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A B S T R A C T

Phishing attacks are on the rise, and phishing websites are everywhere, denoting the brittleness of security
mechanisms reliant on blocklists. To cope with this threat, many works proposed to enhance Phishing Website
Detectors (PWD) with data-driven techniques powered by Machine Learning (ML). Despite achieving promising
results both in research and practice, existing solutions mostly focus ‘‘on the West’’, e.g., they consider websites
in English, German, or Italian. In contrast, phishing websites targeting ‘‘Eastern’’ countries, such as China, have
been mostly neglected—despite phishing being rampant also in this side of the world.

In this paper, we scrutinize whether current PWD can simultaneously work against Western and Chinese
phishing websites. First, after highlighting the difficulties of practically testing PWD on Chinese phishing
websites, we create ChiPhish—a dataset which enables assessment of PWD on Chinese websites. Then, we
evaluate 72 PWD developed by industry practitioners and 10 ML-based PWD proposed in recent research on
Western and Chinese websites: our results highlight that existing solutions, despite achieving low false positive
rates, exhibit unacceptably low detection rates (sometimes inferior to 1%) on phishing websites of different
regions. Next, to bridge the gap we brought to light, we elucidate the differences between Western and Chinese
websites, and devise an enhanced feature set that accounts for the unique characteristics of Chinese websites.
We empirically demonstrate the effectiveness of our proposed feature set by replicating (and testing) state-of-
the-art ML-PWD: our results show a small but statistically significant improvement over the baselines. Finally,
we review all our previous contributions and combine them to develop practical PWD that simultaneously
work on Chinese and Western websites, achieving over 0.98 detection rate while maintaining only 0.01 false
positive rate in a cross-regional setting. We openly release all our tools, disclose all our benchmark results,
and also perform proof-of-concept experiments revealing that the problem tackled by our paper extends to
other ‘‘Eastern’’ countries that have been overlooked by prior research on PWD.
1. Introduction

According to the FBI’s report (FBI, 2022), phishing is the top-
most form of cybercrime, whose growth has increased by over 1000%
since 2018. In the first quarter of 2023, the Anti-Phishing Working
Group (APWG) reported over 1.6M phishing attacks—the worst quar-
ter ever observed (APWG, 2024). In this context, phishing websites
are one of the most common vectors employed by attackers, who
aim to reach their goals by tricking victims via apparently legitimate
web pages (ProofPoint, 2022). In the first half of 2022, over 200k
phishing websites were generated every month (PhishLabs, 2022).
These numbers have not improved in 2023 (ProofPoint, 2023) and
2024 (ProofPoint, 2024)—showing that an effective solution to this
threat has yet to be found.

∗ Corresponding author.
E-mail addresses: ying.yuan@unipd.it (Y. Yuan), giovanni.apruzzese@uni.li (G. Apruzzese), mauro.conti@unipd.it (M. Conti).

What we have just written is the exemplary ‘‘introductory para-
graph’’ of papers on phishing website detection (Saha Roy et al.,
2023; Althobaiti et al., 2021). Such an opening is typically followed
by original analyses (e.g., measurement studies (Peng et al., 2019b))
revealing the brittleness of current anti-phishing schemes; or novel
solutions (either human-centred, such as phishing education (Jensen
et al., 2017); or machine-centred, such as automated detectors (Sahin-
goz et al., 2019; Ho et al., 2019)) to mitigate the threat of phishing
against Web users. However, we wonder: granted that phishing is
a problem worldwide, what is the current status of phishing in the
Eastern part of the World—in particular, in China (having 1.4 billion
people (worldometers, 2023i))?
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Fig. 1. Snapshot of Chinese phishing landscape.
Phishing intercepted by Qihoo360 (largest Chinese internet security company) in the
first half of 2019–2023 in China. These numbers increased by 94% in 2023 (QiHoo360,
2023).

Inspired by the idea of investigating how the World’s most popu-
lated country is affected by phishing, we searched the Web for evidence
on the Chinese phishing landscape. We found that, according to 2016
estimates (Li et al., 2016), China suffers >30B Yuan (≈$4B) in losses
every year due to phishing. More recently, we found reports from
Qihoo360, the largest Chinese security company (QiHoo360, 2019,
2020, 2021, 2022, 2023), highlighting the yearly trend of phishing
attacks intercepted in China—which number is in the billions (shown in
Fig. 1). Accordingly, over 77 billion phishing attacks have been blocked
n the first half of 2023, an increase of 94.8% over 2022. Unfortunately,
uch data only reflects phishing attacks that have been detected by
iHoo360 in China and do not say anything about those that have
een missed—potentially outside of China. Hence, we asked ourselves:
ow can we deal with the spread of phishing websites in China? And
hat about Chinese phishing websites, which can be visited by Chinese
eople who reside ‘‘in the West’’ (or even by ‘‘Westerners’’ themselves)?

Intrigued by these dilemmas, we turned our attention to research
apers. We found that a large body of literature proposed/investigated
ethods (reliant either on blocklists (Bell and Komisarczuk, 2020; Oest

t al., 2020), or on data-driven heuristics (Tian et al., 2018; Apruzzese
t al., 2022a; Liu et al., 2022a)) to detect phishing websites. The con-
lusions are that—Phishing Website Detectors (PWD) can work in some
cenarios. However, the majority of such papers assumed that websites
benign or phishing) used to test any given PWD were in phonological
anguages (e.g., English). Such an assumption, despite being the de-
acto standard ‘‘in the West’’, does not allow to determine if (and how
uch) the considered PWD also works ‘‘in the East’’, i.e., for countries
aving hieroglyphic languages—such as China. Indeed, we found that
nly a handful of papers (see Table 1) on PWD tried to see this problem
rom the Chinese perspective. However, even these works considered

restricted subset of the Chinese phishing landscape, and did not
mphasize whether the corresponding PWD work also on Western sites.

Simply put, there is a large side of the World (i.e., China) that,
nfortunately, has been overlooked by prior research on PWD; at the
ame time, the few works which do consider such side of the World
‘overlook’’ the effectiveness of Chinese-specific PWD in the rest of
he World. Such a lack of attention led us to question whether
WD previously shown to be effective for ‘‘Western’’ websites also
orks for ‘‘Eastern’’ websites—and, specifically, Chinese ones. Be-

ides obvious differences in languages, Chinese websites present unique
haracteristics (due to, e.g., some regulations (Cyberspace Administra-
ion of China, 2022c)), suggesting that PWD may not work equally well
hen analysing websites tailored for people from different regions. If

ound to be true, such a hypothesis would reveal a problem for the real
orld. Indeed, today (i) an increasing number of Western people reside

n China (Migration Policy Institute, 2022a) and (ii) an increasing
umber of Chinese people migrated to the West (OECD Ilibrary, 2021a).
or instance, an English person can be protected from phishing if they
ive in the UK and only visit English websites—but what if such a person
oes to China and visits Western websites? And, vice-versa, Chinese
WD may be effective as long as they monitor Chinese residents—but
hat if a Chinese person goes abroad? Moreover, in the era of economic
2 
lobalization, it is undeniable that people would visit websites from
ifferent regions and in various languages. Therefore, in this paper,
e scrutinize whether PWD can transfer between different geographic

egions—and, if they cannot, devise ways to bridge this ‘‘gap’’ between
estern and Eastern PWD.1

Contributions and Organization. Our paper’s contributions lie at the
ntersection of three research domains: socio-technical aspects of the

eb, measurements of the Web, and security of the Web. As such, we
rite this paper so that it is understandable by any reader interested

n one of such domains. At a high-level, we provide a threefold
ontribution to the state of the art:

C1: We carry out a measurement study wherein we assess the effec-
tiveness of existing PWD for websites from diverse regions;

C2: We propose ways to enhance PWD, so that they work both on
Western and Chinese websites;

C3: We provide factual evidence that this problem has been neglected,
and release all our tools and data to facilitate development of
real-world solutions.

et us explain how these contributions are distributed in this paper.

In Section 2 we introduce the essential concepts of modern PWD; then,
through an extensive literature review, we showcase the limited scope
of prior research on Chinese-PWD.
In Section 3 we discuss our data-collection procedures. By analysing
the landscape of publicly available resources, we show the shortage
of Chinese-specific data. To fix such a lack, we create ChiPhish, the
largest open-source dataset to evaluate (or develop) Chinese PWD.

• In Section 4 we assess 72 PWD developed by industry practitioners.
By considering both blocklist-based and data-driven PWD, we show
that operational anti-phishing services can only detect phishing
websites from their respective ‘‘regions.’’

• In Section 5 we consider state-of-the-art PWD proposed in research
and reliant on machine learning (ML). We assess 10 ML-PWD (pre-
viously tested on Western websites), and show their immaturity
when analysing Chinese websites. Then, we critically analyse the
spectrum of visual-based PWD, highlighting their pros-and-cons for
cross-regional PWD.

• In Section 6 we focus on enhancing feature-based ML-PWD, to prepare
them for cross-regional PWD. After dissecting the anatomy of Chinese
websites, we propose a new feature set which allows to capture the
characteristics of Chinese and Western websites. We then implement
81 ML-PWD and test them on our data, showing improvement over the
baselines.

• In Section 7 we find ways to bridge the gap we brought to light. We
distill all the knowledge and tools produced during our research, and
develop ML-PWD that work on Chinese and Western websites,
achieving above 0.98 𝑡𝑝𝑟 with only 0.01 𝑓𝑝𝑟 in cross-regional settings.

• In Section 8 we reflectively discuss our contributions, pointing out
room for improvement. Then, as an inspiration for future work, we
provide further evidence that China was overlooked by prior study, and
conduct a small assessment on Japanese and Korean websites.

We conclude our paper in Section 9. Moreover, we provide the com-
plete results of our assessments, additional experiments, and analy-
ses in our appendix. Finally, for complete reproducibility and trans-
parency, we fully release our resources in an open-source repository
(https://github.com/joanyy/ChiPhish).

1 We focus on phishing websites: other forms of phishing
(e.g., email (Hasegawa et al., 2021; Roepke et al., 2022; Gao et al.,
2021)) are outside our scope.

https://github.com/joanyy/ChiPhish
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2. Background and motivation

We summarize existing techniques for phishing website detection
(§2.1). Then, we survey the phishing landscape in China (§2.2), high-
lighting the limited vision of related work. Finally, we provide real-
world evidence that inspired our research problem (§2.3).

2.1. Phishing Website Detection (overview, benefits and drawbacks of ex-
isting methods)

Phishing is a historical security problem, which has been tackled by
abundant research. Reliant on social engineering (Braun et al., 2014),
used to lure victims onto malicious webpages, phishing website attacks
require the victim to (i) be shown the webpage; and (ii) be caught
by providing sensitive data, or clicking on a harmful link (Shusterman
et al., 2020). Clearly, the attack fails if the potential victim recognizes
the webpage as malicious. Therefore, anti-phishing training programs
can reduce the risk of phishing attacks (Jampen et al., 2020), and some
research has been carried out (e.g., (Sarno et al., 2022; Lain et al.,
2022)). However, according to ProofPoint’s 2024 report (ProofPoint,
2024), more than 30% of organizations dedicate less than 1 hour per year
to educate their employees (some do not have any training program
at all). Hence, there is still a need for ‘‘machine-based’’ schemes that
provide a first line of defence against phishing for uneducated (or
distracted) users (Draganovic et al., 2023). These automated phishing
website detectors (PWD) are based on the combination of signatures
(i.e., blocklists) or data-driven heuristics—among which, many rely on
machine learning methods. Let us briefly review their pros-and-cons.

2.1.1. Signature-based PWD
Signature-based PWD still represents the preferred countermea-

sure against phishing, and leverage blocklists of suspicious websites
(taken from, e.g., PhishTank (PhishTank, 2022g), or Google Safe Brows-
ing (Google, 2023c)). Before rendering any given website, the browser
(or an organization-wide detector) checks if the URL (or a subdomain)
is included in the blocklist, thereby alerting the user upon a correct
match (Zuraiq and Alkasassbeh, 2019). To avoid triggering annoying
false alarms, the websites in these lists must be verified: as a result,
signature-based PWD have high precision—which is appreciated in the
context of PWD, given that web-users visit hundreds of pages every
day (Adebowale et al., 2019). Unfortunately, signature-based detectors
are useless (Apruzzese et al., 2023b) against ‘‘novel’’ attacks. Despite
huge efforts put in by the maintainers of blocklists to keep them as up-
to-date as possible, some websites are bound to evade blocklist-based
PWD (Tian et al., 2018). Such a shortcoming (which we empirically
confirm in §4) led to the proliferation of complementary PWD that can
cope with the ever-changing landscape of phishing websites—which
can be accomplished via machine learning (ML).

2.1.2. ML-based PWD
The underlying principle of machine learning is to have ‘‘machines

that autonomously learn from data.’’ This process is done by training
an ML model over some training data by means of a given learning
algorithm. The successes of ML in various fields (most notably, com-
puter vision and natural language processing (LeCun et al., 2015;
Jordan and Mitchell, 2015)) showed the remarkable performance of
ML for classification tasks, inspiring researchers to investigate their
effectiveness also for cyberthreat detection (Apruzzese et al., 2023b)—
which also encompasses PWD (Chiew et al., 2019; Gandotra and Gupta,
2021; Jain and Gupta, 2018a; Makkar et al., 2021; Aydin and Baykal,
2015; Singh et al., 2015). The systematic literature review conducted
in Safi and Singh (2023), which analysed 80 papers, revealed that ML
techniques enabled to yield PWD with up to 99.98% accuracy. Existing
ML-PWD can fall into three categories, depending on the information
 (

3 
used as basis to perform the (binary) classification of a given web-
site (Apruzzese et al., 2022a). Specifically, an ML-PWD can use either
the URL of a website, its representation (e.g., the image or the HTML),
or their combination. Each of these can be elaborated in diverse ways:
for instance, some ML-PWD necessitate some preprocessing aimed at
extracting some features from a given piece of data (e.g., computing the
length of the URL (Mohammad et al., 2014a)); others (typically those
relying on deep learning (Abdelnabi et al., 2020)) may analyse a given
input in its raw form. We stress that – despite appreciable results shown
in research – recent findings revealed that commercial PWD using
deep learning can be easily evaded (by real attackers!) via decade-old
tricks (Apruzzese et al., 2023a). 2 (We will provide additional low-level
details on some exemplary ML-PWD in §5).

Narrow Scope. Despite many papers proposing data-driven counter-
measures to phishing, prior efforts (e.g., Jain and Gupta (2018b), Le
et al. (2018), Ozcan et al. (2021), Mohammad et al. (2014b), Aljofey
et al. (2022), Ariyadasa et al. (2022), Tian et al. (2018), Apruzzese and
Subrahmanian (2022)) only focused on Western websites—overlooking
that phishing is a long-standing problem also in other areas of the
world, such as China.

2.2. The Chinese Phishing Landscape (and shortcomings of prior work)

Reports estimated over one billion Chinese netizens as of June
2022 (China Internet Network Information Center, 2022): accordingly,
24% had been scammed by phishing websites in the previous 6 months.
According to Qihoo 360 (QiHoo360, 2023), 77.75 billion phishing
attacks have been intercepted in the first half of 2023—a rate of 430
million per day. Among these, 99.7% target PC devices, with only a
minority entailing mobile users.

Intriguingly, however, most of these facts are only accessible ‘‘to
Chinese’’: the QiHoo360 reports are not available in English (Qi-
Hoo360, 2019, 2020, 2021, 2022, 2023). Moreover, some sources are
not accessible from outside of China: for instance, some authors of this
paper reside in Europe and could not load the (non-archived) webpage
providing a valuable report (360 secure brain, 2021). This suggests that
– despite phishing websites being clearly rampant also in China (Liu
et al., 2021b) – such a threat may be difficult to investigate from the
perspective of a researcher ‘‘in the West’’ who may not know Chinese.

2.2.1. High-level analysis
Let us review the landscape of Chinese-focused phishing research

over the last 10 years. In 2014, Zhang et al. (2014) proposed 5 domain-
specific features to detect phishing websites targeting Chinese eCom-
merce: despite achieving 96% accuracy, which only focus on eCommerce
websites, neglecting the plethora of other websites (e.g., forums, hos-
pitals and government) which can very well be targeted by phishers.
Indeed, Chinese websites tend to have different characteristics, as
shown in Fig. 2: eCommerce websites must report their business licence
(red box in Fig. 2(a)), which is not necessary for Chinese government
websites—which, in turn, have a government identification code (blue
box in Fig. 2(b)). More recently, Li et al. (2020) proposed five space
transformations that disentangle the linear and non-linear interactions
between features in malicious URL data. The dataset used in the exper-
iments of Li et al. (2020) includes URL from generic Chinese websites,
thereby allowing one to assess the effectiveness of ML-PWD analysing
the URL of a website. Even though such an approach may work when
analysing Chinese sites, its effectiveness is questionable when Western
websites are taken into account. This is because the URL is a combination
of alphanumeric characters: hence, the URL for Western and Chinese

2 We stress that themes within the realm of ‘‘adversarial machine learning’’
e.g., Tian et al. (2024)) are outside our scope.
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Table 1
Papers on Chinese PWD. None of these release the source-code (the online tool in Li et al. (2020) is not functional anymore), thereby
preventing complete reproducibility of their results.

