise of a large number of DER endpoint devices
and their respective device settings/configurations. Attacks at
these endpoints can then propagate to other devices in the same
network or area through communication-layer protocols like
DNP3 or Modbus. These compromised devices can eventually
have consequences in the control layer but the layers primarily
compromised are the sensing and communication layers.
Similarly, threat scenario 3 has more to do with exploiting
the communication link between the endpoints and their
commanding entity (e.g., control center). Compromising these
layers can eventually let a threat actor access endpoint devices
in the sensing layer but this is considered as a consequence
and not a root cause.

Table VII captures a literature review related to
cybersecurity attacks associated with SCADA that captures
attacks relevant to all three threat models in this section. The
“Attacks/Vulnerability” column lists the main attacks tackled
by the proposed solution and the “Existing Correlation”
column captures how the proposed solution is relevant to our
context, i.e., DERMS security and the power grid.

V. HARDWARE SECURITY

DERMS heavily rely on electronic hardware to facilitate
data collection and sensing, processing, automation, and
communication. These electronic devices can be vulnerable
to a wide range of cyber attacks that can compromise
sensitive data, cause catastrophic system failures, endanger
human lives, and lead to massive financial loss. Hence, it
is important to safeguard DERMS against these hardware
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TABLE VII
REVIEW OF NOTABLE SCADA CYBERSECURITY PROBLEMS, ATTACKS, AND PROPOSED SOLUTIONS.

Problem Proposed Solution Attacks/Vulnerability Correlation Ref.
Detecting Natural (i.e.,
Faults) and Malicious (i.e.,
Cyber Attacks) Power System
Events Using a 37-event Oak
Ridge National Laboratory
(ORNL) Dataset [184].

Detection Algorithm – Deep Learning (i.e., Artificial
Neural Network (ANN)/Convolutional Neural Network
(CNN)) and Support Vector Machine (SVM). Data
Processing – Restricted Boltzmann Machine (RBM).
Testbed – Three Bus and Two Line Transmission System
with Four Relays and Four Circuit Breakers.

Attacks – (1)
Relay Settings
Change; (2) Data
Injection; (3) Tripping
Command Injection;
Vulnerability
– Unrestricted
Access Privileges
to Operators.

The Attacks are Widely Researched and
Relevant to Distribution- (e.g., DERMS) and
Generation-side Entities (e.g., DERs) as They’re
Stealthy and Target Protective Devices (e.g.,
Circuit Breakers)/Control Systems to Disrupt
Normal Power Grid Operation and/or Damage
Protective Equipment.

[185]

Endpoints Such as RTUs
and IEDs Have Security
Defenses such as Restricted
Perimeters but Do Not Meet
Secure Point-to-Point and
Real-time Communication
Requirements (i.e., Session
Authentication) Due to
Deployment Constraints (e.g.,
Resources, Legacy Devices).

Cryptographic Architecture – Symmetric Encryption
for Key Generation, Asymmetric Encryption for Session
Authentication, and Hashing Algorithm for Communication
Integrity. Test Framework – Point-to-point Architecture
with Master Terminal Units (MTUs), Sub-MTUs, RTUs,
Broadcast Communication, and Multicast Communication
Types. Additionally, the Avalanche Effect (i.e., Diffusion)
and Authentication Properties (e.g., Non-injective
Synchronisation) were Considered to Formally Evaluate
The Proposed Solution.

Hash Function
Attacks – (1)
Collision; (2)
Preimage Resistance;
(3) Length Extension.

Field-control Devices Typically used in
SCADA Systems Relay Sensitive Monitoring
and Control Information to Operators in Control
Centers and DERMS for Advanced Functions
(e.g., Adaptive Protection, Generation
Dispatch). Remote Operation of Such Devices
Makes Them Easy Targets for Attackers to
Intercept and Modify Information.

[186]

Power Grids Primarily
Deliver Active and Reactive
Power Flows Captured
Through Measurement
Data. Manipulation of
Measurement or Command
Data is Called False
Data/Command Injection
(FDI/FCI) Respectively. FDI
Attacks Can be Modeled in
Multiple Ways and There is
a Lack of Generalized FDI
Detection Based on Robust
Detection Indices.

Detection Algorithm – The Detection Algorithm Computes
Covariance Matrices for Different Measurement Variables in
Normal and Attack Scenarios. The Matrices Work on the
Following Key Sufficient Conditions: (1) The Eigenspace
for FDI/FCI Scenarios Combines Standard Measurement
Vectors + Injected Vectors in Affected Measurements and
Varies Significantly from Normal Scenarios; and (2) The
Sum of Eigenvalues (i.e., Trace) for FDI/FCI Scenarios
is Significantly Higher than Normal Scenarios. These
Conditions are Used to Compute Indices to Create the
Detection Metric. A Threshold is Chosen Based on Multiple
Test Cases. Algorithm was Evaluated with the Accuracy
Metric. Testbed – IEEE 118-Bus-Based Power System with
SCADA Control Equipment (e.g., On Load Tap Changing
Transformers) Tested with Three Scenarios – FCI only, FDI
only, and FDI + FCI.

Attacks – False
Data Injection (FDI)
and False Command
Injection.

Manipulating Each Flow Type Leads to
Undesirable Effects such as Grid Instability,
Erroneous Control Operations, and Voltage
Overflows. Attacks Through Manipulation
Lead to Malfunctioning of SCADA Control
Equipment and Faulty Data is Relayed from
RTUs at the Substation-level to the Control
Plane at the Transmission-level.

[187]

Detecting Malicious Attacks
on SCADA Networks
Based on State Estimation
(e.g., Voltage Phasors) is
Primarily Done Through
Actual Measurement
Data, System Topology,
Redundant Measurements,
and Measurement Errors.
Therefore, There is a Need to
Minimize Assumptions and
the Data Required to Perform
Robust Detection.

Detection Algorithm – The Researchers Use Benford’s
Law to Identify Illicit Data Injected by Hackers. Benford’s
Law Works Under Only One Assumption i.e., Malicious
Data Injected by Hackers are Distributed Uniformly. This
Assumption is Supported by the Law of Anomalous
Numbers Which States that Smaller Leading Digits (e.g.,
1 or 2) in a Set of Measurements Have a Higher Probability
of Occurrence than Greater Leading Digits (e.g., 8 or 9).
Testbeds – Detection Algorithm was Tested on WSCC 9-bus
System, IEEE 14-bus System, New England 39-bus System,
and 21,177-bus ENTSO-E System.

Attack – Generic
Malicious Attacks that
Manipulate System
States.

Application of Benford’s Law to Multiple
Testbeds Shows that Predictions (i.e.,
“Fingerprints”) Made by Benford’s Law
Matches Well with a Deviation Index of
Less than 0.05 for All Testbeds. Malicious
Attacks will Corrupt these Fingerprints and
Can Therefore be Detected. Introducing this
Detection Algorithm can be Done at Multiple
Levels (e.g., Generation, Distribution) as DERs
can Also Generate and Distribute Power Back
to the Grid.

[188]

FDI Attacks on System
Variables are Typically
Addressed in the Context of
Detection and Prevention,
But Are Not Considered
To Recover Actual (i.e.,
Pre-attack) Values of System
Variables.

Recovery Algorithm – The Recovery Algorithm Requires
Identifying an “Optimization Region” That Identifies
Subgraphs within a Power System Where the Nodes are
Buses and the Edges are Lines Connecting the Buses.
The End Result is a Set of Subgraph Nodes that are
Detected to be Attacked. The Recovery Algorithm Solves
an Objective Function That Considers Voltage Phasors (i.e.,
Magnitude/Phase Angle) Subject to Active and Reactive
Power Flows Constraints at Lines and Buses. Results from
the Optimization Algorithm Restores Detected Attack Grid
Variable Values to a Range Defined by the Three-sigma
Rule. Testbeds – IEEE 118- and 14-bus Systems with
Seven Attackable Zones. Three Case Studies were Identified
(i.e., FDI with Incomplete System Information, FDI with
Complete System Information, and FDI on Systems with
High Renewables Penetration.

Attacks – FDI. Case Study Three (i.e., High Renewables
Penetration) is Particularly Relevant to
Economies that Have High DER Penetration.
Depending on the Resolution of Data Available
to the Detection Algorithm (e.g., Hourly,
5-minute Intervals) and the DER Share to Grid
Load Supply, High Detection and Recovery
Rates are Produced.

[189]

Phase Shifting Transformers
(PSTs) Manipulate Power
Flows Between Two Ends
of a Power Line Before
Dispatching Power Back to
the Grid. Manipulating PSTs
to Cause Disruptions in Line
Power Flows is Done by
Sending False Commands to
RTUs that Control PSTs, and
There is a Lack of Detection
Algorithms that Consider
Compromised PSTs.

Detection Algorithm – Phase Shift and Voltages are
Tracked for All Nodes (i.e., Generators, Phase Shifters) to
Create a Reference Threshold. Measurements from PSTs
> Threshold are Considered as Attacked Measurements.
Testbed – A Set Of Phase Shifting Transformers Placed in
the Power System Based on IEEE 118-Bus System. Multiple
(i.e., Four) Case Studies are Considered.

Attacks – FDI and
Stealthy Phase Shift
Command Injection.

The Increase of Variable Renewable Generation
and DERs Faciliate the Need for PSTs as They
Can Reduce Power Flow Congestion, Optimize
Power Flows, and Improve Grid Capacity at
Peak Demand Hours at the Transmission-level.
Effective PST Operation can be Coupled
with DERMS to Facilitate Effective Market
Power Flows and Reduce Grid Disruptions by
Controlling Power Overflows.

[190]
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Fig. 6. Layered framework representing DER threat vectors and mitigation measures. Sensing, communication, and control layers have unique attack
vector types (e.g., hardware backdoors, physical access, unencrypted communications). Attack vectors cannot be eliminated completely but certain mitigation
measures (e.g., access control mechanisms, anomaly detection) are effective in removing attack vectors across multiple layers.

Fig. 7. The semiconductor supply chain and associated security threats.

security threat vectors such as hardware Trojans, tampering
attacks, side channel attacks, and fault injection attacks.
This is an active area of research and some of the
more prominent state-of-the-art solutions involve inserting
diverse design-for-security (DFS) constructs into the electronic
hardware to deter/detect such attacks.

Most modern power grid systems routinely employ
smart meters, sensors, data communication infrastructures,
distributed computation units, and management modules to
increase the overall efficiency of the system. All these
electronic and computation modules typically use diverse
integrated circuits (ICs), system-on-chip (SoC), artificial
intelligence (AI) hardware, and printed circuit boards (PCB)
towards managing and optimizing the grid performance or
realizing the desired functionalities. However, the increasing
reliance on complex hardware components in modern grids
also introduces new security risks [193]. The production model

for digital system has changed over the past two decades as
a result of the rising cost of semiconductor fabrication and
the increasing complexity of contemporary ICs [194]. Many
important steps of the digital system manufacturing process
(including fabrication, testing, assembly) are outsourced rather
than being completely executed internally to save cost and
decrease time-to-market. However, such a horizontal and
distributed semiconductor manufacturing model introduces
diverse vulnerabilities arising from the involvement of
malicious entities and rogue employees. Fig. 7 depicts the
horizontal semiconductor supply chain and prominent threats
arising from all the entities involved. These threats include
malicious design modifications (hardware Trojan), intellectual
property (IP) theft, reverse engineering to uncover design
intent, and tampering to disable security measures which can
compromise grid reliability and safety easily. The fabricated
digital component is also vulnerable to diverse threats, even
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after being deployed (in-the-field), such as side-channel attacks
and tampering where attackers glean sensitive information by
analyzing physical emissions or power consumption patterns
and exploit vulnerabilities in firmware update processes
to install malicious firmware respectively. The fabricated
digital component is also vulnerable to diverse threats, even
after being deployed (in-the-field), such as side-channel
attacks and tampering. A compromised hardware can in-turn
compromise any system it is part of (including modern
grid systems). Compromised hardware making its way into
smart grid cloud facilitates can also hamper the decision
making capabilities necessary to ensure the safety of the
entire system. It is also important to note that many
prominent hardware vulnerabilities can also be exploited
remotely without requiring physical access to the system,
making attacks easier to execute [195]. According to the “Big
Hack” article published on 2018 [196], [197], almost 30 U.S.
companies such as Amazon and Apple were compromised
by maliciously tampered server motherboards supplied by
Supermicro. Allegedly, these motherboards had a small (size
of sharpened pencil tip) microchip attached to them that can
leak sensitive information to adversaries. This is an example
of a PCB-level hardware Trojan. Below we discuss, in greater
detail, several hardware security threats that pose significant
challenges towards securing smart grid electronics.

A. Reverse Engineering

Reverse engineering (RE) involves identifying the design
details of an electronic hardware (integrated chip (IC), system
on chip (SoC), PCB) by a techniques such as imaging,
structural analysis, and functional profiling. By utilizing the
reverse engineering knowledge, one can perform a variety of
secondary attacks such as: (1) intellectual property (IP) theft,
that is, stealing/replicating the design without going through
the expensive research & development process [201], [202],
[207], [206], [198] and (2) tampering the design easily leading
to a hardware Trojan attack [208], [209]. To mitigate this
vulnerability, the research community is currently investigating
different techniques (e.g. ALMOST, SFLL, LeGO) that can
encrypt the digital design through inserting a set of logic gates
connected to certain key inputs (logic locking and obfuscation)
[210], [200], [211], [212]. These additional insertions: (1)
corrupt the output of the digital designs unless the right secret
key is provided making it hard to extract the functionality by
observing the outputs and (2) bring about structural changes in
the design making it difficult for an attacker to guess the design
intent through structural analysis. To bypass logic locking and
obfuscation, several attacks have been proposed as illustrated
in Table VIII. Functional attacks analyze the digital design
purely based on its input-output behavior without knowledge
of its internal structure. The attacker treats the circuit as
a ‘black box’, supplying inputs and observing outputs to
infer the correct key or to deduce a functional equivalent
of the circuit [198], [199], [200]. Structural attacks involve
analyzing the internal gate-level or transistor-level structure
of the circuit. The attacker can inspect its components and
connections to extract the key or bypass the obfuscation

mechanisms [201], [202], [203], [204], [205]. A joint structural
functional attack was also proposed (SURF) that can leverage
the advantages of both worlds [206]. These attacks either
attempt to retrieve the logic locking key (e.g. SAT) or expose
the design for a subsequent structural RE (e.g. SAIL). Many
of the older attacks (e.g. SAT) relies on having access to an
“Unlocked” design for unlocking a locked design. However,
these attacks can also be used as metrics to develop more
robust logic locking techniques as demonstrated in LeGO
[211]. Explainable Artificial Intelligence (XAI) can also play
a crucial role in securing microelectronics for DERMS.
Recent works such as X-DFS have used XAI techniques to
create human-understandable rules that can mitigate reverse
engineering vulnerabilities in electronic hardware [213].

B. Hardware Trojan

Hardware Trojans are malicious modifications inserted into
the digital design, by a malicious actor, at any stage of
the hardware designing/manufacturing process [208], [209].
Hardware Trojans can be subtle and difficult to detect,
making them a significant threat to hardware security. Such
modifications typically lead to denial-of-service attacks, create
hidden backdoors, allowing unauthorized access to a system
and information leakage. In modern power grid system,
hardware Trojans can disrupt equipment operation or induce
failures, leading to blackouts and destabilization of the
grid. It can send the operational parameters and network
configurations to unauthorized users.

