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Abstract: Detecting advanced attacks is increasingly complex and no single solution can 

work. Defenders can leverage logs and alarms produced by network and security devices, but 

big data analytics solutions are necessary to transform huge volumes of raw data into useful 

information. Existing anomaly detection frameworks either work offline or aim to mark a host 

as compromised, with high risk of false alarms. We propose a novel online approach that 

monitors the behavior of each internal host, detects suspicious activities possibly related to 

advanced attacks, and correlates these anomaly indicators to produce a list of the most likely 

compromised hosts that is provided to human analysts. Due to the huge number of devices 

and traffic logs, we make scalability one of our top priorities. Therefore, most computations 

are independent on the number of hosts and can be naively parallelized. A large set of 

experiments demonstrate that our proposal can pave the way to novel forms of detection of 

advanced malware.  

Keywords: Autonomous triage; early prioritization; security analytics; scalability. 
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1. INTRODUCTION 

The information systems of modern organizations are subject to a multitude of 

cyberattacks conceived by a wide range of attackers with different goals, capabilities 

and motivations. Despite all efforts spent in preventive defenses, the reality is that 

attacks occur every day and no organization can consider itself secure. This paper 

shifts the focus from the prevention to the detection phase.  

Existing proposals in academic literature perform detection of specific attacks 

through heuristics and statistical analysis (e.g., [1, 2, 3, 4]). Most approaches (e.g., 

[2] [5]) rely on offline post-event analyses. Other online anomaly detectors assume 

that statistically detectable changes involve huge numbers of hosts (e.g., worm 

propagation in [6, 7]) or that compromised hosts share similar behavior (e.g., botnet 

detection in [8, 9, 10, 11]). However, these assumptions are not true anymore in 

modern human-driven advanced cyberattacks [12], hence existing proposals can be 

affected by many false positive and false negative alarms.  

As no security operator accepts to be annoyed by hundreds of alarms notified at the 

same priority level, we take a different direction and focus on ranking suspicious 

hosts instead of detecting compromised hosts. To this purpose, our online analysis 

begins by monitoring the behavior of individual hosts over time and by identifying 

suspicious events involving even single or few hosts. These indicators are finally 

aggregated to produce a ranking of the most suspicious hosts, which are then 

provided to the security operator in a timely fashion. 

Due to the amount of data to be managed online, we propose a scalable design and 

implementation of our approach. All initial phases before the final aggregation scale 

linearly with the number of hosts and can be parallelized. The proposed approach is 

general enough to be adopted with different types of data (such as internal traffic, 

external traffic, alarms coming from IDS and SIEM), yet the goal of this paper is not 

to present a complete framework, but rather to propose the idea that the combination 

of autonomous triage with manual inspection increases the probability of detecting 

even advanced attacks. For these reasons, we present our approach relying only on 

network flows of internal corporate traffic, whose effectiveness is shown through 

experiments applied to networks of more than one thousand hosts. We consider five 

main attack scenarios, representative of the activities that an attacker will likely 

perform from a compromised internal host: reconnaissance, data transfer to a 

dropzone, man in the middle, watering hole through DNS spoofing, and lateral 

movement through pivoting.  

The remaining part of this paper is organized as follows. Section 2 presents related 

work. Section 3 outlines the main components and functions of the proposed 

approach. Section 4 describes the analytics core that extracts useful information and 

builds layer models from raw network data. Section 5 presents five examples of 
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prioritization algorithms that leverage outputs produced by the analytics core, along 

with results from real testbed networks. Section 6 concludes the paper with some 

final remarks and future work. 

2. RELATED WORK 

Detecting advanced cyberattacks is increasingly difficult as attackers have several 

ways to penetrate a network and to hide their activities. The huge volume of logs 

generated by the multitude of servers, firewalls and devices are useful only when 

they are integrated with security analytics systems for automatic detection and triage. 