Paper
(1st Author)

Year Dataset
Available

Other
Regions

Website
Focus

Collection
Date

Analysed
Features (𝐹 )

Chinese
Specific

Stat.
Sign.

Chu et al.
(2013)

2013 ✗ ✗ eCommerce 2012 𝐹𝑢 ✗ ✗

Zhang et al.
(2014)

2014 ✗ ✗ eCommerce 2014 𝐹𝑐 ✓ ✓

Zhang et al.
(2016)

2016 ✗ ✓ generic 2011 𝐹𝑢 ✗ ✗

Li et al.
(2016)

2016 ✗ ✗ generic 2015 𝐹𝑢, 𝐹ℎ ✗ ✗

Zhang et al.
(2017a)

2017 ✗ ✓ generic 2017 𝐹𝑐 ✗ ✗

Zhang et al.
(2017b)

2017 ✗ ✗ generic 2017 𝐹𝑐 ✓ ✗

Xiangdong
et al. (2017)

2017 ✗ ✗ finance 2017 𝐹𝑢, 𝐹ℎ ✗ ✗

Feng et al.
(2017)

2017 ✗ ✗ finance 2016 𝐹𝑐 ✓ ✓

Li et al.
(2020)

2020 ✗ ✓ generic 2020 𝐹𝑢 ✗ ✗

Liu et al.
(2021a)

2021 ✓ ✓ generic 2018 𝐹𝑐 ✗ ✗

Jiang and
Wu (2022)

2022 ✓ ✗ generic 2021 𝐹𝑐 ✓ ✗
Fig. 2. Chinese eCommerce and government websites.
Websites in China have different identifiers, useable for PWD. Red boxes denote the ‘‘business license’’, whereas the blue box denotes the ‘‘government identification code’’. Chinese
websites can also display trusted website certifications (issued, e.g., by the police), denoted in yellow boxes.
sites may appear similar despite their HTML being different; plus, PWD
analysing the URL can be easily bypassed (e.g., Apruzzese and Subrah-
manian (2022)). We argue that HTML is a more valuable information
source for PWD; however, as we will show (in §6.1.1), proper usage of
the HTML for Chinese websites requires some tweaks that are neglected
by existing ML-PWD (typically tested on Western websites).

2.2.2. Chinese PWD: state of research
We carry out a literature analysis, aimed at scrutinizing works that

consider the problem of PWD in China. To this purpose, we query
well-known scientific repositories (e.g., Google Scholar, IEEE Xplore,
ACM DigitalLibrary), looking for peer-reviewed papers that propose
(or evaluate) PWD tailored for Chinese phishing websites (e.g., we
categorically exclude any paper that does not mention ‘‘China’’ in the
text). Importantly, we only consider works on ML-PWD: as we discussed
(§2.1.1), using ‘‘signatures’’ is known to be effective—but only if the
blocklist includes the corresponding URL. Hence, our goal is to identify
4 
if previously proposed solutions can work to counter ‘‘novel’’ (Chinese)
phishing websites—which necessitates data-driven methods. Whenever
we find a relevant paper, we use the snowball method (Wohlin, 2014)
to look at downstream research. Despite reviewing dozens of papers, we
could only find 10 peer-reviewed publications that specifically focus on
countering phishing websites in China. We visualize the results of our
analysis in Table 1. For each paper, we report: whether the experimen-
tal dataset is publicly available (✗ or ✓) and whether it also included
websites from different regions than China (✗ or ✓); the focus of the
ML-PWD (either generic, or for specific types of websites); the date
(i.e., year) on which the data was collected; the types of features used
for the analysis (𝐹𝑢=URL only, 𝐹ℎ=HTML only, 𝐹𝑐=URL+HTML) and
whether these features entail Chinese-specific characteristics; and if the
conclusions are drawn after making statistically significant comparisons
(✗ or ✓). To the best of our knowledge, Table 1 represents the state of
the art of Chinese-PWD research.

As we can see from Table 1, some work (Chu et al., 2013; Li et al.,
2020; Zhang et al., 2016) only consider ML-PWD analysing the URL,
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thereby failing to capture the additional information provided by the
HTML (which, as we show in our experiments, plays a crucial role).

The authors of Zhang et al. (2017b) devise a ML-PWD analysing
TML features that consider Chinese-specific word embeddings—which
re clearly language dependent and are hence not appropriate in a
ross-language setting (most Chinese websites have ‘‘Western’’ variants,
.g., Alibaba—cf. Fig. 7), which is crucial for our research (as we will
xplain in §2.3). The ML-PWD proposed by Zhang et al. (2017a) are
ssessed on both Chinese and English websites, achieving over 95%
ccuracy, but the corresponding evaluation is (i) not reproducible—
ince neither the code nor the data are publicly available; and (ii) lacks
tatistical validation—since the experiments are run only once, instead
f being repeated many times (preventing a bias-free assessment (Arp
t al., 2022)). Worryingly; both of these shortcomings affect most pa-
ers (i.e., Chu et al. (2013), Zhang et al. (2016), Li et al. (2016), Zhang
t al. (2017b), Xiangdong et al. (2017), Li et al. (2020)) in Table 1.
s a matter of fact, our experiments will reveal substantially different
esults than those reported by Zhang et al. (2017a). Notably, Zhang
t al. (2014) proposed five Chinese-specific features and constructed
L-PWD analysing both the URL and HTML of a webpage, but they

nly focused on Chinese eCommerce websites (similarly to Chu et al.
2013)). Such a narrow focus also affects the research in Feng et al.
2017) and in Xiangdong et al. (2017), whose proposed ML-PWD are
ssessed only on financial websites. The recent work by Liu et al.
2021a) proposes a complex PWD, but their dataset includes only 51
hinese webpages, which cannot represent the landscape of phishing

n China (and, unfortunately, the source-code of Liu et al. (2021a) is
ot provided). Finally, and very recently, Jiang and Wu (2022) rely
n a combination of feature-based and natural language processing
echniques to detect ‘‘malicious’’ websites (not necessarily phishing):
xperiments on a dataset of 954 benign and 521 malicious (of which
21 are phishing) Chinese-only webpages revealed an accuracy of 85%
and 79% F1-score), which is an underwhelming result (especially since
alse positives are not mentioned in the paper) and although part of the
ata is publicly available, the source code is not openly released.

2.3. Motivation, problem statement, and research questions

Prior research has shown that: signature-based PWD work well as
long as the blocklist is kept up-to-date (§2.1.1); existing ML-PWD work
well on Western websites (§2.1.2); and some papers also showed
that ML-PWD can be tailored for Chinese websites with some suc-
cess (§2.2.2). However Chinese websites are different from Western
websites (§2.2.1, and we will expand this in §6.1). Such a difference
led us to ask ourselves: How do PWD that are effective on Western
ebsites perform on Chinese websites (and vice versa)? To the best of our
nowledge, previous research cannot provide an answer to our ques-
ion, since (i) Chinese and Western websites have been mostly treated
ndependently; and/or (ii) the few works that consider both ‘‘regions’’
imultaneously have limitations.3 This is because no prior work scruti-
ized the ‘‘cross-regional’’ effectiveness of anti-phishing schemes.
et us explain why this is crucial.

3 Actually, the results of Zhang et al. (2017a) and Liu et al. (2021a) suggest
hat these two regions may be compatible from a PWD viewpoint!
 h

5 
2.3.1. A real-world problem
Plenty of Chinese people live in the West, and many Westerners

live in China (OECD Ilibrary, 2021a; Migration Policy Institute, 2022a).
People living abroad need to browse their home country’s website. If
Chinese PWD work poorly on western websites, then Westerners who
live in China will be more likely to fall victim to Western phishing
websites, and vice-versa. Even though it is well known that the Great
Firewall prevents (Wikipedia, 2023n; Hoang et al., 2021) Chinese resi-
dents from accessing popular Western websites (e.g., Facebook), hence
implicitly providing some form of protection to Chinese users against
Western phishing websites, some can still be reached (e.g., GitHub).
Moreover, usage of VPN services can bypass the Great Firewall, thereby
allowing Chinese residents to access any.4 website—but this will expose
them to Chinese phishing websites. Indeed, Google Chrome is the most
popular browser even in China (with a share of 56% (Statcounter,
2022i)); however, the anti-phishing schemes of Chrome are not tailored
for Chinese phishing websites (as we show in §4.1.2). In turn, also users
who live outside China (either Westerners or Chinese expats) and use
Chrome (or similar browsers) can fall victim to phishing Chinese web-
sites. Simply put, if PWD exhibit poor compatibility between Chinese
and Western websites (as our analysis in §6.1 suggests), then many
people can fall victim to phishing attacks that (perhaps inadvertently)
exploit such a vulnerability.

2.3.2. Research methodology
Inspired to investigate this real-world problem, we want to verify if

the gap between Chinese and Western phishing website detection truly
exists—both in research and practice; and, if so, potentially find ways
to close this gap. We tackle this problem by asking ourselves, and then
answering, the following three research questions (RQ):

RQ1: Do closed-source PWD (either blocklist- or ML-based) devel-
oped by practitioners (and deployed in the real world) work
‘‘equally well’’ on Chinese and Western websites?

RQ2: Do open-source ML-PWD proposed in research for Western
websites work ‘‘equally well’’ on Chinese websites? (We recall
there are no open-source Chinese ML-PWD.)

RQ3: Is it possible to ‘‘adapt’’ open-source ML-PWD originally
tested only on Western websites so that they work equally
well on both Chinese and Western websites?

Since Western websites are a broad term, we enrich our RQs by
differentiating (a) ‘English-only’ websites from (b) ‘generic’ Western
websites (e.g., Italian, German). Before focusing on our RQs, however,
we must deal with a crucial obstacle: finding the right data to even test
each of our hypotheses—and, specifically, the lack of publicly available
datasets useable for Chinese PWD.

3. Data collection

Answering any of our RQ requires experiments which entail (i) as-
sessing the effectiveness of PWD on (ii) Chinese and Western websites.
Unfortunately, we were not able to find any existing resource that
provided a representative dataset of the Chinese phishing website
landscape. The datasets used by prior research are not publicly available,
and the (few) existing dataset only contains limited information,5 which
oint to websites that are outdated or no-longer active and hence do
ot allow to assess the effectiveness of PWD that analyse information

4 These users can even fall victim to phishing in the dark web (Yoon et al.,
019)

5 E.g., there are only 221 phishing URLs (without screenshot) in the dataset
ncluded in Yanting Jiang, Di Wu (2022b) (related to Jiang and Wu (2022));
hereas the majority of the entries in CN-Malicious-website-list Contributor

2017) are outdated; finally, Liu et al. (2021a) released their data, but it only

as 51 phishing entries—preventing a sound analysis.
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Fig. 3. Overview of our workflow.
We collect three datasets (one containing only Chinese websites, a second one only English websites, and a third one containing a mix of websites in popular Western languages)
which we use to evaluate existing phishing website detectors, measuring their 𝑡𝑝𝑟 and 𝑡𝑛𝑟 (defined in §4.2).
not derived from the URL. In contrast, publicly available datasets having
websites appropriate for Western PWD are typically provided with
more information on each sample (e.g., URL, HTML, and occasionally
also the screenshot).

Hence, as a first step towards answering our RQ (and our first
contribution), we manually collect a dataset, ChiPhish, that enables
the assessment of PWD on Chinese websites (§3.1). Then, we collect two
datasets, EngPhish and WstPhish, that allow one to gauge how well
existing PWD perform on websites ‘‘from the West’’ (§3.2); notably, for
our data-collection procedure we also develop an original tool, LaSeTo,
which we publicly release and will play a crucial role in bridging the
gap revealed in our research (§7). We summarize our workflow in
Fig. 3.

3.1. ChiPhish: the first comprehensive dataset for Chinese phishing website
detection

Among the contributions of this paper is the first public dataset for
Chinese-focused PWD, ChiPhish. To understand why such a con-
tribution is significant, let us elucidate the difficulties we have to
face (§3.1.1). We will then describe how we envision (§3.1.2) and
create (§3.1.3) our ChiPhish.

3.1.1. Challenges
Although finding legitimate Chinese websites is trivial, finding active

Chinese phishing websites is difficult. Even popular phishing tracking
services (PhishTank) hardly report websites from China—likely because
their trackers do not visit Chinese websites. Furthermore, a 2021 report
by Interisle (Interisle Consulting Group, 2021b) also mentioned that
their data under-represent Chinese phishing, since they did not collect
any attacks against the four largest Chinese banks and major Chinese
eCommerce companies. Such an ‘‘oversight’’ is confirmed by our dif-
ficulties in interpreting (and accessing) verified accounts of phishing
attacks in China (§2.2), suggesting that this side of the World may
(intentionally) be ‘‘closed’’ to foreigners.

As a matter of fact, the APWG (APWG, 2016) indicated that more
than half of malicious gTLD registrations worldwide stem from China,
and that six of the top ten registrars of malicious phishing domains were
located in China and had primarily Chinese customers; this data was
contributed by APAC which works with phishing targets in China. How-
ever, because of the Chinese cybersecurity law in 2022 (Cyberspace
Administration of China, 2022c), APAC or other public cybersecurity
platforms in China no longer broadcast Chinese phishing data. These
difficulties may partly explain why the landscape of Chinese PWD has
been mostly unexplored.
6 
3.1.2. Design goals
Despite having to face many challenges, we seek to build a dataset

for Chinese PWD that fulfils a twofold objective: (i) enable a meaningful
analysis for this paper ; and (ii) provide a solid foundation for future
work. Hence, to create ChiPhish, we set three design goals:

• Generality: It must include websites (benign and phishing) of vari-
ous types. This is to overcome the limitations of prior work which
considered websites of only one type (refer to Table 1).

• Representativity: It must have a sufficient (≥1000) amount of samples
(i.e., websites). This serves to allow comparisons with PWD on
(more popular) ‘‘Western’’ websites.

• Completeness: Samples must be provided with three formats of raw
data: URL, HTML, and screenshot. This serves to enable analyses of
common phishing detection approaches (cf. §2.1).

Of course, we cannot ensure (nor we claim) that our ChiPhish

dataset is (or will ever be) representative of the entire Chinese phishing
landscape. However, by publicly releasing ChiPhish, downstream re-
search can contribute to further expanding this dataset with additional
samples.

3.1.3. Creation and overview
Let us explain how we collect ChiPhish. For the benign data, we

relied on Chinaz (Chinaz, 2023b), a popular (Li et al., 2021) trusted
source which provides a ranking of popular Chinese websites (similarly
to Amazon’s Alexa rankings). Specifically, our benign samples are taken
by using the top-60 websites reported by Chinaz (in Oct–Dec 2022)
and scraping the links contained in these websites (which we manually
verified pointed to trusted websites). As for the phishing data, we had to
draw from various sources. We searched across the Threat Intelligence
Centers of Chinese IT companies (e.g., VenusEye (Venustech, 2023l),
QiHoo 360 (360 secure brain, 2021)), competition platforms and secu-
rity forums (e.g., kafan (KaFan, 2023d)) to retrieve hundreds of Chinese
phishing websites—which we manually checked to ensure that they
were still online. Importantly: all phishing samples have been verified
by the publishers of the respective source, as well as by ourselves
(during our manual checks). Whenever we visit a website, we first
check whether it is online; if so, we then store its URL, and save the
entire HTML of the landing web page (including potential javascripts) as
well as its whole-page screenshot (in high resolution). To provide useful
and up-to-date resources for future research, we collect our phishing
entries in two different points in time: in Oct–Dec. 2022 (during which
we collect 372 entries), and in Jul–Aug. 2024 (during which we collect
193 entries). Overall, we collect 1 055 benign and 565 phishing Chinese
websites. A summary of ChiPhish is in Table 2. To the best of our
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Table 2
Summary of websites in ChiPhish. We only provide examples of benign websites (to protect readers).

Category #Benign #Phishing Example

eCommerce 173 124 1688.com
finance 59 84 boc.cn
education 121 15 eol.cn
government 2 4 cwl.gov.cn
health 23 27 99.com.cn
email 10 22 163.com
information 267 84 labs.zol.com.cn
news 96 11 thepaper.cn
search engine 22 10 360.cn
social 35 40 weixin.qq.com
entertainment 247 96 kuwo.cn
other 0 48 n/a
knowledge, ChiPhish is the only publicly available dataset for Chinese
WD with the characteristics described in §3.1.2.