A hardware Trojan is made up of two components: (1)
A trigger circuit that starts the malicious act; (2) A payload
circuit that carries our a malicious act. The trigger logic can
be based on a digital counter, a set of sequential transitions,
a set of combinational logic values, or an external signal.
For example, a hardware Trojan may trigger when a specific
address appears on the address bus or when a specific input is
provided by the user/network [222]. The Trojans are designed
in a way to prevent triggering during normal functional testing
of an electronic system making them hard to detect during the
normal manufacturing process.

A hardware Trojan differs from a software Trojan in that it
is installed within the device or, in most cases, directly at the
hardware, and it is not affected by any software layers that are
operating on the specific hardware [222].

Synchronized hardware Trojans (a special variant) are
distributed across multiple devices and get triggered at the
same time based on a predetermined timeline or based on
some external communication. These, Synchronized hardware
Trojans, have been shown to be particularly problematic for
modern grids as they can cause large scale power outage [223].

Hardware Trojans are inserted judiciously to avoid detection
via normal design testing, making it hard to deal with this
threat. The sophisticated concealment techniques used in
hardware Trojans necessitate the development of advanced
detection mechanisms. However, several techniques are being
explored to potentially mitigate this issue, prominent among
those are machine learning based techniques [224], [214],
[221], [220], self-referencing methods [219], and a newly
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TABLE VIII
KEY EXTRACTION ATTACKS FROM HARDWARE OBFUSCATED DESIGNS.

Attacks/Metrics Type Focus Oracle
SAT [198] Functional Retrieve Exact Keys Needed

AppSat [199] Functional Retrieve Approx. Keys Needed
KSA [200] Functional Iteratively Retrieve Keys Needed

SAIL [201], [202] Structural Retrieve Original Design Not Needed
OMLA [203] Structural Retrieve Approx. Keys Not Needed

GNNUnlock [204] Structural Extract Protection Logic Not Needed
SnapShot [205] Structural Retrieve Approx. Keys Not Needed

SIVA [202] Structural Quantify Structural Security Not Needed
SURF [206] Func.+Struct. Retrieve Approx. Keys Needed

TABLE IX
FRAMEWORKS FOR AI–BASED HARDWARE TROJAN DETECTION.

Framework Benchmarks Methods Efficiency/Usability
VIPR [214] Pre-Fabrication (Gate Level) SVM, RF, AdaBoost High

TrojanSAINT [215] Pre-Fabrication (Gate Level) Graph Convolution NN High
NHTD-GL [216] Pre-Fabrication (Gate Level) Graph Attention NN High
GNN4TJ [217] Pre-Fabrication (RTL) Graph Convolution NN Medium
FAST-GO [218] Pre-Fabrication (Gate Level) Graph Convolution NN High

Yang et. al. 2022 [219] Post Fabrication Self Referencing Medium
Yang et. al. 2021 ISQED[220] Post Fabrication Unsupervised Learning High

Yang et. al. 2021 ITC India[221] Post Fabrication SVM, NB, DT, KNN Medium

developed software-variant approach [225]. Graph neural
networks (GNNs) have also shown exceptional performance
in identifying hardware Trojans because a digital design
can be organically represented as a hypergraph [215], [216],
[217]. The DFS strategy can be effectively employed in this
context because it has been generalized to provide defense
mechanisms against such threats [213]. Implementing the
DFS strategy in this context provides a generalized defense
mechanism against such threats. It is practical for power grids
because it can automatically learn from the specific/previous
threats targeting the grid’s digital infrastructure and offer
solutions that are easily understandable by human operators.

Table IX presents prominent frameworks for detecting
hardware Trojans at both the pre-fabrication and the
post-fabrication stages. The efficiency/usability is estimated
based on hardware Trojan detection accuracy, speed of
detection, and the practicality of the approach. Several
machine learning techniques such as support vector machine
(SVM), Random Forest (RF), AdaBoost, Neural Networks
(NN), Naive Bayes (NB), Decision Tree (DT), and K-nearest
Neighbour (KNN) have been widely used for this purpose.

C. Side Channel Analysis

Side channel attacks on smart grids involve the exploitation
of information leaked from the physical characteristics or
behaviors of smart grid devices, such as smart meters, sensors,
or other critical infrastructure [234]. Side channel information
can be used to extract cryptography keys, determine values
of secret assets, and predict system behavior among other
concerns which can lead to serious problems like load
imbalances, equipment damage, or widespread blackouts.
Notable related works on side-channel attacks in hardware
security are presented in Table X categorized by the type of

attack. There are three main sources of side channel leakage
and they are discussed below.

• Power Leakage: Power analysis attacks exploit the
power consumption patterns of a device to infer
sensitive information [235]. Power side-channel attacks
are passive and do not leave obvious traces, making
them difficult to detect with standard security monitoring
tools. Cryptography algorithms have shown to exhibit
specific power consumption behaviour dependent on the
encryption key values and the input message. By using
analysis techniques such as DPA (Differential Power
Analysis) and CPA (Correlational Power Analysis), an
attacker might be able to extract the encryption keys
making data communication over insecure channels
highly vulnerable [236], [235], [237]. Test Vector
Leakage Assessment (TVLA) [227] is a widely
recognized method for power side-channel analysis based
on Welch’s t-test. Power side channel can also leak the
functioning of AI models, which are being widely used
in smart grid systems [238], [239]. Defenses involve
providing a moving target [240], detecting leaky nets
[241], replacing leaky nets [242] (using trichina [243],
DOM [244]), and camouflaging [245].

• Electromagnetic (EM) Emissions: EM signals that are
generated by electronic circuits (due to switching
activities) can also be used to infer sensitive information
[246], [247], [248]. EM side channel can also be
combined with radio carrier to create what is called
a ‘Screaming Channel’ which is much easier to detect
[249]. Defenses such as camouflaging and shielding have
been proposed to defend against EM side channel attacks
[250], [251].

• Timing Profile: Timing side channel attacks relies on
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TABLE X
SIDE-CHANNEL ATTACKS IN HARDWARE SECURITY.

Research Work Mode of Attack Description

Kocher et al. [226] Power Side Channel Introduced DPA, a form of side-channel attack
that uses power consumption measurements

Goodwill et al. [227] Power Side Channel Demonstrates power side channel analysis based on Welch’s t-test.

Mangard et al. [228] Power/EM Side Channel Discusses improvements in power and
electromagnetic side-channel attacks.

Chari et al. [229] Power/EM Side Channel Introduces template attacks, which use detailed
profiling of a device’s side-channel leakage.

Quisquater et al. [230] EM Side Channel Focuses on using electromagnetic emissions
to perform side-channel attacks.

Kocher [231] Timing Side Channel Describes timing attacks and how they can
compromise cryptographic implementations

Bonneau et al. [232] Timing Side Channel Demonstrates timing attacks based on cache-collision
information leaks in AES implementations.

Chakraborty et al. [233] Timing Side Channel Demonstrates hardware-aware timing side channel analysis

measuring the execution time of a given process to
infer sensitive information. In modern power grids, which
heavily rely on digital components and cryptographic
protocols for secure communication and control, attackers
can measure the time it takes for certain processes
to execute and use this data to infer the secret
system states. This can lead to the compromise of
authentication mechanisms and allowing adversaries to
manipulate the control signals [252]. Timing side channel
techniques been extremely successful towards breaking
quantum-key distributions [253], undermining kernel
space Address Space Layout Randomization (ASLR)
[254], and leaking neural network information through
GPU timing [255] among other things. Chakraborty et
al. [256] mentions traditional mitigation methods, focused
solely on software-level-analysis may be inadequate due
to the tight coupling of hardware and software in IoT
systems and also compares different types of timing
side analysis channel frameworks. Several techniques
have been proposed to defend against timing side
channel attacks including live detection techniques [257],
intelligent scheduling techniques [258], and constant time
coding [259]. Timing side channel signatures heavily rely
on both the software and the underlying hardware on
which the execution takes place [233]. Hence, a joint
hardware-software security approach is essential towards
mitigating this concern.

VI. POTENTIAL TECHNOLOGIES FOR DERMS SECURITY

This section will highlight four technologies - IT
models, machine learning (i.e., supervised, federated, and
physics-informed), blockchain, and quantum computing -
that we anticipate to play a key role in facilitating
automation, peer-to-peer transactions among DER entities,
and DER security. Particularly, we lend support to the fact
that IT models, machine learning, and quantum computing
technologies are relevant to IDUs. We will discuss practical
methods to integrate containerization, smart grid services, and
DERMS in Section VII.

A. IT Models

Infrastructure as code (IaC) - Typical IT infrastructure
requires manual installation and setup of servers, networks,
and host machines. Leveraging infrastructure as code enables
virtualization of such infrastructure resources in addition to
providing a documented and automated methodology to enable
fast setups and repeatable executions. Examples of popular
IaC tools are Chef, Puppet, Terraform, and Ansible. Brief
descriptions for Ansible and Terraform are given below.

• Ansible is a collection of open-source infrastructure as
code tools initially developed by Red Hat and used
by IT experts to automate various operations such as
deployment of code and configuration management [260].
Ansible works in what is known as a push configuration
where software is deployed to connected machines (also
called nodes or virtual machines such as web or database
servers) through an Ansible Engine (control machine)
without the need for clients or daemons to be installed
on those devices [261]. Communications between an
Ansible Engine and its nodes are done through secure
shell (SSH). Instructions to execute on these nodes are
written in a “playbook” in YAML Aint Markup Language
(YAML). Since Ansible is largely community-driven (not
to be mistaken for open-source), there is a repository of
playbooks in Ansible Galaxy that developers can leverage
to easily deploy Ansible.

• Terraform is declarative IT provisioning tool that
provides a framework for automation, compliance, and
management of infrastructure. Declarative programming
is a paradigm that allows users to specify (on a
high-level) what should be achieved. Terraform requires
configuration files (written in HashiCorp Configuration
Language (HCL)) to be provided so execution files can
be generated. Execution files are used to reach a target
state (or end goal). Terraform can manage higher level IT
resources such as servers and also low-level components
such as storage [262].

The most efficient methods for researching actual issues
that will aid in understanding complex interactions in
CPS are simulations and modeling. The most widely
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used technique for modeling is agent-based modeling
(ABM) which involves simulating the actions of several
micro-level agents to understand how they perform and
affect the macro-level. Cloud computing offers a broader
range of solutions by distributing the computational loads
and decreasing the execution time [263][264]. There
is support in academic literature that cloud computing
[265][266][267] and containzerization [268] can be integrated
with the power grid to render services such as data
processing (e.g., data anonymization to protect privacy),
data storage, machine learning applications (e.g., household
occupancy/usage patterns, control strategies to mitigate
current/voltage overloading), and forecasting [269] based
device-level data (e.g., smart meter data). Though not directly
related to DERMS, containerization can be used as conduits
for DER/DERMS security due to inherent security features
such as mandatory/role-based access control policies and
sandboxing for service isolation [270].

B. Machine Learning

Machine learning is a class of mathematical algorithms that
analyze a set of data to identify useful patterns. These could
be known patterns, where a supervised training approach is
used to tell the “model” (the mathematical parameters used by
the algorithm) what the pattern looks like, could be unknown
patterns where the algorithm attempts to group similar points
together or determine boundaries between classes of data, or
could be based on continual feedback where reinforcement
from an objective function is used to continually modify a
algorithmic policy to improve its responses.

Machine learning models for power systems can be
classified based on tree-based, neural-network based, hybrid
ML models, statistical-based, and fuzzy-logic models [271].
Typical applications for ML models in power systems and
DERMS are [272]:

• Optimization and prediction of RE resources (e.g., wind,
solar).

• Prediction of levelized cost of electricity (LCOE).
• Forecasting for wind and solar generative units.
• Estimation of power consumption for each individual

appliance in a large distribution system
• Short-term and long-term load forecasting (e.g.,

day-ahead, month-ahead)
Supervised learning approaches can be used for load

forecasting, detection of previously seen or common cyber
threat activity, or early warning of potential grid failures.
Unsupervised approaches are useful for detecting anomalous
cyber or grid readings that might indicate something
unusual is happening. Supervised learning augmented with
physics-informed approaches has been used to solve security
problems such as anomaly detection (e.g., bad data
detection, faults) and localization [273]. Physics-informed
approaches use knowledge about the system and its physical
constraints (e.g., network topology, states) to model the
system through partial different equations and mixed integer
linear programming problems. Physics-informed models offer
benefits to ML such as accurate decision-making and

modeling, faster computation times to estimate system inputs
(e.g., frequency, angle) [274], and meaningful solutions that
system operators can implement due to rigorous theoretical
foundations, assuming a-priori knowledge is available [275].

Federated learning (FL) is a concept introduced by Google
Inc. where ML training is deployed to collections of edge
devices or nodes which train a local machine learning model
to improve its inference, and then share the learned model
parameters with a centralized or hierarchical superior that
combines many subordinate models together to redistribute
the new “global” model. The core idea is to take the training
algorithm to the data, and not bring data to a centralized
location for training.

A lesser discussed but prevalent problem in FL is the
problem of fairness (i.e., bias towards predicting an outcome
based on a correlative rather than causative feature) which
can be tackled by an FL approach that is based for target
distributions that are not biased towards any single or group
of client distributions (i.e., client-agnostic) [276]. FL models
must also be resilient to poisoning or manipulation by a
malicious client, which can be achieved in part by differential
privacy methods but additionally by clipping gradients in
model updates received from clients to limit the influence of
any particular node. FL recently gained interest in the smart
grid community for overcoming data-centralization challenges
and has been applied to several smart grid problems that tie
in with DER integration/DERMS. Some areas include solar
irradiation forecasting [277], DER management [278], and
synthetic feeder generation [279]. FML can be applied to the
smart grid field with various applications such as learning
appliance-level usage patterns (e.g., for findings tradeoffs
between resource consumption and usage) and forecasting.
Smart grid applications are being increasingly IoT-driven and
the data transmitted by endpoints to third parties (e.g., utilities)
can be secured using FL and to combat cyber attacks at the
edge-level [280]. These cyber attacks are well known and
include anomaly detection [281], FDI detection [282] (i.e.,
creating device-level local clients that model FDI attacks based
on measurement data and updating the weights of the global
detector until there is convergence), and multiple cyber attack
models (e.g., stealthy, electricity theft) [283].

General AI approaches to intrusion detection and mitigation
in grid infrastructures may also be useful. Blakely et
al. [284] incorporated simple distribution grid model into
a cybersecurity exercise for the North Atlantic Treaty
Organization (NATO) where operators had to maintain both
IT and OT networks, while also trying to disrupt the networks
of other teams. While the agent built for this did not explicitly
incorporate readings from or responses to the simulated grid,
the general approach used – transforming all environmental
observations into a “world model” knowledge graph – could
easily be extended to do so. In the paradigm, graph neural
networks can be used to classify hosts on the network as
malicious or benign, or network communications can be
determined to be anomalous or ordinary, based on graph
embeddings of the knowledge graph. A similar approach can
be taken using cognitive/symbolic-based AI models such as
Soar and ACT-R [285][286]. These models make the reasoning
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and learning steps implicit but require instruction from an
expert to give them initial objectives and procedures to follow.
Argonne National Laboratory is investigating both approaches
for use in grid and other cybersecurity contexts.