Finally, we emphasize that we carried out most of the experiments
escribed in the remainder of this paper at the beginning of 2023,
.e., when only 372 of the phishing entries in ChiPhish had been

collected. To provide more comprehensive results, we expanded our set
of 372 phishing entries by also considering 193 phishing entries from
the dataset6 by Jiang and Wu (2022). This means that the set of
phishing webpages used in our experiments amounts to 565 entries—all
f which are verified phishing websites that were uploaded to the Web
p to December 2022. Such a setup provides a temporally consistent
imeframe for phishing and benign entries, enabling a fair evaluation.
or simplicity, we will still refer to this dataset as ‘‘ChiPhish’’, but we
o not claim the 193 phishing samples from Jiang and Wu (2022) to be
art of our contributions.

.2. Datasets for ‘‘Western’’ Phishing Website Detection (in phonological
anguages)

Our focus is comparing Western and Chinese PWD. However, ‘‘West-
rn’’ is a broad term: recent surveys reveal that English is the global and
ost spoken language (Statista, 2022d), being also the most commonly
sed website content language (with a share of over 57% (W3Techs,
023k)). To account for the predominant usage of English on Web, we
ust consider it a stand-alone ‘population’ with reference to (w.r.t.)

ther Western languages. Besides allowing for a bias-free evalua-
ion, providing such a twofold perspective also allows us to ascertain
hether PWD perform similarly across websites using different phonetic
estern languages, thereby serving as a (potential) validation mecha-
ism. Therefore, we seek to collect two datasets: EngPhish, containing
nly English websites; and WstPhish, containing websites of the most
opular Western languages.

.2.1. Preliminary investigation
There are many datasets for ‘‘western’’ PWD, i.e., having websites in

honological languages. However, most of such datasets do not enable an
valuation that can provide an unbiased answer to our RQs. For exam-
le, the dataset used in Mowar and Jain (2021) only includes the URL
f its websites, preventing retrieval of any data on the corresponding
TML (phishing webpages are taken down quickly) at a later time. The
ame problem affects the dataset proposed by Abdelnabi et al. (2020),
hich reports the screenshot but neither the URL nor the HTML of its

amples. Finally, the well-known datasets proposed by Hannousse and
ahiouche (2021) and Mohammad et al. (2014b) are only provided as
re-computed features, thereby preventing the retrieval of the original

6 We reached out to the creators of Yanting Jiang, Di Wu (2022b) and
ere given permission to use these samples for our research. The breakdown
f these 193 phishing webpages is as follows: 39=eCommerce, 22=finance,
6=education, 14=government, 0=health, 7=email, 24=information, 0=news,
=search engine, 6=social, 43=entertainment, 21=other.
7 
data on the corresponding website. After surveying the few existing
datasets that provide complete information on each sample contained
therein, we found two recent ones which have been validated by the
research community : the one in Van Dooremaal et al. (2021) and the one
in Apruzzese and Subrahmanian (2022). However, we observed that
both of these datasets contain websites of diverse languages—which,
for the sake of our assessment, demanded further analyses.

3.2.2. Language Selector Tool (LaSeTo)
To create WstPhish and EngPhish, we must put some order in

the ‘‘mixture’’ of websites contained in the datasets in Van Dooremaal
et al. (2021) and Apruzzese and Subrahmanian (2022). To this pur-
pose, we develop an original Language Selector Tool—or LaSeTo, for
short. LaSeTo fosters two elements of the HTML alongside Google’s
Compact Language Detector v3 (CLD3), i.e., an open-source system
that leverages state-of-the-art techniques for language identification,
supporting over 100 languages (Google, 2020). Specifically, LaSeTo
considers: (i) the ‘lang’ HTML attribute—used to declare the language
of a webpage; and (ii) the language used in the HTML ‘title’ tag—which
can also suggest the primary language of the userbase of a given web-
site. Practically, LaSeTo receives the raw HTML of a webpage as input:
if it can detect the ‘lang’ attribute, it will output the corresponding
language; otherwise, it will query CLD3 with the ‘title’ tag, and provide
the corresponding language as output. This design choice (i.e., looking
for the ‘lang’ attribute first) is to save computational runtime: we
experimented with LaSeTo, and the ‘lang’ attribute (if present) requires
half the time (0.022𝑠 vs 0.043𝑠) to produce an output, which was almost
always the same as CLD3. We release the source code of LaSeTo in our
repository.

3.2.3. Creating EngPhish and WstPhish

For consistency, we will use the same source to build each of
our ‘‘Western’’ datasets. Let us explain our procedure in more detail,
motivating our choices.

• EngPhish: Since we want an English-only data corpus, we chose
the latest suitable dataset as a starting point. Specifically, we
consider the dataset provided in the 2022 paper from Apruzzese
and Subrahmanian (2022), which contains nearly 24k samples
(16k benign and 8k phishing). However, not all of these are
English websites: we hence submit all 24k samples to LaSeTo,
finding that 15 111 are in English (specifically, 4 092 phishing and
11 019 benign). Overall, these samples represent EngPhish.

• WstPhish: Our last dataset should include webpages representing
a broad coverage of ‘‘western’’ languages. Hence, we use LaSeTo
to extract a subset from the websites provided in the 2021 paper
by Van Dooremaal et al. (2021). This data corpus entails almost
4M websites, of which 100k are phishing (taken from various
repositories); some samples are ‘blank’ webpages, which we ig-
nore. To create WstPhish, we begin by considering 17 phonologic
languages from the list of most common (Wikipedia, 2023e) Eu-
ropean languages (besides English), i.e.: German, Italian, French,
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Table 3
Summary of the datasets used in our evaluation. For ChiPhish, we use 372 phishing samples we collected in Oct–Dec 2022, and 193
phishing samples from Jiang and Wu (2022) (see Section 3.1.3); the parentheses report the total number of phishing samples in ChiPhish
as of 2024 (all of which have been collected by us).

Dataset #Benign #Phish Used in

WstPhish 4 269 6 935 Van Dooremaal et al. (2021), Apruzzese et al. (2022a)
EngPhish 11 019 4 092 Apruzzese and Subrahmanian (2022)
ChiPhish 1 055 565 (372)* Jiang and Wu (2022)
Fig. 4. Assessment of industry-developed PWD.
We test 72 PWD (leveraging various detection methods) developed by industry
practitioners on our three datasets, and measure the respective 𝑡𝑝𝑟 and 𝑡𝑛𝑟 (defined
in §4.2).

Swedish, Polish, Spanish, Norwegian, Hungarian, Czech, Danish,
Dutch, Greek, Turkish, Slovenian, Croatian, Romanian and Lux-
embourgish. Then, we run LaSeTo on the websites, saving all
webpages that match any of these 17 languages. We thus obtain
4 269 benign and 6 935 phishing webpages, which represent our
WstPhish.

To make our experiments reproducible, we provide these datasets
in our repository. We summarize the statistics of our three considered
datasets in Table 3. In what follows, we will use these datasets to assess
existing anti-phishing schemes, and develop new ones (see Fig. 3).

4. Assessment of Phishing Website Detectors by practitioners
(RQ1)

We begin our assessment by focusing on our first RQ, for which
we must test ‘‘how well’’ PWD developed by practitioners can detect
phishing/benign webpages ‘‘from the West’’ and ‘‘from China’’ (§2.3).
To this purpose, we consider a total of 72 ‘‘closed-source’’ detectors, en-
compassing both operational products/services and competition-grade
systems. We first explain our choices (§4.1), and the present the results
of this assessment (§4.2). An overview is in Fig. 4

4.1. Selection of ‘‘closed-source’’ detectors, and experimental workflow

Several industry-developed tools exist that can be used to deter-
mine whether a website is malicious. These tools accept as input
either the URL or the HTML of a website, and then analyse such
input in a black-box manner, and can rely either on up-to-date block-
lists, but they may also query third-party services that perform a
deeper analysis (e.g., Virustotal (Virustotal, 2023m), Netcraft (Netcraft,
2023f), or PhishDetector (PhishDetector Contributor, 2023h)). To pro-
vide a meaningful answer to RQ1, we select 72 PWD developed by
industry practitioners. Despite such PWD being ‘‘closed-source’’ (we
cannot inspect their low-level implementation), there exist some pub-
licly available information that allows us to infer their overarching
functionality. We consider: 62 data-driven PWD (§4.1.2), 2 blocklist-
based PWD (§4.1.1), and 8 ML-driven PWD (§4.1.3). Let us elaborate
on which, why, and how we use each of these.
8 
4.1.1. Blocklist-based (production-grade) PWD
To provide a complementary perspective to data-driven

(production-grade) PWD, we also consider PWD whose output is (to
the best of our knowledge) based on blocklist, and hence accept
as input the URL of a given website. For this analysis, we rely on
two anti-phishing solutions: VirusTotal (which we use for its URL
variant,7 and not for the HTML used in §4.1.2), which is popular in
the West and widely used by prior work (Peng et al., 2019b; Cheng
et al., 2018; Dambra et al., 2023; Choo et al., 2023; Acharya and
Vadrevu, 2021; Kondracki et al., 2021); and VenusEye which is a
PWD developed by a Chinese vendor (Venustech, 2023l). Importantly:
for our experiments, we searched for (freely available) anti-phishing
services provided by Chinese companies and that we could use for
our research; unfortunately, we could not find any such service. Existing
Chinese solutions can only be accessed via paywalls, and we could
not find any that could leverage data-driven heuristics. The only one
we could find is the (blocklist-based) VenusEye—but even this has
a limitation: each query must be manually submitted. Indeed, while
other services popular in the West facilitate analyses by providing
APIs that can be used to send queries in bulk, for VenusEye there is
no working API,8 and we must submit each URL individually, wait
for its response, and then repeat this process again. For this reason,
the assessment of blocklist-based (production-grade) PWD will entail a
subset of our data—and, specifically, we will only consider a (randomly
chosen) set of 200 samples (100 from WstPhish and 100 from EngPhish).
This is, however, not a problem: it is well-known that blocklist-based
PWD work only if they include the corresponding URL in their list. Hence,
this analysis serves merely to ascertain if these blocklists are well-
maintained by the respective vendors. Please note: we do not consider
𝐶ℎ𝑖𝑃ℎ𝑖𝑠ℎ here because many samples in ChiPhish have been validated
thanks to VenusEye (making the comparison unfair).

4.1.2. Data-driven (production-grade) PWD
For an exhaustive assessment, we rely on two popular ‘‘production-

grade’’ anti-phishing services: GoogleSafeBrowsing, which accepts the
URL of a web page as input, whose landing webpage is allegedly
analysed by various data-driven methods (Tarun Bansal, 2023a; Miao
et al., 2023); and VirusTotal, which accepts HTML as input, since its
output accounts for the responses of dozens of scanners (in contrast,
Netcraft and PhishDetector only consider the response of a single tool);
it is conjectured (Liras et al., 2021) that some scanners in VT adopt
data-driven heuristics to perform their analyses on malicious samples.
We use these tools as done by prior work (e.g., Peng et al. (2019b)):
we submit the corresponding input (URL for GoogleSafeBrowsing, and
HTML for VirusTotal) to each tool and observe their output. For Virus-
Total, every query.9 corresponds to having 61 PWD (each leveraging

7 The URL version of VirusTotal inquires ≈96 blocklists from various ven-
dors. To assess the maximum effectiveness of VirusTotal, we consider an
output to be ‘‘malicious’’ if at least one vendor says so. Such a straightforward
detection mechanism is why we consider the URL version of VirusTotal as a
single PWD in this paper.

8 We tried using the provided link https://venuseye.com.cn/api/ but it
is not functional when we submitted our samples. We even contacted the
developers, explaining the issue, but we received no response.

9 We perform our analysis in Jan. 2023, but this number can change (Wang
et al., 2023) At that point in time, the detectors queried by VirusTotal are 78,
but 17 of these returned an error, so we will not consider them.

https://venuseye.com.cn/api/
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proprietary detection methods) to analyse the corresponding sample—
allowing us to provide a broad perspective on the detection capabilities
of real systems.

4.1.3. ML-driven (competition-grade) PWD
We find it instructive to provide a yet another perspective, and

hence consider 8 ‘‘competition-grade’’ PWD—for which we have cer-
ainty that they leverage ML techniques (although we do not know
hich specific methods, despite being obviously data-driven). Specifi-

ally, we consider the anti-phishing detectors provided for the Machine
earning Security Evasion Competition (MLSEC) organized by Cu-
oAI (CujoAI, 2022). These ML-PWD (8 in total) analyse the raw HTML
f a webpage as input, and provide a ‘phishing’ confidence (within [0–
] range, with 0 denoting a benign sample and 1 denoting a phishing
ample) as output. The organizers of MLSEC allowed the research com-
unity to use their ML-PWD for three months after the challenge ended

n September 2022. We took this opportunity to test these detectors on
he raw HTML of every webpage in our three datasets—thereby ensuring
consistent setup as the one for the HTML of VirusTotal (§4.1.2).

4.2. Results (do industry-developed PWD work well on Chinese and West-
ern websites?)

Let us report the results of our assessment, starting from the
production-grade PWD (data-driven in §4.2.1 and blocklist-based in
§4.2.2), and finishing with the competition-grade ML-PWD (§4.2.3).
The performance metrics of choice are the true positive rate (𝑡𝑝𝑟), which
is the percentage of phishing websites classified as malicious; and the
true negative rate (𝑡𝑛𝑟), which is the percentage of benign websites
classified as benign—and which can be used to derive the false positive
rate (𝑓𝑝𝑟) by doing 𝑓𝑝𝑟=1-𝑡𝑛𝑟. A PWD has good quality if both 𝑡𝑛𝑟 and
𝑝𝑟 are close to 1.

.2.1. Performance of Data-driven (production-grade) PWD
We assess the capabilities of GoogleSafeBrowsing (GSB). We sub-

it all the samples in our three datasets (ChiPhish, EngPhish and
stPhish) to the GSB API (Google, 2023c) (which accepts URL as

inputs) and we record how many webpages trigger a ‘‘suspicious’’
response. We consider suspicious samples as positive instances while
benign samples as negative ones. Hence, we calculate the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 of
ach detector by comparing its prediction with the respective ground
ruth. The results are as follows:

• EngPhish: 𝑡𝑝𝑟=0.043 (176 phishing samples are detected), with no
false positives (𝑡𝑛𝑟=1.0).

• WstPhish: 𝑡𝑝𝑟=0.004 (26 phishing samples are detected), with one
false negative (𝑡𝑛𝑟=0.999).

• ChiPhish: 𝑡𝑝𝑟=0.002 (only 1 phishing sample is detected) with no
false positives (𝑡𝑛𝑟=1.0).

At the same time, we submit the raw HTML of every sample in each
f our three datasets to VirusTotal (VT), which automatically forwards
t to 61 cyber detectors (provided by security companies) and then
eports the label (‘malicious’ or ‘benign’) of each sample. The results
see Table B.11) align with GSB’s, showing that all detectors achieve a
erfect 𝑡𝑛𝑟, but perform terribly in identifying the phishing samples in
hiPhish, with an average 𝑡𝑝𝑟 of 0.004.10 And, these detectors perform

not-very-well also on WstPhish and EngPhish: the average 𝑡𝑝𝑟 is 0.04
and 0.11, respectively (which are, however, 10 and 30x better than the
average 𝑡𝑝𝑟 on ChiPhish)11. These (potentially underwhelming) results
echo those in prior work, showing that such anti-phishing schemes have
many blind-spots (Peng et al., 2019b).

It is apparent that even important anti-phishing tool, deployed in
popular web-browsers, is unable to identify Chinese phishing websites,

10 The best detector, AVG, has a 𝑡𝑝𝑟 of 0.03 in ChiPhish.
11 The best detector achieves a 𝑡𝑝𝑟 of 0.49 on WstPhish and 0.52 on

EngPhish.
 e

9 
Takeaway. Out of 62 production-grade (data-driven) PWD, none can reli-
ably detect Chinese phishing websites. In contrast, some exhibit a subpar
detection rate for Western phishing websites. The rate of false alarms is
always low, showing that these PWD might be tuned to minimize false
positives.

4.2.2. Performance of Blocklist-based (production-grade) PWD
We turn the attention to blocklist-based PWD. As we explained (in

§4.1.1), we only consider a select subset of our datasets for this proof-
of-concept experiment. We randomly sample 100 phishing samples from
both WstPhish and EngPhish, and submit the corresponding URL to
VenusEye (in March 2023). Accordingly, 74 and 82 of the samples
from WstPhish and EngPhish are flagged as phishing. Then, we submit
he exact same samples to VirusTotal (by using its URL variant) which
chieved12 a 97% 𝑡𝑝𝑟.