C. Blockchain

Blockchain is a promising solution to secure interactions
and transactions between energy assets. It is highly secure and
can be an excellent solution for not only the cybersecurity
issue in the energy sector, but also for other critical
infrastructure sectors (e.g., water, manufacturing). Blockchain
leverages cryptography, public key infrastructure (PKI),
consensus algorithms, and access control mechanisms to
maintain a distributed ledger [287]. The distributed ledger
is scalable and contains a growing list of data records that
should be protected against tampering and revision. Smart
contracts are used with blockchain technology for DER and
smart grid applications. These applications include access
control [288], securing supply chain [289], detecting MITM
attacks [290], updating DER firmware [291], energy trading
[292][293], and controlling inverters [294]. To standardize
blockchain use, the IEEE Blockchain Technical Committee
has laid out a fundamental framework and principles of IEEE
Blockchain-enabled Transactive Energy (BCTE) to deploy
BCs in power and energy domains [295]. Authors in [296]
developed a reliable decentralized management system for
DERs using blockchain technology and smart contracts in
order to integrate them to aggregators. In [297], the author
proposed an integrated energy management and aggregation
platform based on blockchain and smart contracts that
optimizes energy flows (i.e., OPF) in a microgrid with different
DERs while implementing a bilateral trading mechanism. In
[298], author introduces a potential vulnerability of a single
point of failure of the centralized DERMS by cyber attacks
and proposes a BC-integrated resilient DERMS framework.
A multi-channel BC governance system is designed to build
a cooperative security ecosystem in a multiple stakeholder
involved DER system where DER devices are blockchain
client nodes and participating multi-party are blockchain
clients. Overall, blockchain has the potential to revolutionize
the way that energy is produced, traded, and consumed in
DERMS, by providing a secure and transparent platform for
energy transactions and enabling greater decentralization of
the energy grid.

D. Quantum Information Systems

Quantum information systems (QIS) are technologies
that make use of quantum mechanics to communicate,
sense, or perform complex calculations quadratically faster
than “classical” (non-quantum) computing processors [299].
Processing devices made specifically to perform such
computations are known as quantum computers. These have
the potential to drastically impact the types of problems that
can be solved computationally, but also create security risks.
For example, the 2048-bit variant of RSA key was factored
in 8 hours using noisy qubits[300]. Quantum communications
leverage the ability to entangle pairs of photons to exchange

information in a provably secure manner. Quantum sensors
are devices with the ability to perform measurements at much
higher resolutions and sensitivities than classical measurement
devices.

1) Role of QIS in DERs
Quantum computers with their ability to perform multiple

calculations simultaneously, can speed up the optimization
process for power systems. In addition, quantum computers
can potentially be used to simulate power systems behaviors
under different conditions (e.g., different load patterns
or the integration of RE sources), allowing for more
accurate forecasting and planning. However, deployment of
quantum computers outside of centralized, highly-controlled
environments is a very distant reality, and even today
quantum computers outside of laboratory environments are
rare and limited in their computational capabilities by
challenges ensuring coherence and preventing interference
during computations.

2) Quantum computing for DER Power Optimization
Quantum computers have the potential to be used in the

optimization of power systems, as they can potentially solve
certain types of optimization problems much faster than
classical computers. Optimization problems in power systems
often involve finding the best configuration of a system, such
as the optimal placement and sizing of generators, transmission
lines, and other components, to meet certain performance
criteria, such as minimizing costs or maximizing reliability
[301]. These problems can be extraordinarily complex, as
they may involve thousands of variables and constraints, and
finding the optimal solution can take a significant amount of
time using classical computers.

3) Quantum–secured DERs Communications
While quantum computing provides the space to solve

optimization problems, it also poses potential threats to the
security of the communications that happen between DERMS
elements as secure communication algorithms such as RSA
and Diffie-Hellman key exchange rely on heavy computational
complexity, which can be cracked by quantum computing
within hours using several qubits. The solution to this problem
is quantum communication [302]. Quantum computing has
the potential to secure communications happening between
DERs. These protocols can ensure the confidentiality and
integrity of the information transmitted between DERs and
the electric grid, protecting against attacks from malicious
actors. Advancements in cryptanalytically relevant quantum
computers will make it capable of breaking public key
cryptographic techniques [303] that are widely used around
in various operating units, including DERs.

To enhance secure communications, quantum key
distribution (QKD) [304] can be used. In QKD, a quantum
communication channel (e.g., fiber optic cable, free space
laser) is used for Alice and Bob to exchange their secret
keys via photons and based on the quantum state of each
photon. Due to the nature of quantum entanglement, if
anyone eavesdrops and observes these photons in transit,
their quantum state will collapse, and an error will occur
when the intended recipient attempts to observe them. Alice
and Bob simply build a key out of a sequence of photons
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that did not result in an error. This key can then be used for
classical encryption ciphers such as the Advanced Encryption
Standard (AES). While the threat of prime factorization still
exists, Alice and Bob can exchange keys as often as they like
to minimize the window for such an attack. However, this
requires Alice and Bob to have a quantum channel, which
currently means they must be in close physical proximity
(e.g., 100km for fiber optics due to signal attenuation) or have
line of sight for a free space transmission. This limitation
might not be an issue for distribution grids that only span
a local region, or even transmission grids where secure and
trusted facilities can be conveniently located. However, the
equipment to send and receive photons to enable QKD is
currently not readibly adaptable to consumer or low-powered
edge devices.

VII. FUTURISTIC INTRUSION DETECTION UNITS FOR
DERMS

Monitoring the traffic moving on the network, searching
for suspicious activity and known threats across the network
to report them to the concerned security team for thorough
inspection, and removal of threats using either hardware or
software appliance is called intrusion detection system (IDS).
The IDS often resides between an organization network and
the internet or between segments of an internal network to
continuously monitor and report any found threats to the
administrator and forensic analysis team for deep analysis.
IDSs include network IDS (NIDS) and host-based IDS
(HIDS). NIDS monitors the traffic on individual networks
or subnets and comparing it with known attack patterns. On
the other hand, HIDS works on individual systems where the
network connection, process activity, and/or filesystem activity
are continuously monitored. System files are regularly audited,
and the administrator will be alerted when discrepancies are
found [305]. Blakely [306] considers how different types of
information may be useful for IDS purposes as an analogy
of biological senses and studies Netflow as an exemplar case
study. Valenzuela and colleagues in [307] develop an algorithm
using principal component analysis (PCA) to perform intrusion
detection on the power flow variability by analyzing the
information in the subspace to determine whether an intruder
has compromised the power system data. In [308], the authors
presented a test bed for developing an intrusion detection
system for power systems modeled on a real-time digital
simulator. The proposed testbed provides Hardware-in-loop
(HIL) simulation, power system attacks, and helps generate
data for security researchers. Yang et al. [309] proposed
a multilayer security framework based on IDS specific for
SCADA and a security testbed to investigate the simulated
attacks. The IDS proposed is used to monitor the SCADA
systems to protect them from cyber attacks inside or outside
the SCADA systems. It uses allow-listing and a behavior-based
approach to detect intrusions in DER systems. As SCADA is
an integrated level within the DERMS hierarchy, deploying
multiple intrusion detection pods at the different hierarchical
levels of the DERMS from the DER level to the DERMS
operator level ensures intrusion detection at all levels of the
DERMS.

With the increasing rates of cyber attacks [310], there is
a need for new security concepts and futuristic frameworks
that can increase the security of the DERMS. Threats to
the OT infrastructure can have a much more significant
adverse effect on a business, potentially disrupting operations,
demanding ransom payments, and even shutting down the
entire industry for brief periods. Hence, there is a need for a
lightweight layered framework that combines container-based
virtualization technologies and microservice architectures to
maximize efficiency and scalability along with real-time
monitoring for OT and IT systems - this is what we call the
Integrated AI-ready DERMS Edge Testbed at the University
of North Dakota (UND). UND has a DoE award from the
Office of Cybersecurity, Energy Security, and Emergency
Response (CESER) with partners such as ANL and Iowa State
University to establish an edge environment for DERs. As part
of this grant, UND has established an AI-ready ML library for
DERMS. Currently, the solution is to stream solar inverter data
streams to NVIDIA’s Nano and AGX devices in a federated
learning environment. The testbed is scalable and hosts several
IDU algorithms and zero trust solutions that could be useful
to model threats at multiple levels of the hierarchy presented
in Fig. 2. In OT cybersecurity, asset visibility is crucial.
Strong asset visibility makes finding vulnerabilities and unsafe
configurations on OT networks easier. Hence, DER device
and network data should be collected and monitored in
near-real time. Open-source software like Apache Kafka and
Spark can be used to build data streaming. Because DER
data schemas are polymorphic, these near-real-time streaming
data can be kept in persistent storage (e.g., MongoDB).
Containerization of applications provides broader benefits such
as fine-grained resilience, eliminating single points of failure,
scalability and infrastructure optimization, quicker rolling
upgrades and rollbacks, logging, monitoring, and security. Due
to the need for a scalable environment, Kubernetes and Docker
containers are used to run some software-in-loop ancillary
services, including intrusion diagnostics and quantum-based
applications that use cutting-edge machine learning technology
to identify attacks on the OT system quickly. The futuristic
IDS framework for increasing the security and optimization
of DERMS can be conceptualized by adding container-based
services like Kubernetes, which has tremendous applications,
to host and scale the IDS pods across network infrastructure
as needed. Fig. 8 shows a conceptual framework using
Kubernetes where multiple IDU members are deployed
through container-based services to monitor for intrusions in
the network. This scalability through container-based services
gives the advantage of monitoring and detecting intrusions
like trojan, malware, and anomaly signatures in real-time
data at multiple endpoints of the DERMS network. With
multi-cloud platforms gaining attention with reliable use cases
and the vision to develop and host functional algorithms and
services in container pods like Kubernetes for better consumer
scalability for maintaining normal operating conditions,
academic and industrial researchers should investigate the
benefits leveraging the DER usage optimization and security
of DERMS through new futuristic frameworks. These
architectures are also intended for delivering reliable products
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Fig. 8. Integrated AI-ready DERMS Edge Testbed at the University of North Dakota. Interactions between the IT and OT layers warrants a flexible
and scalable framework that can support large deployments across any region (i.e., through Kubernetes), cater to lightweight edge computing hardware, and
anticipate common cyber threats (e.g., DoS, MiTM) at each layer.

quickly while streamlining the workflows for development
and deployment. This workflow will aid in increasing agility
and reveal software flaws early in the development cycle.
To incorporate code changes as frequently as possible, a
continuous integration workflow uses build automation; as
a result, using a distributed version control system can
speed up project tracking and development. One of the
well-known open-source automation servers, Jenkins helps
automate continuous integration and continuous delivery
processes. Each updated piece of software is automatically
built into a Jenkins image (package) and spun up as a
container. A continuous delivery workflow is started after the
code has been integrated and packaged to release updated code
into the environment using automated tests securely. The tests
verify the build’s code quality by advancing through various
build stages. After being correctly tested, these packages
should be delivered across different environments; as a result,
Ansible can deploy the code without requiring the installation
of any software on the client machine. Terraform improves
management and orchestration for large-scale, multi-cloud
infrastructures by making it easier to manage and scale the
entire Kubernetes cluster.

In addition to our proposed framework in Fig. 8, we
introduce a DER trustworthy engine within the entire
framework (see Fig. 9) where the trustworthiness of the DER
client is determined. The concept of IDS incorporates FL for
deploying machine learning applications to preserve the data
privacy aspect at the local DER level. This method improves
the overall security, privacy, and localization of the DER data.

The trustworthy engine is fed with real-time DER data from
the whole DERMS network to check the presence of malware,
anomaly signatures, and trojans to determine the overall
trustworthiness status of the connected DER in the DERMS
network. When a DER in the DERMS network is determined
as compromised, fail-safe methods should be triggered to
safeguard the other DERs and the DERMS network, leading
to the quarantine of the compromised DER. This process of
determining the trustworthiness of the DER regularly through
the IDS helps in knowing whether the DER is compromised or
still trustworthy, easing the operator’s ability to switch between
the trusted DERs. Research studies should be conducted with
the vision of creating combinational IDU designs for any
third-party DER aggregators which can lead to numerous
innovations and applications, including classification between
trusted DERs and the compromised DERs for hardening the
security of DERMS. The frameworks and recommendations
presented in Figs. 8 and 9 are collectively called the Intrusion
Detection Federated Framework (IDFF) for DER security.

VIII. ZERO TRUST PRINCIPLES FOR DERMS

While the proposed IDFF framework in Section VII
addresses scalability, privacy, and integrates FL to improve
the overall security posture of DERs and DER-dependent
entities (e.g., DERMS), additional security considerations
should consider the dynamic, diverse, and dispersed nature
of the power grid. For example: (1) security policies should
be configured to enable power and network flows only
among regularly audited and approved systems, regardless
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Fig. 9. Edge intelligence within Integrated AI–ready DERMS Edge
Testbed at the University of North Dakota. Input data from DER edge
devices are ingested by a trustworthy engine that is built using Kubernetes
(i.e., as a worker node) and the centrally federated architecture type to validate
DER trustworthiness at the aggregator level.

of stakeholder type (e.g., utilities, virtual power plants);
(2) implement strict access control mechanisms to verify
every asset (i.e., newly-joined endpoints, stakeholders) before
granting access. These principles are fundamental to what is
known as the zero trust paradigm. Implementing this paradigm
at multiple layers of the power grid (e.g., network, device)
is recommended to adaptively authenticate, perform threat
discovery, and implement emergency response measures [311].
We will now outline zero trust principles and recommendations
to implement these principles at different layers i.e., sensing,
communication, and control of the grid.

Multiple sub-components such as Customer Information
System (CIS), virtual power plants (VPP), building energy
management system (BEMS), SCADA, etc. interact with
DERMS to handle various functions at the generation,
transmission, and distribution layers. All such sub-components
are rarely provided by a single vendor; this widens the
potential for multiple vendors to contribute subsystems that
are capable of handling such functions. As such, threat vectors
(e.g., software backdoors) are significantly enhanced due to the
system inheriting the susceptibilities and inherent weaknesses
of each individual technology [312] to compromise the
sensing, communication, and control layers.

Moreover, perimeter-based defenses are no longer sufficient
due to the constantly evolving digital ecosystem in power

systems (e.g., shift from legacy infrastructure to IoT) and are
obsolete at least for the following reasons:

1) Increased data transfer not just through ingress and
egress tracepoints (i.e., north-south communications) but
also among intra-network components (i.e., east-west
communications). This presents the potential for
zero-day vulnerabilities that originate internally.

2) A reliance on real-time data from a large volume
of geographically dispersed endpoints, particularly
considering devices that store and process data locally in
addition to communicating with other distributed entities
and cloud infrastructure. This implies that there isn’t a
well-demarcated perimeter of defense.

Therefore, there is a need to shift to a zero trust security
paradigm that can dynamically and simultaneously oversee
assets, users, and resources. Fig. 10 provides an overview
of the proposed zero trust framework for DERMS. Before
proceeding, the property of cyber resiliency will be discussed.

Resiliency is prevalent across a multitude of scientific
disciplines and though standardized definitions may vary based
on domain, we define resiliency as the ability to recover from
or adjust easily to adversity or change. With the increase in
the digital footprint across sub-entities in a power system (e.g.,
DERs, DERMS), this definition can be applied to a parallel
principle called cyber resiliency. As defined by NIST [313],
cyber resiliency is “the ability to anticipate, withstand, recover
from, and adapt to adverse conditions, stresses, attacks, or
compromises on systems that use or are enabled by cyber
resources”. The fundamental concept of cyber resilience is
the acknowledgment that a cyber attack is likely to occur and
that the system will be impacted as a result. The emphasis
here is on the system’s ability to not just resist an attack
(i.e., robustness), but to recover and adapt [314]. Cyber
resilience for power systems has been associated with other
concepts relevant to systems engineering such as robustness,
durability, accessibility, stability, and flexibility [315][316].
For the purposes of this study, we will constrain resilience
to only consider its relationship with efficiency.

For the purposes of this study, efficiency is defined as the
ability to produce desired outcomes with the least amount
of investment (e.g., time, effort, capital). Now consider
two similar but separate sub-systems within the distribution
function (e.g., EMS and ADMS). An outage in either of these
sub-systems can cause broader implications to the stability
of the power grid. Therefore, a cyber resiliency tactic for
these sub-systems should focus on long-term rather than
short-term benefits [317] and should achieve the primary
objective of proactive investments (e.g., financial, technical)
that focus on enhancing cyber resiliency before or during the
early stages of operation. Though this objective may reflect a
lower short-term efficiency due to the allocation of additional
resources (e.g., security audits, backups), these sub-systems
will be more resilient to cyber attacks. Therefore, sub-systems
will have lower costs per unit time thereby reducing
long-term operational and technical resource commitments.
This example also implies a positive correlation between
long-term efficiency and resiliency: Serdar and Ghamdi [318]
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Fig. 10. Zero trust foundation for DERMS. We identify multiple data sources (e.g., DER fleets, data–at–rest in cloud), distribution entities (e.g., power
markets), and the role of DERMS in managing the communication and control planes. Zero trust entities (e.g., policy engine) are implemented in the back-end
and can render different service types (e.g., data, application) based on need.

support this inference by noting that upgrades to legacy
infrastructure in power systems are necessary to prevent them
from deteriorating (i.e., both physically and cyber-wise), and
that the cost of long-term efficiency is far less than the cost
of a disaster.

Consider a scenario where a specific device assigned to
an aggregator has conflicting roles or attributes in access
control. For example, the conflicting attribute is “Control
Over Dispatch Instructions.” The system operator will be
able to provide dispatch instructions to aggregators, directing
them on how to operate and control the aggregated DERs.
Aggregators are responsible for implementing the dispatch
instructions received from the system operator and controlling
the operation of individual DERs accordingly. The specific
device assigned to an aggregator also has local control
capabilities, enabling it to make decisions regarding its
operation and dispatch based on local conditions. In this
scenario, a conflict arises when the system operator provides
dispatch instructions to the aggregator. However, due to its
local control capabilities, the device deviates from those
instructions and operates differently. This conflicting scenario

can lead to inconsistencies and sub-optimal system operations.
Zero trust can be made use of to address such conflicts.
The conceptualized framework to mitigate these conflicts
would be incorporating FL aspects and access control policies
into zero trust to deploy a federated zero-trust-based access
control structure. This control structure can be made to
optimize control decisions and resolve conflicts in access
control by leveraging the least privilege principle, Role Based
Access Controls (RBAC), Separation of Duties (SoD), and
Regular Access Reviews. In such scenarios, a combination
of the local and final deep learning-based model can be
deployed along with the federated settings to review access
policies, preserving the privacy of the DERMS hierarchy for
participating third-party DER owners, vendors, or DERMS
fleets.

Table XI lists 9 standards from standards bodies such as
IEEE, IEC, etc., and DER security recommendations based
on the clauses within each standard. We will now look at
zero trust recommendations for the three layers introduced in
Section IV i.e., sensing, communication, and control.
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TABLE XI
STANDARDS FOR DER CYBERSECURITY.

Standard
Number

Standard Name Organization(s) Recommendations Ref.

ISO/IEC
27002

Information Security,
Cybersecurity, and Privacy
Protection

International
Organization for
Standards (ISO)

Threat Intelligence Capabilities to Mitigate Insider (e.g., Impersonation) and External
Attacks (e.g., Phishing). Security Requirements for the Acquisition, Use, Management,
and Exit from Cloud Services. Secure Development Life cycle for all Digital Assets
(e.g., CI/CD Integration, IAM). Applicable to Communication Layer.

[319]

ISA/IEC
62443

Security of Industrial
Automation and Control
Systems (IACS)

International Society of
Automation

Physical and Digital Assets in Industrial Systems Must Conform to Zones. Each Zone
Should Have an Adequate Security Level and Define Logical and Physical Boundaries
for all Inter– and Intra–system Communications. Conduits are Security Mediators that
Enable Inter-system Communications between Two or More Zones, and Has a Unique
Set of Security Requirements. Applicable to Communication and Control Layers.

[320]

NISTIR
7628 (Vols.
1 and 2)

Guidelines for Smart Grid
Cybersecurity

National Institute
for Standards and
Technology (NIST)

Smart Grid Information System Maintenance and Repairs – Digital Sanitization, Backups,
Removal of Smart Grid Information System Components. Applicable to Communication
Layer.

[321]

C2M2 Cybersecurity Capability
Maturity Model

Multiple Private/Public
Sector Organizations

Asset and Inventory Management for OT. Deploy Grid– and Plant–level Situational
Awareness Measures (e.g., Real–time Data Aggregation and Correlation, Periodic
Reviews of Log Trails). Applicable to Communication and Control Layers.

[322]

ISO 22301 Security and Resilience –
Business Continuity

International
Organization for
Standards (ISO)

Deploy Quantitative Measures of Performance (e.g., Maximum Acceptable Outage,
Recovery Time Objective, Recovery Point Objective). Applicable to Communication and
Control Layers.

IEEE
1686–2022

Intelligent Electronic
Devices Cybersecurity
Capabilities

Institute of Electrical and
Electronics Engineers
(IEEE)

RBACs for IEDs based on IEC 62351–8. Authorizations to record all user actions
and accesses. Audit Trails for Cybersecurity Events Accessed on Read–only Basis.
Auto-recovery to a Known Secure State After Unexpected Failure. Applicable to Sensing
Layer.

[323]

IEEE
1547.3
(Draft 12)

Cybersecurity of Distributed
Energy Resources
Interconnected with Electric
Power Systems

Institute of Electrical and
Electronics Engineers
(IEEE)

Adequate Network Segregation Between Internal (e.g., DER controllers, DERMS) and
External (e.g., AMI) Network Topologies. Baselines are Established for Network Traffic
Based on Source/Destination Addresses, Ports, Protocols, etc. Security for Data-in-transit
Through TLS v1.3, Digital Certificates, and Deep Packet Inspection. Applicable to
Sensing, Communication, and Control Layers.

[21]

1) Sensing–layer Zero Trust Recommendations
Sensing layer devices contain monitoring units such as

IEDs and RE smart inverters to measure faults such as, say,
due to overflow currents. Such devices can also be part of
wireless sensor networks (WSN) [324] that contain protective
devices (e.g., primary or backup relays) that are responsible for
comparing the measured power flow variables (e.g., current,
voltage) to a threshold that the protective device(s) are given.
The protective device can issue responses (e.g., tripping circuit
breakers) to protect the network or service from any harms
(e.g., power surges). One of the key developments in sensing
layer devices is that it allows for remote management of device
to issue adaptive protection capabilities [325], although the
adaptive parameters should be adjusted routinely by a control
center based on a situation’s requirements. Utilities can use
pseudonyms for end-user smart meters to obscure and protect
the identity of their customers. However, de-pseudonymization
of these data compromises users’ privacy and can reveal
sensitive information such as households’ usage patterns and
appliances being used.

Recommendations to enhance security at this layer is based
on Microsoft’s Maturity Model [326] and is adapted to
OT and IT systems in critical infrastructure. The diversity
in endpoint device types expands the threat vector and
therefore requires security principles to secure the threat
vector to an acceptable level where any compromise or failure
does not have large-scale impacts (e.g., outages, financial
losses). These security principles can be divided into three
broad areas: dynamic endpoint status monitoring, policy-based
configuration management, and compliance controls.

Endpoint status monitoring mechanisms must be enforced in
real-time to continuously gather and evaluate endpoint device
behaviors to identify potential IoCs. Device behaviors and
health parameters such as data flow rates, reporting intervals,

switch status (if applicable), power parameters, packet losses,
and device energy consumption patterns are key parameters
that should be monitored to get an accurate reading on
device health [324]. Such monitoring mechanisms should also
consider the customers’ lack of awareness when a smart
meter is compromised and is non-functional or doesn’t operate
properly to produce erroneous readings.

1) Additionally, endpoint detection and response (EDR)
capabilities can identify viruses at the kernel-level
(software) and micro-processor/micro-controller-level
(hardware) to disconnect and quarantine infected devices
or segments. There is a steady rise in the research
produced in the EDR field [327] specifically exploring
the application of ML to EDR. Due to the large number
of endpoints, it’s necessary to perform EDR at scale (i.e.,
automation) and limit manual intervention as much as
possible. Ensemble models like Random Forest [327]
seem to be widely employed for EDR tasks.

2) Security incident and event management (SIEM)
functionality offers interactive and user-friendly
dashboards to encapsulate the previously mentioned
capabilities to enable a convenient, one-stop applications
for dynamic monitoring and response. SIEM’s notable
functions of event logging, report and alert functions,
and event correlation can be performed but due to
the high penetration of DER endpoints, the number
of logs and alerts a SIEM has to process grows
exponentially and can benefit from a system that
lowers the computational workload by allowing
only anomalous alerts/logs to be considered [328].
SIEM solutions such as OpenSearch and Wazuh
can accommodate monitoring at scale. For example,
OpenSearch’s distributed control paradigm across
multiple clusters (i.e., nodes and “shards”) allows:
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(1) simultaneous deployment on multiple control-level
nodes (e.g., PDCs, substations) to prevent single-point
failures; (2) monitoring of real-time data from shards
(i.e., sensing-layer endpoints) for logging, merging,
search, and analysis; (3) cross-cluster queries which
are applicable for clusters setup by utilities monitoring
micro- and nano-grids; (4) secure authentication for
customers to access their data (e.g., usage patterns,
billing information) through OpenID; (5) ease of access
using a REpresentational State Transfer (REST) API
regardless of the operating environment (e.g., Linux,
Windows).

Policy-based configuration management techniques (e.g.,
authentication for source nodes, broadcast management)
enable administrator-defined capabilities to enforce
mechanisms to authenticate and secure participating entities
and data (e.g., encryption, key management).

1) Symmetric encryption algorithms (e.g., triple data
encryption standard (3DES), AES) enable the
encryption of large-scale real-time data and are
regarded as computationally efficient relative to
asymmetric encryption algorithms.

2) One of the other aspects of policy-based controls is
to adequately enforce sufficient trust management using
rulebooks to provide least-privilege access to endpoint
devices and enforce dynamic trust distribution [329] to
such devices based on cyber events, natural disasters, or
physical compromises.

3) Data aggregation from deployed endpoints in a DERMS
can be considered multi-modal and can provide greater
insights into the nature of the system when such data
are combined together into a data lake. These insights
produce various parameters such as identity, device
health status, resource usages, anomalies, etc. and will
aid in driving security decisions.

Compliance control mechanisms help in protecting data and
improving the security model by adopting industry-specific
policies. Compliance is usually done sequentially through risk
analysis, developing policies and procedures, implementation,
validation, and enforcement [330]. Setting up constraints
on what a user can do directly and the programs that
they are allowed to execute are defined by access control
policies. To set up access control policies, the organization
should look into three factors: identification (user base),
authentication (user authentication), and authorization (user
permissions). Access control policies can be designed in
different variations such as discretionary access controls
(DAC), RBAC, attribute-based access controls (ABAC), and
hybrid access controls. Discretionary access control is the least
restrictive model, allowing an individual user control over any
assigned objects. ABAC scans the attributes of the requesting
user to determine whether they match the existing policies to
provide the requested access [331]. In the context of zero trust,
these access control policies make sure that all the users are not
given access by default, thus creating a trustless environment.
This gives access to users only depending on the set of rules
that are set up by the organization to secure and restrict access

to the organization’s data, tools, and devices [332][333]. This
ensures that the DERMS operators only with the right level of
security clearance can have access to the controls and data. For
example, RBAC policies may not permit device-level operators
to access higher levels of DERMS which includes energy
management services and microgrid controllers as they restrict
device-level operators only to the installation and operational
maintenance of DER devices.

2) Communication–layer Zero Trust Recommendations
Communications between critical infrastructure assets (e.g.,

AMI, DERs) are currently shifting from remote and segregated
units to systems that are network-capable. Commonly used
protocols for industrial control systems (ICS) and SCADA
systems used in power infrastructure are SEP and DNP, among
others (detailed in Section II). It is important to reiterate that
there is an increased attack surface due to the distributed aspect
of the modern power grid by what can really be considered
data-driven reliance.

Firstly, we recommend performing a gap analysis to enable
utilities and other entities involved in the energy lifecycle
to identify: (a) physical assets (i.e., control stations, PMUs,
RTUs) and other internet-facing sensing and control devices,
and (b) digital assets such as licensed or unlicensed software
such as ADMS, DERMS, and cloud infrastructure (e.g.,
Microsoft Azure for log audits and data storage). Having
a thorough listing of physical and cyber assets provides
the necessary insights to identify tracepoints [334] (i.e.,
ingress and egress interfaces) and therefore a broader view
of the threat landscape. This can then be followed-up by
implementing access control, incident response and planning,
and configuration management control mechanisms.

Access control policies (e.g., DAC, mandatory access
control, RBAC, ABAC, time-based, context-based, and hybrid
access control) can also be applied to this layer. From a zero
trust standpoint, this can be implemented as a software-defined
perimeter (SDP). For example, if we consider a self-sustaining
microgrid i.e., all the functions in the energy lifecycle are
handled solely by the microgrid, less emphasis can be
placed on the location and the function of the networks and
more significance can be given to dynamically and logically
allocating resources to networks requesting the resources and
the nodes within those networks. Additionally, recall that
the endpoints in distributed and federated DERMS types
(see Fig. 1) exchange data amongst themselves and with a
centralized entity to provide real-time insights; this increases
the visibility that each endpoint receives because of the
broadcasted full-duplex data exchange.

3) Control–layer Zero Trust Recommendations
Control-layer entities such as operator workstations and

control centers can be breached to issue unauthorized
commands to critical infrastructure. For instance, the Kemuri
Water Company hack in 2016 was carried out by hackers
who compromised an internet-facing workstation to operate
programmable logic controllers (PLCs) that manage water flow
rates and water treatment methods. The attack was primarily
due to outdated IT and OT infrastructure (i.e., the IBM
AS/400 and legacy operating systems) that were compromised
due to a vulnerability in the company web server’s payment
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application [335]. Though not explicitly stated by Kemuri, this
is an example of a man-in-the-middle attack where systems
were breached (remotely in this case) to manipulate control
subsystems.