Takeaway. Chinese production-grade PWD (using blocklists) cannot detect
20% of our submitted Western phishing samples—which are perfectly de-
tected by ‘‘Western’’ counterparts. This suggests that the blocklists of our
considered Chinese-PWD are not kept up-to-date with Western phishing
websites.

4.2.3. Performance of ML-driven (competition-grade) PWD
Lastly, we submit the raw HTML of all samples in our three datasets

o each of the 8 ‘‘black-box’’ ML-PWD of MLSEC. The output of each
f these detectors is a confidence score (from 0.0 to 1.0): for this

experiment, we consider a score that is higher than 0.5 to denote a
‘‘phishing’’ prediction (and ‘‘benign’’ otherwise). We then check these
predictions against the corresponding ground-truth, and derive the 𝑡𝑝𝑟
and 𝑡𝑛𝑟. The results are in Fig. 5, showing the distribution of the 𝑡𝑝𝑟
and 𝑡𝑛𝑟 across the 8 MLSEC detectors for each of our three datasets
(the detailed performance of each detector is in Table B.15). From
Fig. 5 we see that these detectors perform much better on WstPhish

(avg 𝑡𝑝𝑟=0.60) and EngPhish (avg 𝑡𝑝𝑟=0.64) compared to ChiPhish (avg
𝑡𝑝𝑟=0.27). Even though these detectors are for competitions,13 these
results further show that Chinese websites are rarely accounted for when
designing ML-PWD.

5. Assessment of Phishing Website Detectors by researchers (RQ2)

Having demonstrated that the current landscape of industry-
developed PWD is not equipped to simultaneously cover both Western
and Chinese phishing websites, we now turn the attention to our second
RQ. We select 10 ML-PWD, analysing various types of information
(cf. §2.1.2), proposed by related research, and whose code is open-
source (§5.1). Such a characteristic allows us, after assessing their
performance (§5.2), to perform a critical analysis (§5.3) of their de-
tection mechanism, thereby highlighting the pros-and-cons of these
state-of-the-art PWD for the sake of our goal. An overview of our
experimental workflow is in Fig. 6.

12 N.B.: these results should not be compared to those in Table B.11: we are
ubmitting the URL here, and the HTML for Table B.11.
13 The organizers of MLSEC admittedly tweaked their ML-PWD to make
vasion harder (explaining the underwhelming 𝑡𝑛𝑟).
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Fig. 5. Performance of the ML-PWD of MLSEC.
Boxplots show the distribution of the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 among the 8 ML-PWD in the MLSEC anti-phishing evasion challenge on our three datasets: WstPhish, EngPhish and
ChiPhish.
Fig. 6. Assessment of ML-PWD proposed in research.
We test 10 ML-PWD (leveraging various detection methods) proposed in prior research on our three datasets, and measure the respective 𝑡𝑝𝑟 and 𝑡𝑛𝑟.
5.1. Considered ‘‘open-source’’ ML-based detectors, and experimental work-
flow

To provide a comprehensive answer to RQ2, we consider 10 repre-
sentative ML-PWD that have been recently proposed in research papers
accepted at top-venues. Specifically, 9 are from SpacePhish (§5.1.1),
whose artifact received a Reusable Badge at ACSAC’22 (Apruzzese
et al., 2022a); and 1 is from PhishIntention (§5.1.2), from USENIX
SEC’22 (Liu et al., 2022a). Importantly: we only consider ML-based
PWD because there is no point in assessing those based on blocklists
(an inspection of the corresponding blocklist would immediately reveal
whether they would work or not); and we do not consider Chinese-
specific ML-PWD because no previous paper has its source-code openly
accessible today (cf. §2.2).

5.1.1. SpacePhish (feature-based)
This research paper (Apruzzese et al., 2022a) was published in

ACSAC’22, its source-code is fully available on GitHub (Apruzzese et al.,
2022h), and its results have been reproduced by downstream research
(e.g., Montaruli et al. (2023), Yuan et al. (2023)). The paper entailed a
replication of well-known ‘‘feature-based’’ ML-PWD, i.e., whose detec-
tion mechanism relies on the analysis of 57 (mostly binary) features
proposed by acclaimed prior work (e.g., Mohammad et al. (2014a),
Xiang et al. (2011), Marchal et al. (2016), Jain and Gupta (2018a)). At
a high-level, such features can be divided into two groups: URL-based,
which are computed by using the URL-string as input (e.g., length of the
URL, or number of subdomains); and HTML-based, which are computed
by analysing the HTML of the web page (e.g., internal objects, DOM el-
ements, or javascript). Using the source-code of SpacePhish (Apruzzese
et al., 2022a) enables one extract 57 features describing a given web
page. After this extraction process, the feature representation of the
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web page (i.e., a sample) can then be provided as input to an ML
model, tasked to analyse the sample and determine whether it is benign
or malicious. SpacePhish implemented a total of 9 ML-PWD, each
considering a specific group of features (𝐹𝑢=URL-only, 𝐹ℎ=HTML-only,
or 𝐹𝑐=both URL and HTML) and a specific ML algorithm (RF=random
forest, LR=logistic regression, or CNN=convolutional neural network).
To train these ML-PWD, the authors of SpacePhish use a subset of 4000
websites (2k benign, 2k phishing) taken from the dataset proposed
in Van Dooremaal et al. (2021), i.e., the same source that we used to
create WstPhish (albeit our WstPhish is 2.5x larger, and the choice of
websites follows a specific criteria instead of being randomly drawn—
see §3.2.3). For our assessment, we consider all these 9 ML-PWD,
thereby allowing for a comprehensive (and fair) evaluation of such
feature-based ML-PWD. The procedure is simple: first, we use the open-
source code of SpacePhish (Apruzzese et al., 2022h) and re-implement
their 9 ML-PWD (ensuring that they obtain the same performance as
in Apruzzese et al. (2022a)). Then, we use the feature extractor of
SpacePhish to produce the feature representation of every website in
our three datasets (ChiPhish, WstPhish, EngPhish). Finally, we submit
every sample (i.e., a feature vector of 57 numerical values) to each of
the 9 ML-PWD of SpacePhish, and measure the corresponding 𝑡𝑝𝑟 and
𝑡𝑛𝑟 for each of our datasets.

5.1.2. PhishIntention (image-based)
In their USENIX SEC’22 paper, Liu et al. (2022a) propose

PhishIntention—an updated variant of a (relatively) new class of anti-
phishing schemes, which rely on the capabilities of deep learning
to analyse images. Following the trend initiated by Abdelnabi et al.
(2020) and Lin et al. (2021), PhishIntention seeks to identify phishing
webpages that are visually similar to popular (benign) webpages that
are frequently visited by a large pool of users. The intuition is that
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phishers try to lure their victims to websites they are familiar with
(e.g., PayPal) and, if such users land on a webpage which is very
similar to what they expect (e.g., the real PayPal), then the users could
fall for the phishing trap and input their credentials. PhishIntenion
aims to detect such (malicious) webpages, which is done by analysing
(via deep learning) the visual representation of any given webpage,
and checking whether it is similar to the one of a popular website
(e.g., PayPal, Google). If the result of such an analysis exceeds a certain
similarity threshold (𝜃), then the page is considered similar, and this
will trigger a domain verification mechanism (i.e., if the page is similar
to PayPal, and it is hosted under the same domain as PayPal, then it
is a benign page by PayPal!): if the domain matches, then no action is
taken (i.e., the web page is likely benign); otherwise, an alarm is raised
(i.e., the web page is likely phishing). Therefore, to test PhishIntention,
we proceed as follows. First, we take the exact models provided in
the corresponding GitHub repository (Liu et al., 2022f), which are pre-
trained. Then, we submit the screenshot of every web page in ChiPhish
14 (we will explain in §5.3 why we consider only ChiPhish) to the
models of PhishIntention. Finally, we analyse the results: if the output
exceeds the similarity threshold (for which we use the exact same value
determined in PhishIntention, i.e., 𝜃=0.87) then the page is phishing (we
already know that the domain does not match); and benign otherwise.

5.2. Results (do ML-PWD ‘‘from research’’ work well on Chinese and
western websites?)

Let us report the results of our empirical assessment of these ‘‘open-
source’’ ML-PWD.

5.2.1. Do feature-based ML-PWD work?
First, we consider the 9 detectors from SpacePhish (Apruzzese et al.,

2022a). To provide a statistically-significant testbed, we repeat our
assessment 10 times—each by training any given ML-PWD (using a
specified algorithm and feature-set) anew on a different (randomly
chosen) portion of the training dataset used in SpacePhish (which, we
recall, is different from any of our three dataset). We report the results
in Table 4, wherein cells report the average (and std) 𝑡𝑝𝑟 and 𝑡𝑛𝑟 across
our 10 trials on each of our datasets. By observing these results, we see
that the performance (in terms of 𝑡𝑝𝑟 and 𝑡𝑛𝑟) tends to be highest for the
detectors analysing all features (i.e., 𝐹𝑐), which makes sense because
they use a superior amount of information to make their decisions.
Furthermore, we also see that the RF-based models tend to be slightly
better than LR and CNN, as evidenced by an overall lower 𝑡𝑛𝑟 (which
translates to a lower false positive rate—which is preferred for practical
PWD). Nonetheless, we also see that the best performance is obtained
on WstPhish: this is an important observation, because WstPhish is
drawn from the same distribution as the samples used to train these
ML-PWD (Apruzzese et al., 2022a), hence such a result confirms that
our implementation is correct. Then, we see that the performance on
EngPhish is appreciable, with the 𝐹𝑐 variant of all these detectors being
able to achieve perfect 𝑡𝑛𝑟 and above 0.8 𝑡𝑝𝑟. Finally, and worryingly,
the performance on ChiPhish is underwhelming: despite achieving a
(relatively) good 𝑡𝑛𝑟 (for 𝐹𝑐 : RF=0.95, LR=0.98, CNN=0.86), the 𝑡𝑝𝑟 is
unacceptably low (for 𝐹𝑐 : RF=0.39, LR=0.42, CNN=0.37).

Takeaway. The ML-PWDs of Apruzzese et al. (2022a) cannot detect >58%
of the phishing webpages in ChiPhish.

14 For the phishing webpages from Jiang and Wu (2022) we manually
xtract their screenshot by displaying them in our browser.
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5.2.2. Do image-based ML-PWD work?
Next, we focus on PhishIntention (Liu et al., 2022a), which we test

on ChiPhish. Out of the 565 phishing samples in ChiPhish, 561 (99, 3%)
trigger a ‘‘no target’’ response by PhishIntention: they are too different
from any web page ‘‘seen’’ by the models of PhishIntention, and are
hence flagged as benign (i.e., they evade detection). The remaining
4 trigger some similarity, and we further inspect these results: 3 are
(phishing) webpages that mimic the Chinese version of Apple, whereas
1 is mimicking Netease (all of which are brands whose web pages
are included in the training data of in PhishIntention). However, the
similarity of these is: 0.69, 0.84, 0.84, 0.72: all such values are below the
threshold (𝜃=0.87) that would induce PhishIntention to proceed with the
domain checking (and which would lead to a phishing output). Hence,
these webpages are also classified as benign. Notably, in ChiPhish

there are 20 more phishing samples that mimic the Chinese Apple, but
they also yielded ‘‘no target’’ (i.e., they also evaded PhishIntention).

Takeaway. None of the 565 phishing samples in ChiPhish are detected
by PhishIntention (Liu et al., 2022a).

5.3. Critical Analysis (why are the results the way they are?)

The extensive documentation and open-source code of these ML-
PWD from research allows us to explain our results. Hence, we take
a step back, and review how our considered state-of-the-art ML-PWD
work to perform their detection. Our underlying objective is identifying
whether there is room for improvement (and also justifying why we
only considered ChiPhish in §5.2.2).

5.3.1. Review: using ML to detect phishing webpages
According to Corona et al. (2017), ML-PWD approaches can be

divided in two categories: target dependent, and target independent. The
former aim to detect phishing samples that focus on a specific target,
whereas the latter seek to detect phishing without making any assump-
tion whatsoever. For instance, the ML-PWD of SpacePhish (Apruzzese
et al., 2022a) (considered in our evaluation) are all target independent:
after training on a broad set of benign and phishing samples, they aim
to infer whether any ‘test’ sample is benign or phishing. In contrast,
state-of-the-art image-based PWD mostly follow a target dependent
approach (even in practice, e.g., Draganovic et al. (2023), Apruzzese
et al. (2023a)). Albeit there exist target-dependent ML-PWD that do
not use images (e.g., Tan et al. (2016)), we are not aware of target-
independent ML-PWD that do use images: interestingly, Marchal et al.
(2016) propose ML-PWD that relies on various features (most of which
overlap with those in SpacePhish), and despite stating that screenshots
are an ‘‘information source’’, the proposed features do not use the screen-
shot. To further justify this claim, we perform an original experiment
which yielded negative results (discussed in Appendix E).

5.3.2. Target-dependent ML-PWD using images
These approaches focus on catching phishing websites that ‘‘target

a specific brand’’. The intuition is that most phishing attacks try to lure
victims to (malicious) websites that resemble a reputable brand. Specif-
ically, instead of inferring whether a website is benign or phishing,
these approaches seek to identify whether a website (or a part of it) is
‘‘similar’’ to another website (or a part of it) that is known to be benign.
If this is true, then this finding is used to verify whether other elements
of the website (e.g., its domain) match with those of the known brand.

The reason of this two-step approach is due to efficiency. Indeed,
uerying third-party websites for domain is expensive, so it is only
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Table 4
Performance of the ML-PWD of SpacePhish. We replicate the exact ML-PWD of Apruzzese et al. (2022a) and test them on our datasets, reporting the avg (and std.) 𝑡𝑝𝑟 and 𝑡𝑛𝑟
across 10 independent trials.
done if there is risk that the page is actively trying to mimic a well-
known website (Lee et al., 2023). Abundant works have proposed target
dependent approaches reliant on visual similarity. Notable examples
include the seminal work by Fu et al. (2006), and the one by Geng et al.
(2013) focusing on favicons. More recently, we mention Corona et al.
2017), Abdelnabi et al. (2020) and, our considered PhishIntention (Liu
t al., 2022a). Unfortunately, the main limitation of these approaches
s that they only work if the phishing webpage tries to resemble one of
he targeted brands—which is typically referred to as protected set (PS).
uch a peculiarity makes them ‘‘similar’’ to blocklist-based approaches:
hey will work only as long as such list (i.e., the PS) covers the brands
hat will be seen at test-time. Hence, although we acknowledge that
hishers tend to target well-known brands, target-dependent ML-PWD
ill fail by design to detect any phishing webpage that targets a brand
ot included in the PS.15

.3.3. Shortcomings of visual PWD: a case study
Let us link the information provided insofar to the problem tackled

y our paper: the gap between Chinese and Western PWD. To provide
vidence that existing (target dependent) PWD reliant on visual similar-
ty are not-well-equipped to handle Chinese websites, we perform an
n-depth look at the brands included in the PS of the most acclaimed
orks. We do so by asking ourselves the two ancillary questions (AQ):

AQ1: how many of these brands are Chinese?
AQ2: how many of these Chinese brands are in the top30 Chinese

websites (Chinaz, 2023b)? (June 2023)

he rationale is that if these methods entail many (top-visited) Chinese
ebsites in their PS, then these methods would be (somewhat) effective

o counter Chinese phishing websites. Unfortunately, the results of this
ase study, shown in Table 5, reveal that this is not the case.