Control systems should be equipped with digital forensics
functions such as process and memory captures to analyze
data and processing health of multiple DERs at the system-
and device-levels to identify potential IoCs before there are
cascading consequences. User and entity behaviour analytics
(UEBA) can be performed to further capture device or user
behaviors that deviate from established baselines. For example,
Yip and colleagues [336] model the electricity consumption
of households using a system of linear equations where
a coefficient (‘a’) (called anomaly coefficient) is used to
determine whether consumers are under-, over-, or correctly
reporting their consumption patterns. Similarly, Fenza et al.
[337] use a LSTM and k-means algorithm to capture historical
usage patterns by clustering raw data and extracting features
such as day/week/month and average consumptions. The real
consumption is used as the target label by which the LSTM
regression output is evaluated through the root mean squared
error (RMSE). Anomalous user behaviour or patterns are not
looked at a single event but rather as a trend over a historical
period (e.g., past week) and are captured by using the RMSE
and checking whether this value is between the range of (-2σ,
2σ) where σ is the standard deviation for the RMSE in the
preceding week; if the RMSE is not in this range, the authors
consider that as the presence of anomalies. The limitation to
such an approach is that it relies on a week’s time horizon to
make accurate predictions about current usage patterns and
therefore any anomalies; if such a model has to adapt to
varying consumption patterns and new environments, it needs
to be fine-tuned appropriately to handle concepts drifts.

There are other related works that address anomalies from a
user behaviour perspective [338][339] that may be of interest
to readers. It should be noted that most emerging works
with supervised and unsupervised algorithms (e.g., DNNs)
solve this problem and this presents a challenge on the
quality of data going into these algorithms, specifically from
an adversarial standpoint. Understanding adversarial attacks
against machine learning models will help in detecting bad
data (e.g., poisoned data) but also improve model robustness
to adversarial attacks [340].

IX. ML–SPECIFIC SECURITY RISKS IN DERS

Recall that, in Section VI-B, we introduced the many ways
in which ML can further enhance the efficiency of DERs.
However, it is now acknowledged that ML, despite providing
many technological benefits, also presents various security
risks [341]. This section extends our previous threat-modeling
analysis (in Section IV) so as to explain how deployment of
ML in DER should take into account potential adversarial
threats. Specifically, we will first summarize the most relevant
threats to ML, outline how they can be staged in the DER
context, and provide some mitigations drawn from prior work.
We will conclude this section with a description of a defense
tailored for data-perturbation–based attacks.

A. Evasion Attacks

The simplest form of security threat that can befall a
ML model embedded in a DERMS are evasion attacks, i.e.,
erroneous predictions (e.g., misclassifications) of the ML
model due to the so-called “adversarial perturbations” [341].
The fundamental principle of these attacks is to introduce a
small manipulation in a given input so that the ML model is
induced to produce a wrong output—ideally, one that favors
the attacker. The most common case is a malicious event that is
misclassified as a benign event, thereby “evading” a detection
mechanism and allowing an hypothetical attacker to persist in
their malicious actions.1

Abundant prior work has showcased that similar evasion
attacks can be staged in many settings—including those
envisioned in a DERMS. For instance, there is evidence of
successful attacks against telecommunication systems [343],
network-management systems [344], industrial control
systems [345], fault detection systems [346], power allocation
systems [347], intrusion detection systems [348], or even
systems for solar/wind power forecasting [349], [350].

There are many countermeasures that have been proposed to
mitigate these attacks, but many works have shown contrasting
results [351] with defenses being invalidated quickly after
publication (e.g., the defensive distillation case [352]). The
only technique which is known to produce good results is
adversarial training [353], which relies on training an ML
model on those samples that would otherwise evade such
a model: in this way, the model will be able to recognize
such “adversarial examples” and produce a correct output.
The problem, however, is that such a method only works
by predicting the attacks beforehand, and ensuring protection
against all conceivable evasion attacks is not possible [347].
Moreover, there are concerns about the degradation in
terms of baseline performance of the ML model, since the
retraining procedure may yield an ML model with an inferior
performance—albeit some works have shown how to mitigate
such an issue [354].

Nevertheless, we recommend future works considering
deployment of ML models in DERMS to scrutinize how
an hypothetical attacker can interact with such ML models.
Indeed, staging evasion attacks typically requires knowledge
of the model or the capability of querying the model and
observing its output: if this is not possible, then launching
a successful evasion attack is much harder for a real-world
attacker [355]. For instance, consider a DERMS using ML
for fault detection: to have a “faulty” event be misclassified as
“normal”, an attacker may attempt an evasion attack; however,
doing so in practice is not simple because the attacker would
require some form of access to the ML model, which should
be accessible only to users with elevated privileges. Hence,

1It is important to note that the term “evasion attack” in the ML-security
domain has a different connotation with respect to the cyber-security
domain [342]. In ML security, an “evasion attack” denotes a misclassification
at test time, i.e., after the ML model has been trained and deployed to fulfill
any given task. In cyber security, the term “evasion attack” refers to an attempt
that bypasses a security system (see also the cyber-kill chain discussed in
Section IV-C). In this section (i.e., Section IX) we use the term “evasion
attack” as is used in the ML-security domain.
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some evasion attacks can be effectively countered by denying
access to unauthorized people to the ML model [342].

B. Data Poisoning

While most security threats to ML (including “evasion
attacks”) occur during the inference phase of the ML model,
there is a form of security risks that specifically affect the
training phase of the ML model: data poisoning.2

The fundamental principle of “data-poisoning” is that a
given piece of data, after its acquisition by any given source,
is subject to some change. Then, when such a piece of data is
used to train (or re-train) any given ML model, such an ML
model may be “poisoned” and exhibit an incorrect behavior
during its inference (or operational) phase [341]. For instance,
such a poisoned datapoint may lead to, e.g., an overall lower
performance of the entire system over multiple inputs [357];
or to the creation of a “backdoor” that can be exploited by
an attacker by sending specific inputs that, e.g., bypass an
ML-based detector [358].

What makes data poisoning subtle, however, is that these
effects can also occur due to natural events—e.g., it is entirely
possible that some data that is used to train an ML model
is corrupted, or faulty, or wrongly labelled: in these cases,
the model will be negatively affected during its operational
phase [347]. Such an occurrence is not unlikely in the DERMS
context, given that the range of application of ML is vast and,
in some cases, large amounts of data are collected every day
by thousands of sensors. Historically, there have been works
covering poisoning in diverse domains that are envisioned in
DERMS, such as intrusion detection [359], industrial control
systems [360], fault detection [361], or load forecasting [362].
Given the complexity of DERMS, it is expected that one or
more ML components may be subject to poisoning—which
is something that practitioners in the field are concerned
about [363]. Moreover, the issue of data poisoning in DERMS
also encompasses all those use cases which leverage federated
learning (such as, e.g., power system applications). Recall
from Section VI that federated machine learning deploys a
global model to edge nodes to locally train models with
the objective to improve the global model. Model weights
contributed by each of the locally trained models can be
maliciously perturbed before they are sent to the global model,
thereby leading to “poisoning” the global model. In the context
of DERMS and power systems, the IoT paradigm and the
volume of data contributed from geographically dispersed
sensing devices fits the description for a canonical federated
machine learning application [19] (e.g., energy prediction to
prevent grid instability and congestion [364]).

Defenses against poisoning are well-studied in the academic
sphere [365], [366], [367], [368], [369], [370]. However, the
best approach to mitigate the problem of poisoning is to

2In the ML-security domain, a “poisoning attack” is a term used to denote
adversarial manipulations of the training data—or that, more broadly, seek to
mislead any given ML model by tampering with the training data used to train
the ML model. Such a connotation is different from that used in other security
domains [356], for which there is no notion of “training” (which is intrinsic
of ML). For instance, as we discussed in Section IV-C, ARP poisoning is an
attack that has no nothing to do about “manipulating training data”.

prevent the generation of poisoned data in the first place.
For instance, this may entail input verification/sanitization
whenever some sensor produces an output [371]; or more
accurate labeling duties [372]. Moreover, to protect against
poisoning attacks (and not that induced by natural phenomena
or negligence), the best way to do so is to prevent unauthorized
people from accessing the training datasets of an ML model.
However, similar solutions may not be applicable in some
contexts: for instance, an attacker can control a sensor in
a network, and such a network uses the data produced
by the sensors to train some ML model. In these cases,
it is possible to apply some of the previously mentioned
solutions (e.g., [365], [366], [367], [368], [369], [370]). We
also mention the existence of defenses that are specifically
tailored for mitigating poisoning attacks in federated learning
contexts [373], [374].

C. Model Inversion/Stealing

A concern that is becoming increasingly popular among
ML developers is the risk of having an ML model to be
“stolen” [375], thereby leading a third-party to cheaply obtain
a copy of a model that may have taken years to develop. The
first “model stealing” attack was carried out by Tramér et al.
in 2016 [376]. Since then, a plethora of papers have been
focusing on this problem [375].

In the context of DERMS, possibilities of model stealing
can arise when taking into account that DERMS are not
always managed by a single entity. Potentially, some tasks are
outsourced to other companies—and these channels enable one
to stealthily obtain information that can be used to “clone” a
given ML model, leading to loss of intellectual property from
the rightful owners of the model.

Nevertheless, the ways to carry out model stealing attacks
are diverse. It is possible to do so via power side channel [377],
or by operating at the hardware level [378], or even by
querying a model and see its output [379]. Defenses can
involve the usage of deception [380] or obfuscation [381],
as well as detection of stealing attempts [382]. However,
when the attack is carried out at the hardware level or via
side channel, developing a “general” defense is a potentially
unfeasible goal [375].

An orthogonal line of defense can entail the usage of
watermarking: [383]: by embedding a watermark on a model,
it is possible to at least “prove” if your model has been stolen
by revealing the watermark in the stolen model. However,
such a mechanism may not be simple to stage in the DERMS
context, since it would require the rightful owners of a model
to figure out that their model is being used somewhere else.

D. Membership Inference

The last type of ML-specific security risk is a type of
privacy attack denoted “membership inference”. The idea is
to determine if a given piece of data is included in the training
set used to develop a given ML model [384]. Such a threat
is typically envisioned in healthcare contexts: in principle, it
is possible to determine if (the data of) a given patient was
used to train a model for, e.g., diagnosing cancer—which is
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clearly a privacy violation. As a result, many defenses have
been proposed to counter such a threat [385], [386].

Nonetheless, to the best of our knowledge, there are no
practical use cases of membership inference attacks in the
DERMS context [387]. This is because, even under the
assumption that an attacker is able to carry out a membership
inference attack, the use cases in which ML can be deployed
in DERMS do not enable a straightforward profit for an
attacker. Indeed, it is important to stress that a membership
inference attack does not allow one to steal the training
dataset: it merely serves to determine if, given a datapoint,
such a datapoint was included in the training dataset of the
ML model. Hence, an attacker first needs to obtain a datapoint,
and then gain some profit by the attack.

A potential application, however, of a membership attack in
a DERMS context may be one considering a billing system.
For instance, an ML model may be used to automatically
determine when is the best moment to send a billing
notification to a given client. Therefore, such a training dataset
must contain details of the clients of a given company. Via a
membership inference attack, an attacker can infer (assuming
that the attacker meets the requirements to launch such an
attack) if a given entity is a client of the company owning the
model.

Hence, we advocate ML engineers and DERMS developers
to consider the possibility of membership inference attacks,
too, and apply proper countermeasures if deemed necessary.

E. A Potential Defense Against Data Perturbations

In what follows, we now provide a high-level overview of
a defensive mechanism against malicious data perturbations
that relies on the principle of “quarantining” those inputs
that are not properly analysed by an ML model (similarly to,
e.g., [388]).

The intuition is that the output of any given ML
model should not be trusted a-priori. Rather, it should be
scrutinized, and potentially used to identify instances of
data-poisoning—either at inference- or at training-stage. Such
a goal can be achieved through methods based on uncertainty
estimation [389], [390], [391]. For instance, by computing the
confidence of the prediction of a given ML model, it is possible
to ignore some of its outputs, putting them in a dedicated
quarantine that will be further scrutinized (either by experts
or by dedicated systems [392]). The decision to “accept”
or “reject” a given prediction will depend on a confidence
threshold θ: predictions above θ will be used by the DERMS,
whereas those below θ will be put in quarantine [393]. The
triaging of the events in quarantine will occur depending on
various factors such as when there is a substantial number of
events generated by the same source; potentially, such triaging
may entail the development and application of automated
mechanisms (e.g., [394]). The confidence threshold θ should
be set so as to balance the tradeoff between usability and
security.

The use-case we consider is one where an ML model M
analyzes the traffic produced by the DERMS in the form of
communication flows, depicted in Fig. 11. The ML model M

is a binary classifier: given an input flow f , the ML model
classifies it as benign (b) or malicious (m):

M(f) = (m ∨ b) (1)

This input flow can be considered as being drawn from a
data lake whose individual datapoints originate from various
sensing layer endpoints such as RTUs, smart metering devices,
smart inverters, PMUs, etc. The ML model is obtained by
fitting any ML algorithm on a training dataset T . With
respect to data perturbations, we consider two scenarios: S1
(i.e., training-stage “poisoning” perturbation) wherein some
perturbed samples f are put in T leading to future versions
of M to exhibit a poor performance; S2 (i.e., inference-stage
“evasive” perturbations) wherein a given set of samples f have
been purportedly manipulated so as to produce an incorrect
output by M .

Note that both S1 and S2 can stem from three diverse
sources, i.e., a deliberate attack (e.g., FDI), a natural fault
of the DERMS (e.g., system outage), or poor management by
the DERMS’ developers. For example, S1 can be a product of
a FDI attacks and data integrity compromise i.e., incorrect
labeling (clean or dirty) for binary classification problems.
Membership functions used during the FDI attack phase can
decrease detection likelihoods and alter a fraction of the
training data only marginally to remain unnoticed (e.g., partial
reduction of continuous variables by a constant factor [395]).
Such a training-stage poisoning attack can lead ML models
to misclassify anomalous behavior (e.g., electricity theft) or
produce erroneous predictions (e.g., load forecasting errors).

In the considered defensive mechanism, the ML model will
not only provide the classification output to a given input, but
will also provide the confidence of such output, which we
denote as CM (f). Then (given the confidence threshold ’θ’)
the actual prediction M(f) will be accepted i.i.f CM (f) >
θ: in this case, the DERMS will act upon such predictions
(e.g., if M(f) = m, then it may raise an alert to investigate
the components involved in the input flow ‘f’); otherwise, if
CM (f) < θ, the sample f will be put in quarantine, Q. The
samples in Q will be periodically reviewed (e.g., by a human
analyst), in an attempt to understand the reason that led M to
produce a particular confidence level. Such an analysis may
reveal that, e.g., a component may have been subject to FDI
attacks, or some natural fault (both of which are discernible
if there are many flows f from the same source). Moreover,
as an additional benefit of such an approach, by comparing
the samples in Q with those in T , it is possible to determine
if the ML model M must be updated (i.e., due to concept
drift [392]). We note that the mitigation above may fail in
the event of “clean label poisoning” [396], [397], as well as
in other attacks which require an adversary to have precise
control of T (e.g., backdoors [398]).

X. GRID SERVICE MANAGEMENT FOR DERS

Section IX has briefly defined an adversarial machine
learning method (i.e., data poisoning) and details a robust
mechanism to identify poisoned data with a certain degree
of confidence. We will now shift our focus to looking at
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Fig. 11. Data–perturbation scenario and a potential defense. We consider adversarial perturbations that can “poison” (i.e., negatively affect) the output
of the ML model either during its training stage (i.e., when such perturbations are put in the training data) or during its inference stage (i.e., when the
perturbations only entail samples analysed by the model during its operational phase). An exemplary use-case is an ML model for intrusion detection.

Fig. 12. Grid services supported by DERMS – Flexible load compatible
(blue) and PV/BESS compatible (beige).

grid service management practices for increasing penetration
of certain DER types (i.e., electric vehicles) from cyber and
distributed architecture perspectives to improve the resiliency
and decision-making at levels 1, 2, and 3 of the IEEE
1547.3-2023 standard. The first part of this section will
summarize cyber threats for the EV DER asset type and
make two recommendations for securing V2G infrastructure.
Secondly, a layered architecture to support grid resiliency
and offer distributed decision-making to prevent single-point
failures (i.e., similar to the distributed and decentralized
architecture types) is proposed for general DER applications.

Electric system planners and operators use demand response
(DR) programs as resource options for balancing supply
and demand. In the United States, demand response was
primarily used to provide peak load management, specifically
load reduction during contingency events [399]. DR allows
consumers to play an important role in grid operation by
reducing or shifting their electricity usage during peak periods
in response to time-based rates or other forms of financial
incentives [399]. In the future, DR services will be offered
with greater flexibility in the renewables integration of variable

resources and new technologies such as electric vehicles
such as bidirectional charging capability using Vehicle-to-Grid
(V2G) technologies.

DR services are actively bidding energy for capacity-based
generation from various resources such as solar photovoltaic
(PV), as well as other ancillary services in the form of
wholesale and retail markets under dynamic pricing programs.
These services are still emerging advances in communications
and control technology because they allow for maximum
resource value without insight into future market structures.

To avoid curtailment based on the DR scenarios such
as low and high DR, the DR end-users are categorized as
commercial, industrial, municipal, and residential sectors, for
purposes such as cooling, heating, and ventilation. With this
rapid development, the use of AC/DC hybrid multi-microgrid
(MMG) concepts is gaining popularity [400]. As a part of
DR responses, these MMGs will be used in both commercial
and residential sectors, integrating small-scale solar PV, wind,
and renewable distributed generators. Energy storage systems,
such as the battery energy storage system (BESS), can store
energy from bidirectional charging from V2G services as well
as renewable generation. Fig. 12 offers a non-exhaustive list
of grid services that serve flexible loads (e.g., EVs) and fixed
loads.

The massive interaction of data within and outside the DR
management system present unique cyber threats [401][402].

A. Cyber Threats for Vehicular Grid Assets

The utilization of V2G technology enhances the grid
flexibility by balancing the demand and supply scenario
by harnessing the bidirectional capability from the charging
stations. In terms of grid stabilization, the V2G system
also facilitates the peak load management, during the load
demand period and maintains the grid resiliency with a
reduced infrastructural cost [403] [404]. In common, V2G
contributes to reduction in carbon emission by utilizing
renewable resources [405].

The integration of V2G systems to the grids causes potential
vulnerabilities and is susceptible to cyber attacks. In a V2G
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system, several modules can be targeted for attacks based on
their system architecture and design.

1) Mobility of data packets: The functionality of
vehicle-to-home (V2H) and vehicle-to-building (V2B)
systems aims to connect several smart devices through
mobile and web applications facilitating efficient
charging scenarios and user’s decision in contribution
to its storage unit or to a designated aggregator.

2) Meters and monitoring systems: The V2G ecosystem
includes several metering and monitoring systems such
as AMI, Smart Meters, and aggregators. There are
many security challenges involved in considering these
modules to be protected. The EV charging sites
follow Open Charge Point Protocol (OCPP) for their
charging operations which ensures the efficiency and
quality of services (QoS) between the charge points
and central management systems [406]. The attack in
AMIs includes the intrusion detection system (IDS),
monitoring abnormalities that deal with energy theft by
grid overloading.

3) Edge device tampering: Common attacks on the electric
vehicle supply equipment (EVSE) are physical access
attacks through the interfaces in EV charging stations.
According to a report from NREL on vehicular security
threats, the on-board diagnostics (OBD) which provides
access to external networks and devices is the most
commonly used port for exploitation, in terms of the
physical access risk [407]. Their mitigation approach
includes preventing unauthorized access, reducing the
number of external interfaces, and monitoring vehicles
for signs of physical access. In addition, the charging
stations demand the use of RFID to schedule the charge.
According to the report from Kaspersky, these RFIDs
are vulnerable to attacks through replication that turn
out to be MiTM attacks. This RFID includes the critical
data logs such as charging duration, and payment details
and can lead to malicious firmware when communicating
with the vehicle and the charging station [408].

The key factor in securing V2G infrastructure includes the
privacy-sensitive continuous data exchange, monitoring the
infrastructure for anomalies, and AI-driven solutions based on
DL:

1) Blockchain and consensus scheme: In the context
of vehicular communication, channeling wireless
networks requires real-time data authentication through
blockchain technology. The Internet of Vehicles
and its architecture can be protected from cyber
risks with the characteristics of decentralization. A
consensus algorithm enables a network of nodes to
validate data added to the blockchain. According to
Xu et al., the Practical Byzantine Fault Tolerance
consensus algorithm is popular in recent research
studies, although it’s not suitable for dynamic networks
due to its large communication overhead [426]. The
wireless communication between the vehicles and other
corresponding nodes is vulnerable to cyber attacks
such as injecting false data and tampering with the

information transferred [427]. Thus, securing and
validating the data blocks with a consensus algorithm
can resist malicious attacks in addition to securing
communication nodes such as roadside units (RSUs)
and charging service providers [428].

2) AI for securing vehicular communication: An approach
of intrusion detection and diagnostics systems (IDDS)
enhances vehicular communication by authentication
and encryption. Research efforts exploring ensemble
learning and several optimization frameworks offer
diverse functionalities and services. Within the
network-controlled vehicles, various attacks including
DoS, spoofing, and malicious messages have been
observed within the network packets [429]. The
progression of ML and DL techniques can process
these packets by classifier-based IDDS thereby reducing
the vulnerability of cyber threats in the vehicular
ecosystem [430].

An overview of cyber risks involved in the context of
V2X, and related technologies is illustrated in Table XII.
They are categorized based on the assets and their associated
attack vectors. The likelihood and impact of certain assets
and their impacts are assessed based on the attack types
discussed in the existing literature. V2G services can either
be centralized (i.e., aggregator is responsible for managing
and optimizing EV contributions) or decentralized (i.e., local
entities autonomously manage EVs) and our assessment in
Table XII refers to both these architecture types. Each of these
types have their advantages/disadvantages [431] and at least
from the perspective of grid services (e.g., voltage regulation)
provided by edge resources such as EVs, a better solution to
integrate such edge resources with systems such as ADMS and
DERMS is through a laminar architecture that we will discuss
in the following subsection.

B. Layered Architecture for Grid Services

Traditionally, centralized decision support located at ADMS
is employed to coordinate the grid’s many distributed resources
to extract different grid services [24]. However, the centralized
decision-support system is vulnerable to communication
and single-point failures either due to cyber attacks or
natural events, is slow in response, and poses scalability
challenges when required to coordinate a large number of
controllable agents. This has led to an interest in distributed
decision-making paradigms for the active distribution systems
that (1) reduce the computational requirements on a single
decision-making unit by distributing the problem into several
smaller sub-problems that are computationally simpler; (2)
result in a decision-making paradigm with multiple interacting
agents that is robust to single-point failures; and (3) relax the
need for communication between the central controller and
all connected controllable/non-controllable assets thus better
manage data privacy considerations [57][432]. Due to these
advantages, distributed optimization in power distribution
systems has gained significant attention lately, with several
contributions related to algorithm development and their
applications for optimizing operations [433]. Furthermore,
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TABLE XII
THREATS IN V2X ECOSYSTEM: ASSETS, ATTACK VECTORS AND COUNTERMEASURES.

Assets Attack Vectors Likelihood (High/Medium/Low); Impact (↑, ↓,↔) Framework & Countermeasures Refs.Confidentiality Integrity Availability
V2G &
G2V

Mobility of Data Packets,
AMI, Smart Meters
Charging Stations and
EVSE: OBUs, Charging
Service Provider Authority
(CSPA).

Side Channel
Attack (High,
↓).

Replay Attacks
(Medium, ↔).

DDoS (Low,
↑), Tampering
(High, ↔).

Blockchain-based distributed ledger technology
(DLT): Consensus Algorithm – RAFT and
PBFT Efficient Cryptographic Primitives
Enabling Mutual Authentication, Key
Derivation, Hash Function.

[409], [410],
[411], [412],
[413], [414],
[415], [416]

In–Vehicle
& V2X

In-Vehicle: EV Charging
Port, OBD, CAN, ECU
V2X: Keyless Entry, BLE,
DSRC, WiFi, Road Side
Units (RSUs).

MiTM
(Low, ↑),
Eavesdropping
(Low, ↓).

Malware (High,
↑), Spoofing
(Medium,↔),
Packet Replay
(Medium, ↔).

DoS (Low, ↑),
Cloning (Low,
↔), Tampering
(High, ↔).

AI-based framework for Intrusion Detection
System and Vehicular Ad Hoc Network: Deep
Transfer Learning, CNN.; Blockchain Assisted
Authentication Protocol.

[417], [418],
[419], [420],
[421]

Renewables
& BESS

PV System at Microgrid
Level.

Phishing (Low,
↓), MiTM
(Low, ↑), FDI
(High, ↑).

Spoofing
(Low, ↔),
Replay Attacks
(Medium, ↔).

Scaling and
Ramping
(High, ↑), DoS
(Low, ↑).

Fuzzy Modeling and Identification Approach;
Singular Value Decomposition (SVD) and
Disturbance Decoupling.

[422], [423],
[424], [425]

the increasing deployment of non-utility DERs is forcing
a transition away from the purely centralized approach
[434]. To this end, a laminar/layered architecture for
decision support that synergistically combines distributed and
edge-control paradigms is emerging as a viable architecture for
grid-edge coordination [435]. A layered architecture typically
recruits an ADMS that is centralized, and many distributed
decision-making agents to coordinate a large number of
controllable grid-edge resources including grid-interactive
buildings, DERs, and other legacy devices to extract grid
services. An example framework is shown in Fig. 13. The
description of the control levels is briefly explained here for
general applications.

• Level 1 controller is located at the DMS/ADMS and has
access to the full distribution system model. However,
measurement data from edge devices are available less
frequently. This agent is responsible for only observing
the control decisions or making decisions at coarser
time-scale.

• Level 2 controller is located at several distributed
agents throughout the distribution feeder. These agents
have partial access to the distribution network model
and are responsible for controlling one or a group of
active nodes (controllable assets). The distributed agents
solve a distributed optimization problem to maximize
either system-level utility or individual utilities (in
the case of greedy/private stakeholders). These agents
use peer-to-peer (P2P) communication to exchange
a minimum set of information among their trusted
neighbors to achieve their respective goals. Then, they
coordinate the agreed-upon decision on their controllable
assets in Level-3.

• Level-3 controllers are located at individual controllable
nodes. They communicate with the Level-2 controller
that they are affiliated with. Level-3 controllers can
either include purely local control modes or peer-to-peer
control, as in Level 2. In most cases, Level-3 agents will
have limited computing capability and limited access to
the distribution system model and parameters.

The application of layered architecture has been
demonstrated to coordinate grid services from DERs. One
such application includes using layered architectures for power

distribution system restoration for enhanced resilience [436].
This work develops a distributed decision-making paradigm
that deploys multiple agents to solve a global/network-level
objective by solving smaller sub-problems and jointly
coordinating their individual decisions. This architecture
enables a bottom-up distribution system restoration by using
all available resources (e.g., DG units) through local awareness
and limited data exchange with neighboring agents/regions.
It enables system autonomy through distributed algorithms,
preserves privacy, has reduced computational costs relative
to other centralized solutions, and is robust to single-point
failures.

Fig. 13. Layered architecture mapped for distributed applications.

To systematically deploy advanced decision-making
architectures, the following important questions need to be
answered: (1) what information (model and measurement
data) should be exchanged among agents at different
levels and those within the same levels? (2) how are
control and optimization algorithms distributed for different
levels of a given application? The two questions are
strongly coupled; a different information structure leads
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to a different optimization/control paradigm and related
algorithmic challenges. Moreover, the attributes of the
communication network dictate the reliability and applicability
of the distributed algorithms for real-time operations. This
necessitates evaluating the algorithm performance with a
realistic communication system model. Lately, co-simulation
platforms such as HELICS have emerged as a viable
means to co-simulate cyber and physical layers [437]. In
a recent work, this platform is used to co-simulate power,
communication, and control layers to evaluate the effects
of communication delays, latency, and topology on the
performance of distribution optimization algorithms for grid
operations [438].

XI. LESSONS LEARNED

As was seen in the previous sections, cybersecurity for
DERMS requires thoughtful consideration of multiple aspects
such as architecture types, test beds, threat models, etc. We
expect the digital ecosystem to evolve with increasing vendor
products (e.g., ADMS software) and product integrations
(e.g., DERMS augmented with AI) in the market, and this
presents unique cyber-physical challenges and threat scenarios;
however, this survey has provided notable trends, threat models
(i.e., hardware and software), and IT technologies that will
remain applicable to the future’s DER-focused grid. In this
section, we will highlight lessons learned on: (1) existing test
bed capabilities, (2) threat models, (3) hardware security, (4)
our proposed solutions for intrusion detection technology/(5)
zero trust security, (6) and machine learning applications to
the power grid.

A. Stress Testing

Stress testing is important when deploying SCADA/ADMS
test beds. Performance metrics for stress testing such
as System Average Interruption Duration Index (SAIDI),
Momentary Average Interruption Frequency Index (MAIFI),
etc. only evaluate the reliability of a power system
[439] and not a power system’s stability, efficiency, or
resiliency against cyber attacks. The evolving nature of
adversarial threat models warrants fine-grained insights into a
power system’s behavior through analyzing voltage/frequency
stability (e.g., deviations), power quality (e.g., distortion), and
response-time (e.g., fault tolerance) to identify anomalous
behavior and deploy remediation measures. Other related
test beds environments include the Real-time Immersive
Network Simulation Environment (RINSE), Internet-Scale
Event and Attack Generation Environment (ISEAGE) by ISU
[440], and the Defense technology experimental research
(DETER) project supported by the Department of Homeland
Security (DHS), National Science Foundation (NSF), and the
Department of Defense (DoD) [441]. Details on these test beds
are provided because: 1) they do not create platform testing
specific to DERMS, or 2) are dated and do not comprehend
emerging innovations. Nevertheless, these test beds offer wide
capabilities to perform stress tests.