15 Why do such ML-PWD work in this way? Image-based PWD are trendy
in research, and are now being deployed also in practice (Apruzzese et al.,
2023a; Draganovic et al., 2023). However, it is almost paradoxical that their
biggest strength is also their main weakness. Indeed, to meet ‘‘operational’’
requirements, PWD must be fast: a user is not willing to wait seconds before
their browser renders a given webpage just because there is a risk of such a
webpage being phishing. Consequently, in a very short time-frame, a given PWD
that employs (target dependent) image-based techniques must: (i) capture the
screenshot of a website; (ii) extract the relevant information (e.g., the logo);
(iii) make a pairwise comparison of such information with each element in
the PS—note that for each protected website there may be multiple elements
associated to it (e.g., multiple logos are associated to PayPal); (iv) if a match
s found, check the domain—note that the DNS query is done only after
etermining which brand is the one most likely associated to the given
ebpage, i.e., the PS must always be checked in its entirety (according to

he co-authors of Apruzzese et al. (2023a)); (v) after receiving the response,
decide whether to block the webpage or not. This long set of operations is
computationally expensive. To make such an analysis feasible, the PS typically
includes around 200 brands (Lin et al., 2021).
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Table 5
Case study on image-based ML-PWD. We scrutinize how many brands included in the
‘‘training’’ datasets of popular image-based (and target-dependent) ML-PWD are from
China. (N/A=data not public)

Work PS
size

# Chinese
in PS (AQ1)

# top30 Chinese
in PS (AQ2)

Fu et al. (2006) 8 1 0
Geng et al. (2013) 81 N/A N/A
Corona et al. (2017) 1012 2 0
Dalgic et al. (2018) 14 1 0
Van Dooremaal et al. (2021) 8 N/A N/A
Abdelnabi et al. (2020) 155 3 0
Lin et al. (2021) 181 5 1
Liu et al. (2022a) 277 5 1
Apruzzese et al. (2023a) 40 1 0

We can see that most approaches have a PS with variable size,
spanning between less than 10 to few hundreds brands (the exception is
DeltaPhish (Corona et al., 2017), which focuses on compromised web-
sites and has a slightly different focus). However, the corresponding PS
have at most five Chinese brands in them, and none of these are included
in the top30 Chinese websites. To provide further evidence, let us focus
on VisualPhishNet (Abdelnabi et al., 2020) and PhishPedia (Lin et al.,
2021) (and also PhishIntention (Liu et al., 2022a)): the former has
only 3 Chinese brands (Alibaba, Aliexpress, made-in-china), whereas
the latter has 5 (Alibaba, SFexpress, Netease, made-in-china, global
sources HK). This means that, at best, the corresponding PWD models
can detect only Chinese phishing websites mimicing those of these six
brands. However, we make two interesting observations (which we
explain through Figs. 7):

• Five out of these six brands are not in the top30 Chinese websites. (The
exception is NetEase, which is included in Lin et al. (2021) and Liu
et al. (2022a).) This is because Chinese websites that are also visited
in the West have a different domain: for instance, ‘‘alibaba.com’’
(included in Lin et al. (2021)) is less popular than ‘‘1688.com’’ (not
included in Lin et al. (2021)) in China—despite referring to the exact
same brand.

• The visual content in these datasets has a mismatch between the Chinese
and Western versions of a brand. E.g., Lin et al. (2021) includes the logo
for ‘‘chinese.alibaba.com’’ (Fig. 7(a)) but not the one for the Western
version of Alibaba (i.e., ‘‘alibaba.com’’, Fig. 7(b)) nor the one for 1688
(Fig. 7(c)).

This means that these approaches are very unlikely to work in a
‘‘cross-regional’’ setting (even if the corresponding PS includes some
Chinese brands—since they are tailored for the Western version of
such websites). Conversely, the only way to make these approaches
‘‘work’’ is by (i) expanding their PS by also including Chinese brands;
and (ii) by including in the corresponding dataset the Chinese version
of the websites within the PS. The drawback, however, is that this
will inevitably increase the computational effort to analyse any given

webpage at test-time.
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Fig. 7. Logos of three versions of the same Chinese brand (in 2023).
The same brand has distinct websites, which can be accessed by Chinese or Western people—also depending on where the products are meant to be shipped.
Lesson Learned: Image-based ML-PWD only work against phishing
websites that try to mimic a shortlist of well-known brands. Unfor-
tunately, most existing methods do not include Chinese brands in
such a shortlist. Gauging (or improving) the effectiveness of these
ML-PWD only requires inspecting (or expandinga) such a shortlist—
or combining them with target-independent methods (e.g., Corona
et al. (2017) and Van Dooremaal et al. (2021)) which do not analyse
images (proof in Appendix E).

a Of course, there are works that have explored such a possibility
(e.g., Liu et al. (2023)), but these are outside our scope.

The above explains why we only tested PhishIntention (Liu et al.,
2022a) on ChiPhish: like any target-dependent ML-PWD, PhishIn-
tention works well against phishing websites mimicing (top-ranked)
websites—but its PS only covers Western brands Liu et al. (2023). For
this reason, in the remainder of this paper, we will focus on improving
target-independent ML-PWD—since they seek to work on ‘‘any’’ phishing
websites.

6. The step forward: Improving target-in dependent ML-PWD

We have empirically shown the shortcoming of state-of-the-art ML-
PWD proposed in research (§5), and demonstrated the pros-and-cons
of target-dependent ML-PWD reliant on visual similarity (§5.3). We
now seek to find ways to improve current target-independent ML-PWD,
since they can provide protection of ‘‘generic’’ phishing websites—
including those that are outside a pre-defined reference list. To this
end, we first dissect the anatomy of Chinese websites (§6.1). Based on
the analysis, we then propose and practically implement an enhanced
feature-set covering both Chinese and Western websites (§6.2). Finally,
we re-develop the ML-PWD of SpacePhish by using our feature-set and
datasets, and assessing their cross-regional effectiveness (§6.3).

6.1. Analysis: Chinese vs Western websites (from a PWD perspective)

As a starting point to improve feature-based ML-PWD, we elucidate
the differences that set Chinese websites apart from Western ones.
These differences lie in: the language itself and, in particular, its
text (§6.1.1); and the structure of the website (§6.1.2). Both of these
influence the representation of the website (i.e., its HTML), thereby
suggesting that ML-PWD analysing features extracted from such in-
formation are likely to respond differently on websites of different
regions.

6.1.1. Chinese & Western texts
English or Western languages (e.g., Italian) are phonetic languages.

Their smallest sememe words (Niu et al., 2017) are a combination of
26 alphabet letters. For instance, a generic English word (e.g., ‘‘hello’’)
can be easily pronounced with the help of its glyphs. However, Chinese
texts (and other Eastern texts, e.g., Japanese) are more complex: there
can be little or no correlation between the pronunciation and the glyph
of a given word. As an example, the Chinese word has multiple
pronunciations: ‘cān’, ‘cēn’, and ‘shēn’. However, even native speakers
cannot determine how to pronounce just by observing its glyph.

Indeed, Chinese is both a kind of hieroglyphics and phonetic lan-
guage, which has three unique linguistic characteristics: pinyin, glyph
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and tone (Liu et al., 2022b). Only by knowing all of these it is possible
to determine the exact Chinese character. As shown in Fig. 8, words in
group (a) have the same pinyin and tone, but their glyph and semantics
are different, which means the Chinese texts cannot be confirmed only
by the pronunciation. The words in group (b), have the same glyph,

, but they differ in the pinyin, tone and semantics. Finally, words
in group (c), and have the same pinyin, ‘li’, but different tones

and different glyphs; furthermore, their semantics are different.
In practice, the difference between Chinese and Western texts is

likely to affect ML-PWD ‘‘trained’’ on either of these languages. For
example, many ML-PWD (e.g., Hannousse and Yahiouche (2021), Li
et al. (2019), including those in SpacePhish (Apruzzese et al., 2022a))
analyse a feature that denotes whether the website’s title includes the
domain of its URL. Let ‘H_titBr’ denote such a feature: we represent
this extraction procedure in Fig. 9. For a Western website, we (step
1) get the domain from the URL and (2) get the title from the HTML,
then (3) check if the title includes the domain; these procedures are
those followed by the extractor of SpacePhish. However, for Chinese
websites, the title is in Chinese hieroglyphs: hence, it would be mislead-
ing to use the same procedure. Indeed, to correctly extract the ‘H_titBr’
feature from a Chinese website, we (4) need to ‘convert’ the title to
its corresponding pronunciation, e.g., pinyin,16 a combination of letters;
and then (5) compare it with the URL’s domain. Unfortunately, to the
best of our knowledge, we are not aware of PWD that implement such
an extraction procedure.

Importantly: this difference also exists between Chinese and West-
ern versions of the same website or brand. As an example, consider
Amazon, for which we provide an illustration in Figs. 10. The URL of
the Western variant contains the string ‘‘amazon’’, which also appears
in the title (as HTML) of the webpage (Fig. 10(a)). Therefore, the
extraction of the ‘H_titBr’ feature (i.e., steps 1, 2, 3 in Fig. 9) is
straightforward for ‘‘western’’ PWD (e.g., Apruzzese et al. (2022a)).
However, this extraction procedure does not work on the Chinese
version of Amazon. As shown in Fig. 10(b), the HTML’s title tag is

, which
clearly does not include the string ‘‘amazon’’ (which is present in
the URL). Therefore, to correctly extract H_titBr, it is necessary to
convert the title to its pronunciation. Not doing so (and applying the
‘straightforward’ Western procedure) leads to a mismatch that induces
an ML-PWD to believe that the Chinese version of Amazon to be
a suspicious website (since it would include pinyin and the foreign
language of transliterated words).

6.1.2. Chinese & Western websites structure
According to China’s network security law and the Administration

for Industry and Commerce regulations (Cyberspace Administration of
China, 2022c), Chinese websites must be registered with the Ministry
of Industry and Information Technology of the Chinese government
(i.e., ICP records). Chinese websites engaged in different activities must
apply for qualification certificates from the corresponding government
departments. E.g., ‘‘JD.com’’ is an eCommerce that mainly sells elec-
tronic merchandise and (to a lower extent) medicines, thus it received
a telecommunication business licence from the Chinese Ministry of

16 Among the top30 popular Chinese websites, 15 use pinyin (2023).



Y. Yuan et al. Computers & Security 148 (2025) 104115 
Fig. 8. Combination of Chinese texts. Chinese words can be identified only by knowing pinyin, glyph and tone.
Fig. 9. Extracting ‘H_titBr’ from Chinese and Western websites.
Current feature-based ML-PWD must be updated to correctly rely on this feature, since it would be incorrectly computed for some Chinese websites.
Fig. 10. URL and HTML (title) of the Chinese and Western version of the same website.
Industry and Information Technology, and a qualification certificate
for pharmaceutical services approved by Beijing Municipal Medical
Products Administration (e.g., see red box in Fig. 2(a)). In addition,
Chinese websites may display trusted website certifications to increase
their credibility (yellow box in Fig. 2). However, Western websites do
not have (nor require) these certificates. Even world-renown websites
lack them (see Fig. 11).

In practice, analysing the ICP record can be used to identify ma-
licious websites in China (this is done, e.g., in Zhang et al. (2014)).
However, the absence of this form of ‘‘certification’’ for Western web-
sites creates an intrinsic incompatibility between Chinese and Western
ML-PWD that analyse the HTML of a webpage. For instance, ML-PWD
for Chinese websites will search for the ICP record on Western websites,
but will never be able to find it—thereby inducing the ML-PWD to
believe that any Western webpage is ‘‘suspicious’’. In contrast, ML-PWD
for Western websites will also be adversely impacted by the presence
of the ICP record: it is well-known (Mohammad et al., 2012; Jain
and Gupta, 2018b; Yang et al., 2021) that phishing webpages have
many objects that point to ‘‘external’’ items—and, of course, the ICP
embedded in a Chinese website points to an external resource. As a
result, ML-PWD for Western websites will also be more likely to be
‘‘suspicious’’ of any Chinese website.

6.2. Implementation: towards developing ML-PWD that account for Chinese
websites

As our first technical contribution, we now propose a new feature
set which allows feature-based ML-PWD to simultaneously account for
both Chinese and Western websites (§6.2.3). To this end, we enhance
the feature extractor of SpacePhish (Apruzzese et al., 2022a), which
extracts a total of 57 features from the URL and HTML of any given
website. However, as we argued (§6.1) such features may not capture
the nuances of Chinese websites, and may be incorrectly computed.
We hence design 10 new Chinese-specific features (§6.2.1), and change
2 of the existing ones (§6.2.2). Overall, our features follow the same
logic as Apruzzese et al. (2022a), i.e., the value of each feature denotes
14 
whether the corresponding sample is more likely benign (0) or phishing
(1). Let us explain our new features at a high-level. For simplicity, we
use ‘H_’ and ‘U_’ to denote a feature that is based on the HTML and URL,
respectively.

6.2.1. New features
Among the 10 new features, five (i.e., H_icpReg, H_icpDom, H_icpApp,

H_icpCode and H_ecert) are Chinese-specific, and are inspired by the
guidelines in Zhang et al. (2014); while the other five (i.e., U_unicode,
H_nulItem, H_exItem, U_SER, U_tldNum) are based on best practices of
prior work (Hannousse and Yahiouche, 2021; Rao and Pais, 2019; Huh
and Kim, 2011), and should work on ‘‘any’’ website (both Chinese and
Western).

• H_icpReg. If the domain is in the Ministry of Industry and Informa-
tion Technology of the Chinese government, then H_icpReg=0; and
1 otherwise.

• H_icpCode. If the website includes an ICP code and it exists in its ICP
recorder (obtainable by checking the domain), then H_icpCode=0;
and 1 otherwise.

• H_ecert. We capture all links in the website. If none of such links
point to Trustworthy website certification platforms, then
H_ecert=1; and 0 otherwise.

• H_icpApp. If the domain applicant on the ICP record of the Chinese
Ministry of Industry and Information Technology is ‘‘enterprise’’,
then we set H_icpApp=0; and to 1 otherwise.

• H_icpDom. If the domain is consistent with the ICP record, then
H_icpDom=0, and 1 otherwise.

• U_unicode. According to Zhang et al. (2014), phishing website is
more likely to use UNICODE in its URL. If true, then U_unicode=1,
and 0 otherwise.

• H_nullItem. This feature extends the ‘‘HTML_nullLnkWeb’’ of
Apruzzese et al. (2022a). Specifically, we leverage the guidelines
by Hannousse and Yahiouche (2021) and factor in also other
‘‘null’’ elements, such as Login forms with external actions, that
are typical indicators of suspiciousness (besides just blank links of

‘‘HTML_nullLnkWeb’’).
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Fig. 11. Exemplary eCommerce and Government websites ‘‘from the West’’.
The footers of these websites are substantially different than those of Chinese websites (cf. Fig. 2). For instance, they lack ICP records.
• H_exItem. We compute this feature by counting the elements in the
HTML that point to external websites. The value is an integer, which
will be used to compute the feature H_obj (which is the equivalent
of the ‘‘HTML_objectRatio’’ of Apruzzese et al. (2022a)).

• U_SER. We follow the guidelines of Rao and Pais (2019), Huh and
Kim (2011), suggesting that it is possible to use search engine
results to detect phishing websites. If the URL matches any of the
top-10 websites in a Google search results (by querying Google with
the sample’s URL), U_SER=0; and a 1 otherwise.

• U_tldNum. We follow the guidelines of Hannousse and Yahiouche
(2021), suggesting that phishing websites may have more than
one top-level domain (TLD) located in another position within the
URL (e.g., the subdomain). This numerical feature represents the
number of TLD in the URL of the sample (this information is not
captured by the features of SpacePhish).

6.2.2. Changed features
To account for the nature of Chinese websites, the extraction pro-

cedures of two features have been changed w.r.t. those in Apruzzese
et al. (2022a).

• H_titBr. This feature checks if the website’s title includes the
domain of its URL. We follow the workflow described in §6.1.1.
We extract the title from the corresponding HTML tag, and then
we check if it includes any Chinese words via regex and, if so,
we convert the Chinese words to their pronunciation (i.e., pinyin).
Finally, if the domain of the URL is included in the title or
in the pinyin, H_titBr=0 (likely benign); and 1 otherwise (likely
phishing).

• H_DominCopr. We search for Chinese words in the website’s copy-
right information, convert them to their pronunciation, and fi-
nally, we check if the website’s copyright information includes
the website’s domain: H_DominCopr=0 if so, and 1 otherwise.
15 
6.2.3. Enhanced feature set
We implement our feature extractor and publicly release it in our

repository (Yuan, Ying and Apruzzese, Giovanni and Conti, Mauro
, 2023g), so that downstream research can use it for future analy-
sis. Afterwards, we pre-process every website in our three datasets
(ChiPhish, WstPhish, EngPhish) with our extractor, generating its
feature representation (a vector of 67 features). We find that two
features from SpacePhish (i.e., URL_fakeHTTPS and URL_dataURI) are
redundant since the value is the same for all samples in our datasets,
so we do not consider these for our evaluation. We summarize the 65
features considered in our evaluation in Table 6. We further discuss
some fairness and robustness properties of our features in Appendix A.

6.3. Assessment (is there any improvement w.r.t. the baseline ML-pwds?)

We now practically develop 81 ‘‘new’’ (target-independent) feature-
based ML-PWD by using our enhanced feature extractor. We will then
test these 81 ML-PWD in a cross-regional setting through our three
datasets. Our assessment, besides being useful to verify if there is any
improvement (w.r.t. §5.2.1), serves to answer the following ancillary
research question:

AQ3: Do ML-PWD specifically developed for, and trained only on
Chinese websites work well on Western/English websites (and
vice-versa)?

AQ3 is different from RQ2 (i.e., there is no publicly available ML-
PWD for Chinese websites!). We first describe our experimental work-
flow (§6.3.1), and then present the results (§6.3.2).

6.3.1. Workflow
For a broad assessment, we consider 81 ML-PWD, given by: 3

(datasets) × 9 (ML algorithms) × 3 (feature sets). Let us explain and
motivate our choices.
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Table 6
The features considered in our evaluation. Features in boldface are new;
grey cells denote (new) Chinese-specific features; features in italics have been
changed (w.r.t. SpacePhish (Apruzzese et al., 2022a)). Features whose name
starts with U_ are extracted from the URL, and those starting with H_ are
extracted from the HTML. The names of the remaining features reflect those in
SpacePhish (extensively described in its publicly available artifact (Apruzzese
et al., 2023j)).