The protocols mentioned offer native security features
although the “hardness” of these features can be questioned.
Though the properties of authentication, authorization, and

confidentiality are theoretically provided by Modbus, Modbus
can still be compromised through packet sniffing to extract
confidential information and DoS can be used to interrupt data
flow [119]. Standardized protocols, interoperable devices, and
appropriate cybersecurity measures must be set in place to
facilitate the feasible incorporation of PMUs and µPMUs into
the grid. Native security features only serve as capabilities and
do not guarantee security when these features are not enabled
or properly configured by system operators. Also, variations
within protocols require additional security considerations
especially when they are integrated with different systems.
One counter-strategy is to establish security benchmarks at
the time of design and development.

B. Threat Modeling
Findings indicate that Threat Scenario 1 (“DER Aggregation

Risks”) poses a large threat to system-level and large-scale
entities such as DER aggregators and market operations.
Threat Scenarios 2 and 3 pose significant threats to DERs
at device-level and communication protocol-levels. Threat
models targeting specific layers may exploit critical security
problems and critically affect DERMS’ functionality (e.g.,
outages). Data science techniques (e.g., statistical models) and
AI (e.g., generative models) can be used to create synthetic
data for threat modeling. Deploying AI-powered security
components that can be trained to prevent concept drift and
adapt to evolving threats provide more innovation avenues.
Future DERs are at risk for AI-generated attacks, so the best
solution lies in protective and watcher AI components.

Based on the FDI attacks detailed in Tables V and
VI, we notice that FDI attacks are primarily constructed
to disrupt the control of power electronics devices
(e.g., converters, inverters) as they rely heavily on the
voltage/current information at the interfacing buses and on
the power demanded from the different DERs. FDIs can
be modeled in multiple ways - for example, FDI attacks
can assume full network, limited, or even no network
topology information, recruit various membership functions
(e.g., random, time-varying, ramp), target assets at the sensing
and communication layers, or incorporate falsified state
estimation measurements or malware. Along with directly
manipulating the control signals that are fed to power
switches, FDI attacks on these control signals provide an
opportunity for the intruder to manipulate the switching action
of power electronics, thereby disturbing grid-reliant processes
(e.g., automatic generation control, voltage stabilization, load
dispatch) typically executed at energy management systems
(EMS). Beyond the switching signals, FDI attacks on the data
corresponding to the switching status (ON/OFF) results in
hiding a converter/inverter fault scenario as a normal scenario
or vice versa. Any manipulation of the grid voltage signal
not only hinders attainment of the control objectives at the
individual DER level but has a detrimental impact on the
stability of the entire grid.

C. Hardware Security
Compromised electronics can significantly hamper privacy,

security, safety, and resiliency of DERMS and other smart
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grid systems. Incidents such as the “Big Hack” [196][197]
have large scale devastating societal impacts. Hence, it is
important to recognize these security concerns in the context
of smart grid so that effective security solutions can be
developed through broad collaborations. Demonstrated threats
such as hardware Trojans, side channel attacks, and reverse
engineering must be thoroughly explored. Furthermore,
awareness of hardware security threats among smart grid
professionals and students must be enhanced to properly
support this area of research and engineering. A strong
consensus between software and hardware developers for
DERMS should also be established. Standards and regulations
for securing DER hardware must be enforced along production
cycles. Commercial concerns may keep hardware developers
from revealing details for their products; therefore, regulations
should require that DER hardware be produced in accordance
with pre-defined security best practices.

D. Intrusion Detection

Building continuous integration/continuous delivery
(CI/CD) pipelines provides rapid development and reliably
to deliver services while streamlining development and
deployment workflows. Our proposed IDFF framework is
an example of this and will aid in increasing agility and
reveal software flaws early in the development cycle. A
continuous integration workflow uses build automation to
incorporate frequent code changes. Each piece of software
code that is changed is automatically built into an image
and spun up as a container. Containerization of applications
provides broader benefits such as fine-grained resilience,
eliminating single points of failure, scalability, infrastructure
optimization, rolling upgrades/rollbacks, logging, monitoring,
and security. Upon integration and packaging of the code,
a continuous delivery workflow is initiated. CI/CD aims to
safely deliver integrated code changes into environments by
using automated tests. Moving through various stages of
the build process, tests validate the code quality and ensure
secure deployment.

E. Zero Trust Security

Simple defense strategies to secure endpoints and perimeter
devices are not viable due to the complex nature of power
infrastructure and the integration of technologies like the
cloud. Old models include measures such as locking down
networks and user access for varied periods of time to
restrict unauthorized movement; this hinders interoperability
and collaboration, especially in heterogeneous and multi-entity
systems like power grids. Zero trust principles based on
access control policies (e.g., privileged access management,
identity access management), real-time endpoint monitoring
(e.g., endpoint detection and response), incident management
solutions (e.g., SIEM), edge frameworks (e.g, secure access
service edge), SDPs, and digital forensics reduce the likelihood
of cyber attacks in addition to improving the resiliency of
the systems. This is made possible by the reduction of
attack surface and implementing risk-based security policies
compatible with cloud technologies, DERMS, DER endpoints,

and system-level entities such as TSOs. One major bottleneck
of zero trust application to power grids is the abundance
of legacy infrastructure. Legacy systems may not justify a
complete zero trust shift in all cases, and custom security
controls must be designed and enforced to remediate emerging
cyber-physical attack vectors. Our proposed frameworks in
Section VII and Section VIII support the pillars of the Zero
Trust Strategy proposed by the Department of Defense (DoD)
[442] - (1) Users (2) Devices (3) Applications and Workloads
(4) Data (5) Network and Environment (6) Automation and
Orchestration (7) Visibility and Analytics.

F. Machine Learning

From our discussion on ML-specific security issues in
Section IX, we emphasize the importance of assessing the
security risks of ML before deploying such technologies
in DERMS. Even though some attacks proposed by prior
literature may seem far-fetched in the DERMS context,
DERMS are a critical infrastructure and hence they should
expect to face even highly skilled and motivated adversaries.
Nonetheless, as long as fundamental security precautions are
taken (e.g., preventing access to the model by unauthorized
parties) then the majority of security threats to ML would
be prevented. However, attackers may still leverage blind
spots such as side channel, or insider threats, or may even
compromise the supply chain so as to gain some form of
access to the model. In these cases, it is necessary to rely
on proper defensive techniques that enable to withstand, e.g.,
evasion attempts, or data poisoning (which can also happen
“naturally”), or model stealing, or even privacy violations
via membership inference attacks. Therefore, it is crucial to
identify the weakest link in a DERMS that is powered by
an ML model, and then invest enough resources to ensure
the DERMS continuity of operation even if it is subject by
adversarial ML attacks.

XII. TECHNICAL CHALLENGES AND FUTURE DIRECTIONS

Finally, we provide important technical challenges and
future directions that should be discussed in the context of
DERMS security. For this study, we look at control parameter
optimization, advanced persistent threats, application of cyber
kill chains, and recommended security practices.

A. Control Parameter Optimization

It is well established that utility operators have to deal
with a large number of parameters that operators can tune
to optimize grid support functions such as power factor
control, frequency/voltage ride through, power curtailment,
voltage regulation, among others [443]. Considering this
and the heterogeneity of DERs, the control parameter space
for distribution entities and serviceable endpoints starts to
expand. Work is done to optimize these grid support functions
to improve grid stability [444][445][446]. For example,
automatic voltage ride-through or dynamic voltage/VAR grid
support functions can be implemented by DERs through
an ADMS to minimize voltage deviations from a set
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target voltage so there is a reduction in unnecessary power
consumption and/or voltage reduction [447] (i.e. putting the
“smart” in smart inverter-based DERs). However, recent works
in this area (2021 onwards) use statistical and optimization
algorithms without leveraging AI/ML; this presents novel
research directions given the scalability of DERs and grid
support functions. As stated by EPRI [448], determining
parameters for grid support functions has different levels of
complexity and the highest levels of complexity (i.e., based on
DER type) should consider parameters such as feeder model
topology, location, transformer impedance, load levels, etc.
Once the optimal parameter set is chosen, the information is
relayed through remote communication or firmware updates
both of which are viable threat vectors [449]. We expect
FDI, data modification/alteration [450], and DoS attacks to be
targeted at such grid support functions to create sub-optimal
conditions (e.g., unexpected reactive power due to manipulated
voltage), small but permanent damage to transformers and
power lines, and malicious islanding of DERs [451].

B. Advanced Persistent Threats and Cybersecurity Kill
Chain Methods

Advanced Persistent Threats (APTs) require “diligent
surveillance” and constantly adaptive cybersecurity responses
[452] and because the energy sector is a principal target
for cybersecurity attacks [453], we must employ effective
methodologies like CKC. Attacks in Ukraine, Saudi Arabia,
and South Africa illustrate the need for heightened vigilance
against APTs [454]. A common kill chain methodology
addresses 7 levels of resolution for cybersecurity threats [455]:

1) Reconnaissance
2) Weaponization
3) Delivery
4) Exploitation
5) Installation
6) Command and Control
7) Action on Objectives (AoO)
These levels represent objectives by a threat actor in an

APT scenario. The degree of hostility that may be encountered
with a cybersecurity adversary considers the Opportunity Triad
which measures persistence and drive of the threat actor as a
product of their Capability, Intent, and Opportunity [456].

Energy grid cyber safety is relevant when the defense
exceeds the product of a threat actor’s capability, intent, and
opportunity. Since it is impossible to control the intent of
a threat actor, and the control of threat actors’ capability is
limited, controlling opportunities effectively stops attackers
before they reach their AoO. If the opportunity is brought to
zero, no attack is possible. This principle stresses the need for
grid infrastructure to remain up-to-date with fixes that address
security issues, adherence to best security practices, and the
need for rigorous testing of new features.

While postmortem analysis from the following victims
does not provide all permutations of the CKC in all
situations, we address the points at which a CKC could
have stopped energy sector attacks on Ukraine in 2015 and
2016 (BlackEnergy), the Shamoon attack on Saudi Arabia

oil interests in 2012 (Aramco), and the 2022 ransomware
attack against South Africa’s state electrical provider (Eskom).
Ukraine and Aramco appear to have politically motivated
intent [457][458] while Eskom’s woes appear to be financially
motivated [459].

The Pyramid of Pain (PoP) spots indicators of attack that are
key for unraveling the APT and implementing your kill chain
before AoO is accomplished [460]. Not all of these indicators
are equally valuable and are ranked according to utility i.e.,
from least valuable to most valuable:

1) Hash values (applicable at the communication layer):
Antivirus programs, Threat Intelligence Platforms, and
SIEM systems can all leverage known threat hash
values to find malware items and specific patterns
on systems. Within energy grids, hashes for threat
activity (e.g., viruses) and for allow-listed software,
firmware, and devices can greatly improve security. For
example, batches of data sent from smart meters can
be monitored as processes that are used to generate
n-bit hash functions (e.g., n = 128, 256) [461]. Since
smart meters operate according to a fixed environment
specified by the manufacturer, an allow list of legal
processes is feasible (i.e., memory-wise) and hashes can
be used to monitor for any modifications due to malware
in these processes. Similarly, security recommendations
from NREL for IBRs and edge devices [462] list a test
(i.e., “Test 5: Message Authentication Code”) to validate
if MACs exist for DER communication protocols that
use TLS (e.g., Modbus) for for MACs that integrate
hash functions. While a secure channel is recommended
for two-way communication (e.g., between DER devices
and gateways) to implement MACs, this may not be
necessary in all cases as shown by Aghapour et al. [463].

2) IP addresses (applicable at the sensing layer):
Knowledge of known malicious addresses can cut off
communications before they begin. Tight IP control is
useful against reconnaissance phases of the kill chain or
as a response against later phases. For example, IEEE
2030.5 calls for IP addresses as part of provisioning
of DER endpoints as part of the Common Smart
Inverter Profile (CSIP) [464]. Helpful tools include IP
allow lists based on authentication, integration with
dynamic DNS, firewalls, IDS/IPS systems, and Threat
Intelligence Feeds which list hacker-controlled systems.

3) Domain names (applicable at the sensing layer):
Provisioning DNS is also included in CSIP [464].
Additionally, knowledge of compromised domains
used by threat actors can be used to prevent
endpoints/customers from accessing known threats.
These domain names can be resolved in proxy systems,
DNS filtering systems, and as part of a SIEM.

4) Network and host artifacts (applicable at the sensing
and communication layers): Grid devices creating
logs and histories should be analyzed to reveal threat
actors. Tools like Endpoint Detection and Response
(EDR), Log Analysis, Network Monitoring/Analyzers
and Behavioral Analysis analyze Smart GRID artifacts
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to determine compromise. Increasingly, AI tools like
clustering and large language models (LLMs) are
useful in blocking threats using past network and
host artifact data. To adapt security systems to newer
cybersecurity tools, semantic understanding of edge
devices nomenclature will benefit from systems like the
Open Energy Data Initiative’s Energy Language Model
(ELM) [465].

5) Tools (applicable at the control layer):
Cybersecurity-specific tools (e.g., virtualization,
sandboxing, group policy management) can be used
to identify compromises or contain your environment
deterministically, lowering hacking opportunities.
Tooling can be difficult on endpoint DERs except
when provided by the manufacturer. In situations where
endpoints are not using encryption, switches should
compensate by creating encryption layers on behalf
of the endpoint. For other systems, like aggregators,
sandboxing via containers, message authentication
codes, and application allow-listing is necessary for
secure environments.

6) Tactics, techniques, and procedures (applicable
at the control layer): Behavioral analysis, Threat
Hunting, and implementing the MITRE ATT&CK
Framework proactively protects networks. The MITRE
ATT&CK Framework presents fourteen adversarial
tactics (e.g., reconnaissance, lateral movement) and
various techniques (e.g., account manipulation, log
enumeration). Each tactic can applied to different
technology domains (e.g., ICS, enterprises) [466].
This facilitates personalized use-cases like threat
intelligence and adversarial emulation/red-teaming
exercises, or to profile global threats (e.g., APTs). A
tool called “Decider” [467] has been developed by
the Cybersecurity and Infrastructure Security Agency
(CISA) to assist security personnel in categorizing
adversarial behaviors to ATT&CK. These generic tools,
when leveraged with energy sector-specific reports from
CISA, directly address successful tactics, techniques,
and procedures [468][469] by providing actionable
solutions to security deficits. ATT&CK holds promise
for smart grid applications especially given the rise in
APTs. This requires a thorough understanding of the
framework and target systems. These approaches often
take human capital to implement but are increasingly
enabled by AI resources.

C. Applying Cyber Kill Chains at Grid–edge

Organizations need to implement kill chain response by
create automation and orchestration, setup comprehensive
monitoring, create incident response plans, regularly update
and patch systems and processes, and provide training
to address the social engineering issues. These activities
address the Opportunity Triad and address ongoing technical
challenges for securing grid networks. When prior failures are
taken as lessons for future responses, addressable gaps are
revealed in the implementation of CKCs.