# Feature Name # Feature Name # Feature Name
1 U_dash 23 U_ip 45 H_rClick
2 U_tldinSub 24 U_at 46 H_brokenLin
3 U_pageRank 25 U_pt 47 H_loginForm
4 U_ssl 26 U_unicode 48 H_hidDiv
5 U_abn 27 U_age 49 H_statBarMod
6 U_numerical 28 U_rdr 50 H_css
7 U_tldinPath 29 U_dns 51 H_anchors
8 U_shortestWrdPath 30 U_tldNum 52 H_commRatioFt
9 U_lngHost 31 U_punycode 53 H_DominCopr
10 U_regLen 32 U_lngWrdPath 54 H_hidInp
11 U_senwrd 33 U_avgHost 55 H_iframe
12 U_totwrdUrl 34 U_avgWrdPath 56 H_favicon
13 U_shortestWrdUrl 35 U_SER 57 H_exItem
14 U_shortestWrdHost 36 U_GI 58 H_icpCode
15 U_lngWrdUrl 37 H_SFH 59 H_ecert
16 U_avgWrdUrl 38 H_popUp 60 H_freqDom
17 U_statsRep 39 H_nullItem 61 H_obj
18 U_len 40 H_metaScrpLin 62 H_commPage
19 U_shorter 41 H_icpReg 63 H_nulLin
20 U_sub 42 H_icpDom 64 H_nulLinFt
21 U_commItemNum 43 H_icpApp 65 H_hidBtn
22 U_pathExtend 44 H_titBr

• Feature sets. We consider 3 feature sets: 𝐹𝑢, corresponding to
the 36 URL-based features in Table 6 (starting with ‘U_’); 𝐹ℎ,
corresponding to the 29 HTML-based features in Table 6 (starting
with ‘H_’); and 𝐹𝑐 , corresponding to all features in Table 6. We
consider these three perspectives for both a ‘‘research and prac-
tical’’ reason. First, because it allows one to conduct an ablation
study (we will do this in Appendix D). Second, because some ML-
PWD may not analyse the URL, whereas others may not analyse
the HTML (this can be done to make the analysis faster, or to
enable PWD when some information is missing, or even to create
‘‘adversarially robust’’ ML-PWD, according to Apruzzese et al.
(2022a)).

• Learning algorithm. We expand the space of ML algorithms con-
sidered in SpacePhish (which only included RF, LR, CNN—cf. §5),
and consider 9 ML algorithms that support binary classification—
all of which have been used in previous ML-PWDs (HR et al.,
2020; Tian et al., 2018; Sahingoz et al., 2019; Sharma et al.,
2020; Janet et al., 2020; Apruzzese et al., 2022a; Corona et al.,
2017; Apruzzese and Subrahmanian, 2022). Specifically, 7 are
‘‘shallow’’ ML algorithms: Random Forest (RF), Logistic Regres-
sion (LR), Decision Tree (DT), Gradient Boosting (GB), AdaBoost
(AB), Support Vector Machines (SVM) and K-Nearest Neighbours
(KNN); while 2 are deep learning algorithms: Multi-Layer Per-
ception (MLP) and Convolutional Neural Network (CNN). Such
a wide array allows one to better appreciate the strengths and
weaknesses of these various classification algorithms.

• Datasets and Setup. The evaluation of our ML-PWD entails our
three ‘regional’ datasets (§3): ChiPhish, EngPhish, WstPhish. Af-
ter having generated the feature representation of every website
in each dataset, we consider three variants—each corresponding
to a specific feature-set (i.e., 𝐹𝑢, 𝐹ℎ, 𝐹𝑐). This procedure yields
9 different sets of samples (i.e., 3 feature sets × 3 language
datasets). Each of these sets is then divided into train:test parti-
tions with an 80:20 split (common in ML-PWD (Bac et al., 2021;
Al-Qurashi et al., 2021; Apruzzese et al., 2022a)). We then use the
training partition of each of these 9 sets of samples to train 9 ML-
PWD (each using one among our 9 considered ML algorithms),
thereby yielding 81 ML-PWD. The test partition will be used for
16 
our assessment (discussed in the remainder of this section). To
account for randomness in the split and reduce the chances of
biased results, we repeat all our experiments 10 times—thereby
allowing one to derive statistically significant conclusions.17

These experiments are done on Ubuntu 20.04 system with CPU In-
tel Xeon W-2223 @ 3.60 GHz; we report the training and testing
runtime in Table B.14. We release our (documented) source code
for reproducibility. A schematic representation of this workflow is in
Fig. 12.

6.3.2. Results
After having trained our 81 ML-PWD, we test their performance in

a cross-regional setting. In other words: we test each of the 27 ML-
PWD trained on (80% of) ChiPhish on (20% of) ChiPhish, EngPhish
and WstPhish; then we do the same for the 27 ML-PWD trained on
(80% of) WstPhish and EngPhish. We report the complete results of
this evaluation in B.2, showing the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 of all our 81 ML-PWD.
In what follows, we will provide a high-level analysis and then focus
on the performance of the best ML-PWD.

• High-level. We provide in Figs. 13 a comprehensive overview of
our results. These figures report the F1-score (aggregated across
the 10 trials and 9 learning algorithms) achieved by our ML-
PWD for different test set. For example, Fig. 13(c) shows the
distribution of the 𝐹1-score for the ML-PWD (which varies ei-
ther for their training dataset or feature set) when tested on
ChiPhish (assuming a matching feature set). From Figs. 13, we
can see that our ML-PWD, when tested on websites having the
same language as their training data, work well—and this is
especially the case for ML-PWD using 𝐹𝑐 , which always out-
perform those analysing fewer features. We also appreciate that
the ML-PWD trained on either EngPhish or WstPhish exhibit
similar performance when tested on (respectively) WstPhish or
EngPhish. However, the situation changes when our ML-PWD
on phonological (resp. hieroglyphical) languages must analyse
hieroglyphical (resp. phonological) languages. This is evident
when testing on samples from ChiPhish (Fig. 13(c)): despite the
good performance of the ‘‘Chinese’’ ML-PWD (the 𝐹1 is almost
always>0.85), the ‘‘Western’’ and ‘‘English’’ detectors have a sig-
nificant drop (almost never above 0.70 𝐹1), which is inappropriate
to analyse Chinese websites. Similarly, in Fig. 13(a), we can see
that the ‘‘Chinese’’ ML-PWD work poorly on English websites;
interestingly, however, they still retain around 0.75 𝐹1 on the
generic Western websites in WstPhish. Unfortunately, an in-depth
look at our results reveals that such ‘‘encouraging’’ (aggregated)
F1-scores are concealing an impractical 𝑡𝑛𝑟.

• Best ML-PWD. We now focus on the best ML-PWD of our eval-
uation, i.e., those analysing 𝐹𝑐 . We report the detailed 𝑡𝑛𝑟 and
𝑡𝑝𝑟 for each of our 9 ML algorithms in Table 7. First, we can
see that, as we anticipated, in a cross-regional (ChiPhish to
EngPhish/WstPhish, and vice-versa) setting, the average 𝑡𝑛𝑟 is
unacceptably low (i.e., 0.15, 0.47, 0.55); the only decent one is an
average 0.87 𝑡𝑛𝑟 for the ML-PWD trained on WstPhish and tested
on ChiPhish, but the 𝑡𝑝𝑟=0.49. However, let us take a deeper
look at the very-best ML-PWD, which is the one using the RF
algorithm (a result which aligns with prior work, e.g., Apruzzese
et al. (2022a) and Tian et al. (2018)). This is because only the best
ML-PWD would be (hypothetically) deployed in reality, and hence
its results are more appropriate to derive sensible conclusions. We
make three observations.

17 Note that, to follow best-practices (Arp et al., 2022; Apruzzese et al.,
2022b) and ensure consistency, we use the same test-set to each ML-PWD for
each trial. E.g., we use the same 20% of ChiPhish to test all the ML-PWD,
and then start a new trial by randomly sampling a new training and test
partitions—which we use to develop and assess new ML-PWD.
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Fig. 12. Overview of our workflow.
We collect three datasets (one containing only Chinese websites, a second one only English websites, and a third one containing a mix of websites in popular Western languages)
which we use to evaluate existing phishing website detectors, measuring their 𝑡𝑝𝑟 and 𝑡𝑛𝑟.
Fig. 13. Cross-language performance of our ML-PWD.
We show the distribution of the 𝐹1-score (y-axis) of our ML-PWD, trained on a specific dataset (x-axis) and analysing a given feature set (legend), on the test partition of each
dataset (subfigure). Each boxplot aggregates the results of all our learning algorithms across the 10 trials.
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1. In a ‘‘same-region’’ context, the performance is always very
high—closing to 1 𝑡𝑛𝑟 and 𝑡𝑝𝑟. This result is encouraging from
the perspective of Chinese-specific ML-PWD.

2. When cross-tested across EngPhish and WstPhish, the perfor-
mance is still good: there is a moderate drop to 0.7 𝑡𝑛𝑟 for the
ML-PWD trained on EngPhish and tested on WstPhish, and
a slight drop to 0.9 𝑡𝑝𝑟 for the ML-PWD trained on WstPhish

and tested on EngPhish. This result is encouraging for Western
ML-PWD, since they show that there is high inter-compatibility
among different Western languages.

3. When cross-tested across ChiPhish and EngPhish/WstPhish,
the performance is poor. Though the ML-PWD trained on
ChiPhish retains ≥0.97 𝑡𝑝𝑟 on WstPhish and EngPhish (mean-
ing that it can detect phishing websites ‘‘from the West’’),
its 𝑡𝑛𝑟 drops to an unusable 0.13 on WstPhish and 0.49 on
𝐸𝑛𝑔𝑃ℎ𝑖𝑠ℎ (meaning that the majority of benign websites ‘‘from
the West’’ are classified as malicious). The situation is not bet-
ter when considering ML-PWD trained on WstPhish and tested
on ChiPhish (𝑡𝑝𝑟=0.37, 𝑡𝑛𝑟=0.97, meaning that most Chinese
phishing websites are misclassified) and the one trained on
EngPhish and tested on ChiPhish (𝑡𝑝𝑟=0.71, 𝑡𝑛𝑟=0.55, meaning
too many false alarms).

In summary: there is an improvement over the results of the
vanilla ML-PWD in SpacePhish (cf. Table 4), which are trained on an
inappropriate feature-set, and on a different dataset (see §5.2); these
results are also superior to those achieved by the solution by Jiang and
Wu (2022) (which achieved at most 79% F1-score). We carry out an
ablation study (discussed in Appendix D) wherein we statistically prove
that our enhanced feature set yields superior performance w.r.t. the
original one in SpacePhish (assuming the same training/test datasets).
However, the performance in a cross-regional setting is still not ideal
to bridge the gap between Western and Chinese PWD.
17 
Lesson Learned. Combining our new features (deriving from our anal-
ysis of Chinese websites) with our datasets led to (i) an improvement
of the baselines from prior work, and to (ii) an efficient Chinese-
specific ML-PWD (0.96 𝑡𝑝𝑟 and 0.99 𝑡𝑛𝑟). However, the cross-regional
performance is still underwhelming.

7. Bridging the gap between Chinese and western ML-PWD (RQ3)

We now have all the elements necessary to tackle RQ3. In this
section, we will attempt to bridge the gap by piecing together all our
previous contributions. We first examine the results of our ML-PWD by
focusing on the feature importance (§7.1). Then, by using our exami-
ation as a scaffold, we pragmatically assess the most straightforward
olution to our problem: combining our three datasets into a single dataset
sed to develop an ‘‘universal’’ ML-PWD (§7.2). Finally, we provide a
ore practical solution entailing the application of our LaSeTo to devise
n ensemble of ML-PWD (§7.3).

7.1. Examination of the feature importances (explainability analysis of our
results)

Intuition. The reason why Chinese (resp. Western) ML-PWD work
oorly on Western (resp. Chinese) websites can be traced back to
he semantic difference between Chinese and Western websites (cf.
6.1). Such a difference leads to samples having a different feature
istribution, thereby preventing a correct analysis by any ML-PWD
hat is trained and tested on websites from different ‘‘regions.’’ To
dentify potential mitigations to the problem elucidated by our paper,
e examine our results by focusing on the features analysed by our

feature-based) ML-PWD.
Method and Analysis. Investigating the most relevant features for

lassification is a well-known technique for studying the underlying
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Table 7
Performance of our ‘‘best’’ ML-PWD. We report the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 (avg and std across 10 trials) of our ML-PWD analysing 𝐹𝑐 features (URL+HTML). Overall, RF is the best Alg
grey cells). Results for 𝐹𝑢 and 𝐹ℎ are in Tables B.12 and B.13.
Fig. 14. Top-10 features of RF (𝐹𝑐) trained on each dataset. We report these plots for 𝐹𝑢 and 𝐹ℎ in Figs. C.16, C.17.
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logic learned by an ML model (Apruzzese et al., 2022c). To align such
an analysis to our previous discussion (§6.3.2), we report in Fig. 14
the ranking (as given by scikit-learn) of the top10 features for the best
ML-PWD, i.e., RF analysing 𝐹𝑐 . (We provide an analysis of the feature
anking for the RF analysing 𝐹𝑢 and 𝐹ℎ in Appendix C.) From Fig. 14,

we see that two Chinese-specific features, ‘H_icpApp’ and ‘H_icpCode’,
appear in the top10 of ChiPhish, and that ‘H_icpApp’ is the second most
mportant feature; in contrast, neither of these features are relevant for
he classifiers trained on WstPhish and EngPhish. This situation can
xplain why classifiers trained in ChiPhish work poorly on Western
ebsites (i.e., WstPhish and EngPhish). At the same time, by observing

he rankings for the classifiers trained on WstPhish and EngPhish, we
ee that both have 8 features in the top-10: this suggests why classifiers
rained on WstPhish and EngPhish perform similarly. Moreover, both
H_icpApp’ and ‘H_icpCode’ are the features extracted from the HTML,
hich can verify our intuition that the gap between Western and
hinese PWD is more manifested in HTML.

onsiderations. A possible way to reduce the performance gap be-
ween our Chinese ML-PWD and the ML-PWD focusing on phonological
anguages is by considering a feature set that is ‘‘less specific’’ to
hinese websites. This could be done by developing ML-PWD that
nalyse only the URL, i.e., 𝐹𝑢. In fact, by looking at the boxplots in
igs. 13, we can see that the ML-PWD analysing 𝐹𝑢 (purple bins) tend
o have a higher 𝐹1 than those using 𝐹ℎ and 𝐹𝑐 trained on Chinese

resp. non-Chinese) and tested on non-Chinese (resp. Chinese) websites.

18 
or instance, the ML-PWD trained on ChiPhish using 𝐹𝑢 obtain nearly
.8 𝐹1 (up from 0.6 of 𝐹𝑐) when analysing EngPhish (see Fig. 13(a));
hereas the ML-PWD trained on WstPhish obtain 0.65 𝐹1 (up from
.60 of 𝐹𝑐) when tested on ChiPhish (see Fig. 13(c)). However, in

both cases, such a gain comes at the expense of a reduced 𝐹1 when
nalysing websites of the same language: classifiers trained on 𝐹𝑐
re always statistically superior to those using 𝐹𝑢 on the respective
anguage dataset (t-test reveals this hypothesis to be true: 𝑝<0.05).

much better alternative is developing a ML-PWD that ‘‘learns’’ the
haracteristics of Chinese and Western websites during its training
hase: this requires the availability of a dataset that contains websites
rom different regions—which we have.
Takeaway. Using ML-PWD analyse only the URL can work, but presents
tradeoffs (w.r.t. ML-PWD analysing URL and HTML) on same-language
websites. The ideal solution entails a ML-PWD that uses both URL and
HTML, and also learns the patterns of Chinese and Western websites during
its training.

7.2. Towards an Universal ML-PWD: combining ChiPhish , WstPhish,
and EngPhish

Intuition. As suggested by our previous analysis, the most straight-
forward way to ‘‘bridge the gap’’ between Western and Eastern PWD is
to create an universal dataset containing samples in various languages.
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Table 8
Universal ML-PWD. We train and test an RF (𝐹𝑐 ) on all our datasets (80:20 split),
and we measure their performance (avg and std.dev) on each dataset. Overall (on a
generic webpage): 𝑡𝑝𝑟=0.95±0.043, 𝑡𝑛𝑟=0.98±0.022.

ChiPhish WstPhish EngPhish

𝑡𝑝𝑟 0.89 ± 0.023 0.99 ± 0.002 0.97 ± 0.004
𝑡𝑛𝑟 0.99 ± 0.004 0.95 ± 0.006 0.99 ± 0.001
𝐹1 0.94 ± 0.001 0.98 ± 0.002 0.98 ± 0.004

Indeed, in our previous assessments (§6.3.2) we have considered ML-
PWD trained on websites of specific language group. Hence, we now
merge all three datasets and scrutinize the effectiveness of an ML-PWD
trained (and tested) on the resulting ‘‘universal’’ dataset.

Method and Results. We merge ChiPhish, WstPhish, EngPhish,
and then split the resulting dataset into train: test partitions (using the
same 80:20 ratio as we did in §6.3.1). We then extract the 𝐹𝑐 feature of
each sample (which is the one yielding the best results—§6.3.2), and
use the corresponding training partition to develop a ML-PWD using RF
as classification algorithm (because it outperformed other algorithms,
see Table 7). We use the test partition to measure its performance (𝑡𝑝𝑟,
𝑡𝑛𝑟, 𝐹1) and repeat it 10 times to reduce bias. We report the results
in Table 8, where rows denote a given metric, and columns denote a
specific subset of the test partition.

Considerations. From Table 8, we can see that our universal ML-
PWD works well: on a generic webpage, 𝑡𝑝𝑟=0.95 and 𝑡𝑛𝑟=0.98. In more
detail, the 𝐹1 is always above 0.94, and the worst 𝑓𝑝𝑟 (i.e., 1-𝑡𝑛𝑟) is of
only 0.05 for websites in WstPhish. However, by comparing Table 8
with the detailed results in Table 7 (for RF), we see that the there is
a significant (verified with a t-test) degradation in two cases: the 𝑡𝑝𝑟
on ChiPhish (which drops from 0.96 to 0.89), and the 𝑓𝑝𝑟 on WstPhish

(which increases from 0.025 to 0.05). Nonetheless, such a degradation is
expected in the machine learning context: an improved generalizability
often comes at the expense of a reduced specificity. For instance, the
𝑡𝑝𝑟=0.89 on Chinese websites of our universal ML-PWD requires training
on ChiPhish, WstPhish, EngPhish, and also allows to achieve ≥0.95 𝑡𝑛𝑟
and ≥0.97 𝑡𝑝𝑟 on Western and English websites. In contrast, the Chinese-
specific ML-PWD (trained only on ChiPhish) had a 0.96 𝑡𝑝𝑟 on Chinese
websites—but an impractical 0.87 (or 0.51) 𝑓𝑝𝑟 on English (or Western)
websites!

Takeaway. Mixing datasets of Chinese and Western languages improves
the cross-regional 𝑡𝑝𝑟, but can double the false positive rate on ‘‘Western’’
websites (and requires training datasets having samples from different
regions). Such is the price to pay for deploying our universal ML-PWD.

7.3. Exploiting our laseto: a novel ‘‘ensemble-based’’ system for cross-
regional ML-PWD

Intuition. As a final solution to bridge the gap, we propose an
ntuitive solution rooted in our self-developed LaSeTo (§3.2.2); such

solution is orthogonal to the ‘‘universal’’ ML-PWD (discussed in
7.2). Here, we are inspired by the remarkable results achieved by our
‘language-specific’’ ML-PWD (see §6.3.2): indeed, our ML-PWD work
ell if they analyse websites in a language they ‘‘have seen.’’ We use

this observation as a scaffold and develop an original phishing website
detection system which integrates an ‘‘ensemble’’ of our custom ML-PWD
which are put in a pipeline to our self-developed LaSeTo. This system
is shown in Fig. 15. We are not aware of existing anti-phishing schemes
that entail a ‘‘language selector’’ before the detection model.

Method and Results. We partition each of our datasets in train:test
ith the usual 80:20 split. We train three ‘‘language-specific’’ ML-PWD

one per dataset) on 80% of each language dataset (we use 𝐹𝑐 and RF).
hen, we merge the remaining 20% of each dataset into a single Test
ataset. Next, we use LaSeTo to analyse the language of each sample
n this Test Dataset: if the language is Chinese, the sample is analysed
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Table 9
Ensemble ML-PWD integrating LaSeTo. We report the performance (avg and std.dev.,
computed over 10 trials) of our most original solution. Overall (on a generic webpage):
𝑡𝑝𝑟=0.98±0.0029, 𝑡𝑛𝑟=0.99±0.0022.

ChiPhish WstPhish EngPhish

𝑡𝑝𝑟 0.85 ± 0.025 0.99 ± 0.003 0.99 ± 0.003
𝑡𝑛𝑟 0.95 ± 0.012 0.98 ± 0.006 1.00 ± 0.000
𝐹1 0.88 ± 0.017 0.99 ± 0.002 0.99 ± 0.001

by the ML-PWD trained on ChiPhish; if the language is English, it is
analysed by the ML-PWD trained on EngPhish; otherwise, it is analysed
by the ML-PWD trained on WstPhish. We repeat this process 10 times,
and report the results in Table 9.

Analysis and Feasibility. At a high-level, our ‘‘ensemble’’ solution
represents a superior alternative to the ‘‘universal’’ ML-PWD (§7.2):
this is confirmed by carrying out a t-test on the overall performance of
these two contenders: the 𝑡𝑛𝑟 and 𝑡𝑝𝑟 of the ‘‘ensemble’’ are statistically
significantly better than those of the ‘‘universal’’ ML-PWD. Indeed, by
using LaSeTo it is possible to develop a system that works much better
on ‘‘Western’’ websites, while still achieving a satisfactory performance
on Chinese websites—albeit slightly inferior (e.g., 0.88 𝐹1 vs 0.94). We
also stress that these results are slightly inferior than the ‘‘baseline’’
ones (cf. Table 7) because LaSeTo presents a small margin of error (as
we measured in §3.2.2), which may, e.g., lead LaSeTo to forward a Chi-
nese website to the incorrect model. However, by improving LaSeTo,
it would be possible to approximate the near-perfect performance of
the language-specific ML-PWD on their respective datasets. Moreover,
another advantage of such a solution is flexibility : while the ‘‘universal’’
ML-PWD must be trained on a single and large dataset, the ‘‘ensemble’’
requires training on multiple but small datasets—thereby enabling one
to quickly ‘‘add’’ new models to the ensemble.18 Finally we note that
operational PWD must be fast at processing a webpage (Divakaran and
Oest, 2022; Lee et al., 2023). Hence, to demonstrate the feasibility
of our solution, we have measured the runtime for using LaSeTo: on
average, it requires 0.04s to output the language of a given webpage
(measured this on commodity hardware and after recording the time
required to process all samples in our datasets). Such a low overhead
makes our tool appropriate for real-time analyses (we also measured
the runtime to train and test all our ML-PWD in Table B.14).

8. Discussion

Insofar, our paper revealed that the gap between Chinese and
Western PWD exists, and it is significant since it affects both PWD
proposed in research (§5) and those in industry (§4); and we have also
devised, implemented, and pragmatically assessed some ways to bridge
this gap (§7). Here, we reflectively analyse our major findings (§8.1),
discussing limitations and room for improvement in future work (§8.2).
Then, we provide additional evidence suggesting that the gap we
brought to light is wider than it seems (§8.3), also serving as inspiration
for future work.

18 E.g., it is possible to quickly add a new Japanese-specific ML-PWD to
the ensemble, whereas for the ‘‘universal’’ ML-PWD it is necessary to add
the Japanese websites to the universal dataset and train the entire ML-PWD
anew—potentially decreasing the performance on websites of other regions (as
we discussed in §7.2, generalizability comes at the expense of specificity).



Y. Yuan et al. Computers & Security 148 (2025) 104115 
Fig. 15. Proposed ‘‘ensemble-based’’ phishing website detection system.
We train language-specific ML-PWD (left), and then use our self-developed LaSeTo to determine the language of any given webpage, which is forwarded to the most suitable
ML-PWD (right). We use RF and 𝐹𝑐 given that they yield ML-PWD with best results.
8.1. Findings

Our research casts light on a real-world problem (§Section 2.3). We
do this by piecing together original (theoretical and empirical) analyses
revolving around various domains: the conclusions of such analyses
may be ‘‘expected’’ by experts in these domains, but our novelty stems
from underscoring some aspects that would otherwise remain hidden.
Let us elaborate.

• Experts in Web-based measurement studies should know that some
anti-phishing services may adopt a conservative approach leading
to an underwhelming 𝑡𝑝𝑟... but, to the best of our knowledge, no
prior work pointed out that such 𝑡𝑝𝑟 is 10x to 30x times lower for
Chinese websites.

• Experts in visual-based ML-PWD should know that these systems
would work poorly on websites outside the reference list... but,
to the best of our knowledge, we are the first to provide factual
evidence that the reference lists of in prior work do not include
Chinese websites.

• Experts in feature-based ML-PWD should know that the poor per-
formance was due to lack of Chinese websites in the training set...
but, to the best of our knowledge, we are the first to point out that
current feature extractors may be inappropriate to deal with Chinese
websites, and that there is a shortage of publicly available datasets
for Chinese ML-PWD.

• Experts in socio-technical aspects of the Web should know that
some geographical regions may be ‘‘underinvestigated’’ from a
research perspective... but, to the best of our knowledge, we are
the first to point out such a discrepancy in the context of PWD and for
Chinese websites.

• Experts in machine learning should know that ensemble architec-
tures are a pragmatic solution to classification problems... but, to
the best of our knowledge, we are the first to design an ensemble-
based ‘‘multi-language’’ ML-PWD built on top of an original
language-selection tool.

Finally, our resources (data, and code) are novel, and they can be
leveraged by future work to further investigate the problem we brought
to light.

8.2. Limitations and future work

To avoid creating misunderstandings, we provide some disclaimers
that underscore three potential limitations of our research. Then, we
provide some avenues for future research.
20 
• Study Scope. Our primary goal in this study is to provide factual
evidence (theoretical and empirical) on the gap between Chinese and
Western PWD. To this purpose, we scrutinize existing state-of-the-
art techniques (open source and proprietary) for PWD and highlight
their pros-and-cons. However, we cannot realistically assess the entire
spectrum of PWD that has been proposed since the dawn of phishing
website detection (especially given that most are not publicly accessi-
ble, or may rely on tools not active today). Hence, some PWD ‘‘may’’
work well in a cross-regional context. Also, in our research we consider
web pages designed for (and rendered by) desktop browsers due to mobile
phishing being less prominent in China (QiHoo360, 2023). Hence, our
analysis does not cover the extent to which this problem (i.e., the
gap between Chinese and Western PWD) affects detectors devoted to
mobile users.

• Deployment in Practice. To bridge the gap between Chinese and
Western Phishing website detection, we propose mitigations and
release our code, tools, and data (including our proposed ChiPhish

dataset, the first of its kind). However, we cannot claim that our
solutions are ready for operational deployment : despite the good per-
formance and low overhead, our results are drawn from the data we
collected, and real-world assessments are necessary to demonstrate
the efficacy of our methods in practice. As researchers, we cannot
do such an assessment (also due to ethical reasons,19). Nonetheless,
we hope that our resources will spearhead the development of novel
techniques that can bridge the gap we brought to light.

• Datasets Size. For our evaluation, the size of our three datasets
varies considerably (Table 3), with 15 111 samples for EngPhish; 11 204
for WstPhish; and 1 620 for ChiPhish. We acknowledge that such
differences may hinder the generalizability of our findings for Chinese
websites; indeed, this is the major reason why we do not claim that
our proposed solutions will work if deployed ‘‘today’’ (and if trained
on the exact same data). However, as we discussed (§3.1.1), there
is a lack of publicly available repositories that can be used to create
Chinese-specific datasets.

19 Ethical Statement: for our research, we collected websites (benign and
phishing) from well-known sources, and which were publicly accessible so
we did not perform any sort of copyright infringement and also did not
violate any existing regulation. We release all our data publicly, but some
web pages may be inactive (or the URL may point at different resources),
which is why complete replication of our results may not be possible. To
protect internet users, we do not deploy any phishing web page, nor carry out
on-field experimental campaigns focused on monitoring the browsing activities
of unaware users.
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Nowadays, the widespread adoption of mobile devices, especially
smartphones, is driven by their wide range of functionalities. Cross-
regional mobile Phishing defence can be an interesting avenue for
future research. To further mitigate the threat of Chinese phishing
attacks and bridge the gap between Chinese and Western PWD, we
endorse future work to build upon our resources and expand our
findings by, e.g., using ChiPhish to create a larger (and up-to-date)
dataset of Chinese websites. Moreover, future endeavours can use
ChiPhish as a basis for an ‘‘universal’’ ML-PWD (which improves our
attempt in §7.2); or enhance LaSeTo so that the performance of the
corresponding ‘‘ensemble’’ (§7.3) better approximates the one of the
individual ML-PWD (§6.3.2).

8.3. Additional evidence and experiments (how ‘‘wide’’ is this gap, exactly?)

We conclude this section by carrying out two original analyses to
incentivize future work to focus on these real-world problems. The
first is a systematic literature review focused on revealing the extent
to which prior research papers (published at top venues) on phishing
(in any format) accounted for China (§8.3.1). The second is a proof-of-
concept experiment showcasing how well anti-phishing services work
on websites from other Eastern countries (§8.3.2).

8.3.1. How much awareness is there of ‘‘China’’ in phishing research?
We carry out a systematic literature review in February, 2024. We

consider the proceedings from 2014 to 2023 of 11 top-venues related
to Security, Human Factors and the Web: WWW, S&P (and EuroS&P),
CCS, USENIX SEC, NDSS, AsiaCCS, ACSAC, IMC, WSDM, CHI. We
searched for papers having ‘‘phish’’ in the title (We only considered
full-papers, and not short or workshop papers) and found 56 papers.
Then, we inspected the text of these 56 papers, scrutinizing if there
were any occurrences of the terms ‘‘China’’, ‘‘Chinese’’ or ‘‘Eastern’’.
Only 9 papers mentioned one of these terms in the text. Let us report
the context in which these terms are used, and see whether they relate to
‘‘phishing website detection.’’

• (from ACM CCS): Aonzo et al. (2018) mentions ‘‘China’’ to refer
that in this country there are third-party markets for Android apps;
while Thomas et al. (2017) mention ‘‘China’’ once to specify that
account hijakers are predominantly located in China.

• (from USENIX SEC): Hu et al. (2021) mention ‘‘Chinese’’ twice to
refer that Chinese characters can be mixed with Latin characters in
some browsers.

• (from ACM AsiaCCS): Peng et al. (2019a) mention ‘‘China’’ once, to
specify that, during their investigation, they had an unusual login
from ‘‘Beijing, China.’’

• (from ACSAC): Koide et al. (2023) mention ‘‘China’’ in a Table, and
highlights that many websites with ‘‘squatting’’ domain names are
in the East; however, it is not about phishing website detection. Liu
et al. (2021b) mention ‘‘Chinese’’ 11 times, ‘‘China’’ 32 times and
‘‘Eastern’’ once: this is indeed a paper about Chinese phishing ; how-
ever, it is about SMS spearphishing attacks—which is an orthogonal
problem to phishing website detection.

• (from IMC): Saha Roy et al. (2023) mention ‘‘Chinese’’ once to
denote that a coder ‘‘could not identify the intention of websites
in Chinese language’’.

• (from ACM CHI): Althobaiti et al. (2021) mentioned ‘‘Chinese’’
once, stating that ‘‘in Chinese culture red is considered a happy
color’’.

• (from IEEE EuroS&P): Ruggia et al. (2023) mention ‘‘China’’ once,
stating that ‘‘in China, the Google Play market share is less than
4% while MyApp has 25% of the share’’.

Three venues (IEEE S&P, NDSS, WWW) had no papers with either of
our search terms in the text; whereas WSDM did not have any paper
with ‘‘phish’’ in the title. Nevertheless, it is surprising that, among the

56 papers that had ‘‘phish’’ in the title, there were more occurrences
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of the term ‘‘China’’ or ‘‘Chinese’’ ...but most of these referred to the
countries of the authors/research grants.

Takeaway. In reputable venues that consider phishing-related themes,
‘‘China’’ is not a common term.