Ukraine’s systems were heavily surveilled before the
attacker’s AoO. In this incident, deficiency exists between
reconnaissance activity and the acquisition of administrative
rights by hackers [457]. This shows weakness in the PoP
tooling in weaponization analysis, delivery logging, and
exploitation accounting layers. Post-attack analysis showed
that spear-phishing emails with Microsoft Word, PowerPoint,
Excel, or Rich Text Format (RTF) attachments were used to
deliver malicious payloads. When executed, these attachments
were used to continue reconnaissance with network discovery
and password stealers. A file containing an Excel macro
deployed ‘BlackEnergy’ and installed agents typically used
by Russians hackers called ‘Sandworm’ to perform additional
internal analysis. The attacks on Ukraine’s grid in 2016
was linked to the same APT as in the 2015 attack. The
success of similar phishing techniques used to deliver payloads
showed lack in subsequent training. Knowledge of the domain
names used by this threat actor and timely action could have
deny-listing intelligence and may have blocked this threat
vector. Attackers were eventually able to access an operator’s
workstation to deploy ‘Radmin’, a RAT, further exploits within
the network. Because much is known about this attack, we
see exceptional accountability and the existence of significant
tooling for certain phases of the attack and gaps in others.

The Shamoon Aramco attack also began as a phishing email
that was opened by an information systems employee [470].
The malware was able to spread worm-like on the network and
exploited vulnerabilities which had known fixes at the time.
This points to gaps in the deployment of hash-based tools,
timely updates, and TTPs within the organization.

Eskom sustained multiple events after this ransomware
illustrating the longevity of APTs. These recurrences illustrate
broad gaps within their infrastructure. The rate of occurrence
between attacks suggests that attackers are able to build upon
previous compromises and gaps in accountability [459][471].
The ransomware event was a result of gaps in user training and
should have been controlled by common cybersecurity tools
which prevent anomalous application installation [472].

D. Grid–Relevant Security Practices

To meet gaps, AI promises the ability to find gaps and
anomalies in data, on networks, and infrastructure. The
implementation of AI Trust, Risk and Security Management
(AI TRiSM) to support grids in implementing their kill chains
are heavily trending in industry as an answer to automation
challenges and dealing with big data within the CKC [473].
These should be adopted as cyber-criminals are increasingly
using AI for their own purposes [474].

Coordination is increasing as the information exchanged
between multiple DER vendors, DER owners, aggregators,
and DER-related assets requires the exploration of new
technologies such as zero-trust or perimeter-less based security
frameworks. Such methods will need to warrant continuous
authentication and verification during TCP connection
sessions. Future work should include self-healing models,
adversarial threat modeling, quantum-resistant cryptography,
blockchain, moving target defense (MTD), secure digital twin,
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integration of 5G security features in DER communication,
and deep packet inspection (DPI) methods (e.g, pattern
matching, protocol/behavior analysis, statistical flow analysis)
[475] as endpoint data need to be encrypted. It is also
equally important to reassess secure operator actions such
as DSOs, RTOs, TSOs, and ISOs market interactions.
Other areas to improve timely detection of events or
anomalies, and corresponding proactive response actions to
mitigate risks. This may require pilot security drills, audits
and risk assessment on recovery mechanisms or planning
within utilities or organizations that can compromise CIAA
properties. We also recommend DER/DERMS stakeholders
follow the NIST Cybersecurity Framework (CSF) [476]:
Identify, Protect, Detect, Respond, Recover functionalities.
Utilities should ensure network topologies are properly
documented with their bandwidth and traffic size expectations,
and latency and trust requirements for anticipated recovery
phases during ransomware or DDoS attacks. As there is a
mixed opinion on where DERMS textcolorbluetechnologies
reside, whether ADMS, AMI or stand-alone DERMS
network, it is critical to consider these suggestions and
recommendations from the IEEE 1547.3-2023 standard [11].

XIII. CONCLUSION

Securing power infrastructure is crucial against both
intentional (e.g., cyber attacks) and unintentional (e.g., natural
disasters) outages. To effectively integrate Distributed Energy
Resource Management Systems (DERMS) into Advanced
Metering Infrastructure (AMI) or Advanced Distribution
Management Systems (ADMS), it’s essential to incorporate
an Intrusion Diagnostic Federated Framework (IDFF) for
DERs. The choice of DERMS architecture is pivotal in
addressing cyber threats, including configuration errors, data
manipulation, and DER aggregation. This paper offers an
in-depth examination of DERMS frameworks, attack types,
use cases, and cybersecurity challenges. It emphasizes the
necessity of a federated DERMS that operates with a zero
trust framework to secure grid-related services.
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“Secure control of dc microgrids for instant detection and mitigation of
cyber-attacks based on artificial intelligence,” IEEE Systems Journal,
vol. 16, no. 2, pp. 2580–2591, 2021.

[170] J. Zhang, S. Sahoo, J. C.-H. Peng, and F. Blaabjerg, “Mitigating
concurrent false data injection attacks in cooperative dc microgrids,”
IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9637–9647,
2021.

[171] A. Kavousi-Fard, A. Almutairi, A. Al-Sumaiti, A. Farughian, and
S. Alyami, “An effective secured peer-to-peer energy market based
on blockchain architecture for the interconnected microgrid and smart
grid,” International Journal of Electrical Power and Energy Systems,
vol. 132, p. 107171, 2021.

[172] T. Cheng, X. Zhu, X. Gu, F. Yang, and M. Mohammadi, “Stochastic
energy management and scheduling of microgrids in correlated
environment: A deep learning-oriented approach,” Sustainable Cities
and Society, vol. 69, p. 102856, 2021.

[173] M. R. Habibi, H. R. Baghaee, T. Dragičević, and F. Blaabjerg,
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TABLE XIII
ACRONYMS AND ABBREVIATIONS (1).

Acronym Definition Acronym Definition
3DES Triple Data Encryption Standard FLISR Fault Location, Isolation, and Service Restoration
ABAC Attribute–based Access Control FML Federated ML
ABM Agent–based Modeling G2V Grid to Vehicle
AC Alternating Current GAN Generative Adversarial Network
ADMS Advanced Distribution Management System GHP Geothermal Heat Pumps
ADS Anomaly Detection System GOOSE Generic Object Oriented Substation Event
AES Advanced Encryption Standard GPU Graphics Processing Unit
AI Artificial Intelligence HCL Hashicorp Configuration Language
AMI Advanced Metering Infrastructure HELICS Hierarchical Engine for Large-scale Infrastructure Co-Simulation
ANN Artificial Neural Network HIDS Host IDS
AoC Action on Objectives HIL Hardware–in–loop
API Application Programming Interface HS Hardware Solutions
APT Advanced Persistent Threat HTTP Hypertext Transfer Protocol
AR Autoregressive HTTPS Hypertext Transfer Protocol Secure
ARP Address Resolution Protocol IACS Industrial Automation and Control Systems
ASLR Address Space Layout IAM Identity Access Management
ATT&CK Adversarial Tactics, Techniques, and Common Knowledge IBM International Business Machines
BACnet Building Automation Control Network IBR Inverter–Based Resource
BC Blockchain IC Integrated Circuit
BCTE Blockchain-enabled Transactive Energy ICCP Inter-control Center Communication Protocol
BEMS Building Energy Management System ICMP Internet Communication Management Protocol
BESS Battery Energy Storage System ICS Industrial Control System
BTM Behind–the–meter IDDS Intrusion Detection and Diagnostics Systems
CA Certification Authority IDFF Intrusion Detection Federated Framework
CAN Controller Area Network IDS Intrusion Detection System
CHIL Controller Hardware–in–loop IDU Intrusion Diagnostic Unit
CI/CD Continuous Integration/Continuous Development IEC International Electrotechnical Commission
CIAA Confidentiality, Integrity, Availability, and Accountability IED Intelligent Electronic Devices
CIGRE Council of Large Electric Systems IEEE Institute of Electrical and Electronics Engineers
CIS Customer Information System IoC Indicator of Compromise
CISA Cybersecurity and Infrastructure Security Agency IoT Internet of Things
CKC Cyber Kill Chain IP Internet Protocol
CNN Convolutional Neural Network IR Internal Report
CPA Correlational Power Analysis IRENA International Renewable Energy Agency
CPS Cyber–Physical System ISEAGE Internet–scale Event and Attack Generation Environment
CRL Certification Revocation List ISO Independent System Operator
CSIP Common Smart Inverter Profile ISU Iowa State University
CSPA Charging Service Provider Authority IT Information Technology
DAC Disrectionary Access Control KNN K-Nearest Neighbour
DC Direct Current LCOE Levelized Cost of Electricity
DCS Distributed Control System LoA Likelihood of Attack
DER Distributed Energy Resource LR Linear Regression
DERMS Distributed Energy Resource Management System LSTM Long–short Term Memory
DETER Defense Technology Experimental Research MAC Media Access Control
DFS Design–for–Security MAIFI Momentary Average Interruption Frequency Index
DG Distributed Generation MitM Man–in–the–Middle
DHS Department of Homeland Security MITRE MIT Research Establishment
DL Deep Learning ML Machine Learning
DLT Distributed Ledger Technology MMG Multi–microgrid
DMS Distribution Management System MMS Manufacturing Message Specification
DMZ Demilitarized Zone MW Mega Watt
DNP Distributed Network Protocol NAA Natural Aggregation Algorithm
DNS Domain Name Service NARX Nonlinear autoregressive with external input
DoD Department of Defense NATO North Atlantic Treaty Organization
DoS Denial of Service NERC North American Electric Reliability Corporation
DPA Differential Power Analysis NGFW Next Generation Firewall
DR Demand Response NIDS Network IDS
DRMS Demand Response Management System NIST National Institute of Standards and Technology
DSO Distribution System Operator NN Neural Networks
DSP Digital Signal Processing NREL National Renewable Energy Laboratory
DT Decision Tree NSF National Science Foundation
EDR Endpoint Detection and Response NSTB National SCADA Test Bed
EIA Energy Information Administration OBD On–board Diagnostics
EM Electromagnetic OCPP Open Charge Point Protocol
EMS Energy Management System OMS Outage Management System
EPRI Electric Power Research Institute OPF Optimal Energy Flow
EPS Electric Power Systems ORNL Oak Ridge National Laboratory
ESS Energy Storage Systems OSI Open Systems Interconnection
EV Electric Vehicle OSINT Open–source Intelligence
EVSE EV Supply Equipment OT Operational Technology
FAST–DERMS Federated Architecture for Secure and Transactive Distributed

Energy Resource Management System
P2P Peer–to–peer

FCI False Command Injection PCA Principal Component Analysis
FDI False Data Injection PCB Printed Circuit Board
FIPS Federal Information Processing Standard PE Privilege Escalation
FL Federated Learning PF Power Flow
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TABLE XIV
ACRONYMS AND ABBREVIATIONS (2).

Acronym Definition Acronym Definition
PHIL Power Hardware–in–loop SIEM Security Incident and Event Management
PII Personally Identifiable Information SI–GRID Software–defined Intelligent Grid Research Integration and

Development
PKI Public Key Infrastructure SMB Server Message Block
PLC Programmable Logic Controller SMI Smart Metering Infrastructure
PMU Phasor Measurement Unit SNL Sandia National Laboratory
PNNL Pacific Northwest National Laboratory SoC System–on–Chip
PQC Post Quantum Cryptography SoD Separation of Duties
PST Phase Shifting Transformers SQL Structured Query Language
PV Photovoltaic SS Software Solution
QIS Quantum Information Systems SSH Secure Shell
QKD Quantum Key Distribution ST Security Standards
RAT Remote Access Trojan STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, DoS,

and Elevation of Privilege
RBAC Role–based Access Control SVD Singular Value Decomposition
RBM Restricted Boltzmann Machine SVM Support Vector Machine
RE Renewable Energy TB Testbed
REST Representational State Transfer TCP Transmission Control Protocol
RF Radio Frequency TLS Transport Layer Security
RFID Radio Frequency Identification TSO Transmission System Operator
RHIL Remote Hardware–in–loop TVLA Test Vector Leakage Assessment
RINSE Real-time Immersive Network Simulation Environment TX Transmission
RMSE Root Mean Square Error UDP User Datagram Protocol
RNN Recurrent Neural Network UEBA User and Entity Behaviour Analytics
RSA Rivest—Shamir—Adleman V2B Vehicle-to-Building
RTDS Real-time Digital Simulator V2G Vehicle–to–Grid
RTF Rich Text Format V2H Vehicle-to-Home
RTO Regional Transmission Organization VPP Virtual Power Plant
RTU Remote Terminal Unit VVO Voltage Var Optimization
SA Standards Association WAMPAC Wide–Area Monitoring, Protection, and Control
SAIDI System Average Interruption Duration Index WSCC Western System Coordinating Council
SCADA Supervisory Control and Data Acquisition WSN Wireless Sensor Network
SCRM Supply Chain Risk Management XAI Explainable AI
SDP Software Defined Perimeter YAML YAML Aint Markup Language
SEP Smart Energy Profile

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2025.3534828

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	DERMS Cybersecurity Challenges
	ADMS Cybersecurity Challenges
	Related Studies
	Smart Grid Security
	DER Security
	SCADA/Industrial control System (ICS) Security

	Research Questions & Contributions
	Paper Organization

	Background for DERMS Security Evaluation
	SCADA/DERMS Test Beds
	Communication Protocols

	Hybrid DERMS – A Security Perspective
	Threat Modeling for DERs
	Threat Scenario 1 – DER Aggregation Risks
	Threat Model
	Prevention & Mitigation Measures

	Threat Scenario 2 – Malicious DER Configurations and Control Requests
	Threat Model
	Prevention & Mitigation Measures

	Threat Scenario 3 – Manipulation of Communication Data
	Threat Model
	Prevention & Mitigation Measures


	Hardware Security
	Reverse Engineering
	Hardware Trojan
	Side Channel Analysis

	Potential Technologies for DERMS Security
	IT Models
	Machine Learning
	Blockchain
	Quantum Information Systems
	Role of QIS in DERs
	Quantum computing for DER Power Optimization
	Quantum–secured DERs Communications


	Futuristic Intrusion Detection Units for DERMS
	Zero Trust Principles for DERMS
	Sensing–layer Zero Trust Recommendations
	Communication–layer Zero Trust Recommendations
	Control–layer Zero Trust Recommendations


	ML–specific security risks in DERs
	Evasion Attacks
	Data Poisoning
	Model Inversion/Stealing
	Membership Inference
	A Potential Defense Against Data Perturbations

	Grid Service Management for DERs
	Cyber Threats for Vehicular Grid Assets
	Layered Architecture for Grid Services

	Lessons Learned
	Stress Testing
	Threat Modeling
	Hardware Security
	Intrusion Detection
	Zero Trust Security
	Machine Learning

	Technical Challenges and Future Directions
	Control Parameter Optimization
	Advanced Persistent Threats and Cybersecurity Kill Chain Methods
	Applying Cyber Kill Chains at Grid–edge
	Grid–Relevant Security Practices

	Conclusion
	Appendix A: Abbreviations
	References
	Biographies
	Niroop Sugunaraj
	Shree Ram Abayankar Balaji
	Barathwaja Subash Chandar
	Prashanth Rajagopalan
	Dr. Utku Kose
	David Loper
	Tanzim Mahfuz
	Prabuddha Chakraborty
	Seerin Ahmad (S’21–M’25)
	Taesic Kim
	Giovanni Apruzzese
	Anamika Dubey
	Luka V. Strezoski
	Benjamin Blakely
	Subhojit Ghosh
	Maddikara Jaya Bharata Reddy
	Harsha Padullaparti
	Dr. Prakash Ranganathan