8.3.2. What about other ‘‘Eastern’’ countries?
The gap highlighted in this paper pertains to Chinese w.r.t. West-

ern languages—and respective regions. However, phishing websites
are also a problem in other areas besides China, each with its own
language and regulations. Recent reports show an increasing trend
of phishing websites in countries such as India (TrendMicro, 2022),
Japan (Manichi, 2022), and the Middle East (Trellix, 2022). Unfortu-
nately, these regions are vastly underrepresented in the PWD context
(e.g., Verma (2013), Ahmad and Erdodi (2021)). Moreover, from a
generic phishing perspective, few researches (e.g., Smeal et al. (2022),
Tembe et al. (2014)) attempt to analyse the differences between such
‘‘minorities’’ and ‘‘Western’’ countries. Given the huge migration waves
that interest Western countries (e.g., from the Middle East (Tausch,
2016), China, India (Lo et al., 2019) or Africa (Simko et al., 2018)),
we hope our findings can inspire future efforts to scrutinize whether
such issues also affect other geographical areas. [Motivational Exper-
iment.] We scrutinize the effectiveness of existing PWD on Japanese
(JP) and Korean (KR) websites. We collected a small sample of 200
webpages—of which 109 are benign (50 for JP and 59 for KR, taken
from SimilarWeb (2023)) and 91 are phishing (50 for JP and 41 for
KR, gathered from OpenPhish (2022e), PhishTank (2022g), Liu et al.
(2022a)). We train our best ML-PWD (RF using 𝐹𝑐 on WstPhish) and
est it on them; we repeat this ten times. For JP: 𝐹1=0.82±0.024 (𝑡𝑝𝑟=0.74;
𝑡𝑛𝑟=0.94); for KR: 𝐹1=0.93±0.01 (𝑡𝑝𝑟=0.93; 𝑡𝑛𝑟=0.95). We also submit these
to GSB (for which: 𝑡𝑛𝑟=1.0, and 𝑡𝑝𝑟 is 0.04 for JP, and 0.0 for KR) and to
VirusTotal (for which the average 𝑡𝑝𝑟 is 0.12 for both JP and KR, but the
𝑡𝑛𝑟 is 0.67 for JP, and 0.84 for KR). Our repository also includes these
webpages.

Takeaway. Operational PWD work poorly also on websites of other Eastern
countries (Japan & Korea).

9. Conclusion

This paper aims to reveal, assess, and mitigate the performance
gap between Chinese and Western Phishing Website Detection. After
collecting the first dataset for Chinese-focused PWD, we practically
demonstrate the existence of such a gap in modern PWD. We assess
the performance of state-of-the-art PWD, spanning across: 62 opera-
tional security services and 8 competition-grade ML-PWD developed
by industry practitioners; and 10 open-source ML-PWD proposed in
recent research. Our large evaluation reveals that real systems (tuned
to minimize false positives) can detect at best 3% of phishing Chinese
websites—whereas they can detect around 50% for Western languages.
Such an imbalance also affects ML-PWD from research papers, which
are hardly tested on Chinese websites (which appear to be very hard
to collect). To bridge this gap, we propose, implement and pragmat-
ically assess some possible solutions, whose overall performance in
cross-regional settings achieves 0.98 𝑡𝑝𝑟 with 0.01 𝑓𝑝𝑟 on our datasets.

Our paper casts light on a hidden problem that likely also exists for
other languages beyond Chinese. We encourage future efforts to build
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upon our work, potentially by considering phishing websites tar-
geting other ‘‘underrepresented’’ geographical areas in the PWD
context.
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ppendix A. Validation of our new features

Let us justify why our implemented features (discussed in §6.2) are
ppropriate for a fair assessment of ML-PWD, and also robust from an
‘adversarial’’ perspective.

Diversity. Given the breadth of our enhanced feature set, it is
mportant to determine if the values of our ‘‘new’’ features among
he samples is sparse enough to prevent the occurrence of ‘‘evaluation
rtifacts’’ that bias the results (Arp et al., 2022). To this purpose,
e extract features of all samples in our ChiPhish dataset (shown

in Table A.10) and perform a quantitative analysis. We find that
the resulting distribution makes it ‘‘challenging’’ for an ML model to
classify a sample on the basis of a single feature. For instance, although
all benign webpages have H_icpDom=0, the same holds for 97% of
phishing samples. Furthermore, while 98% of phishing samples have
H_ecert=1, the same holds for 83% of benign samples. These results
suggest that our testbed represents a reliable way to test the proficiency
of state-of-the-art ML-PWD proposed in research.

Robustness. We recall that many of our features rely on the ICP
record: one may think that phishers may try to ‘‘spoof’’ such ICP record
in order to trick an ML-PWD. We argue this is not simple: the ICP codes
are released and verified by the issuer, and they frequently change. To

Table A.10
Distribution of our Chinese-specific features values (0s and 1s) in the samples of
ChiPhish used in our evaluation (with 372 phishing samples collected by us, and
193 samples from Jiang and Wu (2022)).
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give an example, consider the link provided in Fig. 2(a) (https://global.
jd.com/). At the bottom of the page, there is a ‘‘business licence’’ as a
code which is linked to an image that shows the approved licence (in this
ase, it can be viewed here and here). These licences change everytime
hey are renewed. (Note that we do not claim our ML-PWD to be robust
gainst ‘‘adaptive’’ attackers, which is outside our scope). Moreover, we
ave reached out to the maintainers of a Chinese ICP records’ search tool
https://www.tianapi.com/), who confirmed that the records change
requently, making it hard for phishers to keep up.

ppendix B. Complete evaluation results

We report the complete results of our massive assessments, which
e deferred to the Appendix, but which are still important for repro-
ucibility, transparency, and benchmarking.

.1. Performance of VirusTotal

We submit the raw HTML of each website of our datasets and report
he performance of VirusTotal in B.11.

.2. State-of-the-art, open-source and target-dependent ML-PWD

First, we report the detailed 𝑡𝑝𝑟 and 𝑡𝑛𝑟 of all our self-developed ML-
WD in Tables B.12, B.13 (for 𝐹ℎ, 𝐹𝑢, respectfully), which integrate
able 7 (for 𝐹𝑐 , in the main paper). Specifically, the rows of these tables
enote a specific ML-PWD, identified by its learning algorithm (Alg.)
nd training dataset (Train 80%). The values report the average per-
ormance (and std. dev, averaged over 10 trials) of the corresponding
L-PWD on the test partition of each ‘language’ dataset.

Then, we report in Table B.14 the runtime (in seconds) for training
nd testing our ML-PWD (on 𝐹𝑐), discussed in §6.3.2. For the CNN, we
o not use GPU acceleration for a fair comparison.

.3. Mlsec’s ML-PWD (competition-grade)

We report in Table B.15 the exact 𝑡𝑝𝑟 and 𝑡𝑛𝑟 of each competition-
rade ML-PWD of MLSEC.

ppendix C. Feature importance for ML-PWD using URL- or HTML-
nly features

Let us extend our analysis in §7.1 by studying the feature ranking
or the best classifiers using 𝐹𝑢 and 𝐹ℎ in our three datasets: ChiPhish,
stPhish, EngPhish.

Analysis of 𝐅𝐮. We report in Fig. C.16 the top-10 features of the
L-PWD using RF (i.e., the best classifiers also for 𝐹𝑢, see Table B.12).

rom Fig. C.16, we see that there are five common features between
stPhish and ChiPhish, and six common features between EngPhish

nd ChiPhish. This is consistent with the results in Table B.12, i.e., the
lassifier trained on ChiPhish has a higher performance when tested on
ngPhish than on WstPhish. Interestingly, ‘U_pageRank’ is the most
mportant feature learned by the RF trained on ChiPhish, being three
imes more important than the second ranked feature (i.e., ‘U_ssl’).
n contrast, for WstPhish, ‘U_pageRank’ is also the first-ranked fea-
ure, but it is not as dominating as on ChiPhish, since it has a
imilar importance than three other features (i.e., ‘U_shortestWrdPath,
_lngWrdPath, U_avgWrdPath’): this can explain why the RF trained on
hiPhish has high 𝑓𝑝𝑟 when tested on WstPhish. Finally, the rankings
etween the RF trained on WstPhish and EngPhish are strikingly sim-
lar, suggesting why they also exhibit a good performance when tested
n different datasets in phonological languages (refer to Table B.12).

Analysis of 𝐅𝐡. We report in Fig. C.17 the top-10 features of
he ML-PWD using RF (which, as shown in Table B.13, are the best
lassifiers also for 𝐹ℎ). By focusing on the ranking for ChiPhish,
e observe that ‘H_icpApp’ and ‘H_icpCode’ are the most important

https://github.com/joanyy/ChiPhish
https://global.jd.com/
https://global.jd.com/
https://global.jd.com/
https://web.archive.org/web/20240811174335/https://h5.m.jd.com/pc/dev/tMGhqLCH7hf87LucBj2NPHuyKAb/index.html
https://web.archive.org/web/20240811174335/https://h5.m.jd.com/pc/dev/tMGhqLCH7hf87LucBj2NPHuyKAb/index.html
https://www.tianapi.com/
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Table B.11
Performance of VirusTotal’s anti-phishing services. We report the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 of the 61 detectors queried by VirusTotal on each of our three datasets. Boldface show the best
detector. Grey cells denote the average.
Table B.12
Performance of our ML-PWD analysing the 𝐹𝑢 feature set (URL only). RF is the best Alg.
f
(
w
o

features—both of which are Chinese-specific features. Surprisingly, the
first feature (i.e., ‘H_icpApp’) is ten times more important than the
second (i.e., ‘H_icpCode’): this can explain why – despite all three
classifiers sharing some features in the respective top10 (six are com-
mon between ChiPhish and EngPhish, whereas five for ChiPhish

nd WstPhish) – they exhibit different performance when tested on
ebsites of a different language group. Finally (and similarly to the RF
nalysing 𝐹𝑢), there are nine common features among the RF trained on
stPhish and those trained on EngPhish: this can explain why these
classifiers perform similarly even on samples of a different dataset. P

23 
Appendix D. Comparison with SpacePhish (ablation study)

We find it instructive to assess the performance of the vanilla
version of the ML-PWD developed in SpacePhish (Apruzzese et al.,
2022a) when trained (and tested) on our datasets, but by using the
original feature extractor of SpacePhish (Apruzzese et al., 2022h).
Recall that the ML-PWD we considered in our evaluation analyse (i) 55
eatures from Apruzzese et al. (2022a) (2 of which changed by us) and
ii) 10 additional features created by us (cf. §6.2). Hence, we question
hether our enhancements provide any substantial advantage w.r.t. the
riginal 55 features of Apruzzese et al. (2022a). Given that our ML-
WD use additional features (including Chinese-specific ones by Zhang
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Table B.13
Performance of our ML-PWD analysing the 𝐹ℎ feature set (HTML only). RF is the best Alg.
Table B.14
Runtime. We report the avg (and std) seconds to train/test our ML-PWD (𝐹𝑐 ) on our datasets (across 10 trials).
Table B.15
Performance of each ML model (𝑀) of the competition-grade ML-PWD considered in MLSEC.
Fig. C.16. Feature rankings (top10) of RF (the best) using 𝐹𝑢.
24 
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Fig. C.17. Feature rankings (top10) of RF (the best) using 𝐹ℎ.
able D.16
anilla PWD of SpacePhish (Apruzzese et al., 2022a), analysing its 𝐹𝑐 (trained/tested on our datasets).
Table D.17
Vanilla PWD of SpacePhish (Apruzzese et al., 2022a), analysing its 𝐹𝑢 (trained/tested on our datasets).
a

et al. (2014)), we expect some form of improvement when a ML-PWD
is tested on websites from the same dataset; however, the additional
information may lead to overfitting.

Setup. We take the exact feature extractor of SpacePhish (from their
repository (Apruzzese et al., 2022h)), and we use it to generate the
feature representation of every sample in our three language datasets,
i.e., ChiPhish, EngPhish, WstPhish. Then, we consider the exact same
learning algorithms (i.e., RF, CNN, LR.) used in SpacePhish. Finally,
we adopt the exact procedure described in our workflow (§6.3.1). We
report the results of this ‘‘cross-regional’’ assessment in Tables D.16,
D.17, D.18 (for 𝐹𝑐 , 𝐹𝑢, 𝐹ℎ).

Results. Many insightful observations can be drawn by comparing
these results with those of our main evaluation (shown in Tables 7,
B.13, B.12). Let us focus on the most significant ones, i.e., those entail-

ing 𝐹𝑐 . First, as expected, each classifier of ‘‘our’’ ML-PWD tends to have

25 
a slightly superior performance (w.r.t. the vanilla ones in SpacePhish)20

when tested on samples coming from the same language dataset; the
best improvement is on the ML-PWD using LR (which is the learning
algorithm allegedly used by Google (Liang et al., 2016)). However,
we also note an intriguing phenomenon: the classifiers in SpacePhish,
when trained on ChiPhish have a remarkably better performance when
tested on EngPhish (w.r.t. the ‘‘enhanced’’ variant we used in our main
evaluation—see Table 7). As an example, the vanilla RF of SpacePhish
has a 0.93 𝑡𝑛𝑟, whereas ours has 0.49 (even though ours has a 0.97 𝑡𝑝𝑟
against the 0.86 of SpacePhish). Finally, our RF and LR classifiers using
𝐹𝑐 tend to be better than those in SpacePhish when tested on ChiPhish.

20 Such improvement is statistically significant, e.g., a Welch t-test entailing
both the 𝑡𝑝𝑟 and 𝑡𝑛𝑟 achieved by RF, LR, CNN trained and tested on ChiPhish

nd analysing 𝐹𝑐 reveals that 𝑝< 0.001, therefore our variants are different
(i.e., better) than SpacePhish’s.



Y. Yuan et al.

I
s
o

Computers & Security 148 (2025) 104115 
Table D.18
Vanilla PWD of SpacePhish (Apruzzese et al., 2022a), analysing its 𝐹ℎ (trained/tested on our datasets).
Table E.19
Performance of VGG and CNN for analysing the screenshot of a webpage in our datasets.
v
F
t
i
t
C
y
t

Table E.20
Runtime (s) to train/test VGG and CNN. We train each model for 20 epochs (on a
Tesla V100).

We can hence make the following considerations:

• Our ‘‘improved’’ feature sets (i) employ strategies proposed by
reputable prior work, and (ii) lead to a superior baseline perfor-
mance...

• ...however, in some cases, such a higher performance in a same-
language setting comes at the expense of reduced performance in
a cross-language setting.

n summary, this experiment confirm the ‘‘no free lunch’’. By sacrificing
ome performance, it may be possible to improve the generalizability
f the PWD. Our decision to develop an ensemble ML models (jointly

with our LaSeTo) for PWD (§7.3) is inspired also by this result.

Appendix E. Negative result: a target IN dependent image-based
ML-PWD

Motivation. In our paper, we have covered image-based PWD
reliant on target dependent approaches. A question arises: ‘‘what about
target INdependent PWD that use visual similarity?’’. To the best of
our knowledge, there is no paper that managed to do so effectively. The
reason is that, even by leveraging the capabilities of deep learning, it is
difficult to design a PWD that can capture the nuances of benign/phish-
ing websites just by, e.g., looking at its screenshot—given the immense
variability that modern websites tend to have. Nonetheless, to provide
additional proof that image-based ML-PWD are still immature for ‘‘tar-
get independent’’ PWD – and hence inappropriate to investigate our
RQ2 (§5.2) – we perform an original proof-of-concept experiment.

Setup. We seek to develop an image-based PWD that leverages deep
learning (DL) to discriminate benign from malicious webpages—i.e., a
binary classification problem. For this purpose, we rely on our three
datasets (§3) and, specifically, on the screenshots of each webpage

included therein (as we did in §5.2.2, for the Chinese webpages, we use

26 
the 372 samples we collected in 2022 for ChiPhish, and the 193 samples
from Jiang and Wu (2022); for the latter, we extract the screenshot
manually by rendering the webpages’ HTML). We chose two well-
known DL algorithms as decision components: VGG16 (Simonyan and
Zisserman, 2014) (we add dropout layers to improve generalization)
and a CNN; we provide the exact implementation in our repository.
We partition our datasets in train:test with the usual 80:20 split, and
train and test each model on the respective dataset. We measure the
performance with the 𝑡𝑝𝑟 and 𝑡𝑛𝑟. We repeat this assessment 5 times.
We report the detection results in Table E.19, and the runtime in
Table E.20.

Results. From these (negative) results, we can see that these DL
models are terrible at discriminating benign from malicious
webpages—even in ‘‘same-region’’ context. Indeed, the performance
is always skewed, showing either a perfect 𝑡𝑝𝑟 but null 𝑡𝑛𝑟 (and vice-
ersa) for VGG16; or just an unacceptably low 𝑡𝑝𝑟 or 𝑡𝑛𝑟 for the CNN.
urthermore, both the train and test runtime is much higher compared
han our ‘‘feature-based’’ models (cf. Table B.14 with Table E.20): for
nstance, on WstPhish, the CNN analysing the screenshot requires 70 m
o train (on GPU), whereas the CNN analysing 𝐹𝑐 requires 11 m (on
PU). Simply, image-based PWD that are not target-dependent are not
et ready for practical deployment—which is why we did not include
hese in §5.
Lesson Learnt: Image-based PWD that perform binary classification
(via the screenshot) are still immature: their performance is imprac-
tical, and the runtime is excessively high. This can be an avenue for
future research, given the never-ending advances of deep learning.
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