Considering the attacker ability and the difficulty of signaling an infected host 

without causing false alarms, in the area of security analytics we propose an 

innovative approach. Instead of signaling an impossible “guaranteed” detection, our 

system ranks the most suspicious hosts and leaves to the security analyst the task of 

inspecting a manageable number of hosts. Additional features include online 

processing for early prioritization and scalability over thousands of hosts as most 

analyses can be carried out independently for each host. The proposed approach can 

be applied on alerts and logs derived by IDS [13, 14], SIEM and other security 

appliances, and can be integrated with external traffic analyses, but in this paper we 

present a brand-agnostic approach based exclusively on flows of internal network 

traffic.  

We identify three main areas of related works: offline forensics analysis, advanced 

malware detection, online traffic monitoring.  

The large majority of related proposals in literature concern offline analysis for 

forensics purposes that differ from our online approach. Just to give some 

representative examples, we can cite [2] on heterogeneous logs analyses, [5] for its 

original graph-based approach for forensics, BeeHive [3] that correlates logs through 

histogram analysis to identify suspicious activities and corporate policy violations, 

[15] on forensics for cloud environments, and [16] on mobile forensics. Literature 

on advanced malware detection focuses on specific attack sequence patterns based 

on past APT campaigns (e.g., [17, 18] [19, 20, 21]) instead of detecting suspicious 

activities in each possible phase of an attack. Other more general solutions (e.g., [22, 

23]) share our idea of prioritizing suspicious hosts, but they are designed for offline 

or batch analysis.  

The proposals based on online analyses focus on detection of DDoS [24, 25, 26], 

worm propagation and botnets, where the last two are the most related to our work. 

In worm propagation detection [7, 27], the internal network is usually modeled as a 

graph, where huge changes in the overall structure are identified as possible infection 

propagations. These works differ from our proposal because they focus on a specific 

threat, and their analyses look for huge changes in traffic volumes and patterns, 
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whereas we prioritize signals of malicious activities related to behavioral changes of 

individual hosts. Moreover, our solution is scalable with respect to the number of 

monitored hosts, while worm propagation analyses depend on the size of the network 

graph. Botnet detection proposals [8, 9, 10, 11] are based on online scalable solutions 

for finding hosts that are possibly compromised. However, their underlying 

assumption is that a large number of hosts are compromised and share a similar 

network behavior, which is not true in the case of advanced cyberattacks where only 

few hosts may be compromised and malicious actions are often human-driven. In 

summary, we can outline the major contributions that differentiate our work with 

respect to the state of the art: 

 ranking of suspicious activities instead of specific detection(s); 

 online analysis instead of offline post-mortem analysis; 

 analysis based on individual hosts behavior that guarantees parallel 

analyses and scalability; 

 possibility of capturing suspicious actions involving even few hosts. 

3. FRAMEWORK OVERVIEW 

We aim to detect anomalous network activities concerning each host of a 

corporation, and to use this information to rank the most suspicious hosts. In this 

section we outline the proposed architecture and design choices for achieving 

scalability. Figure 1 emphasizes that the input is represented by raw network data 

gathered by internal probes. Without loss of generality, in this paper we consider just 

network flows of traffic among internal hosts, which are feasible to collect and 

analyze for online contexts [28]. These logs are processed through three main steps: 

analytics core, attack prioritization and autonomous triage. The final output is a list 

of internal hosts ranked by a risk score representing the likelihood that each host is 

involved in one or more attacks.  

 

 
Figure 1: Framework overview. 
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Starting from raw network data, the analytics core builds different layers that are 

graph models in which nodes represent internal hosts and edges represent a metric 

of interest. Each layer portrays a different perspective of the events occurring in the 

monitored network. For example, if we consider three layers, then edges may 

represent the number of packets, the number of bytes, and the average duration of 

the transmissions between two hosts, respectively. Then, the analytics core applies 

anomaly detection algorithms on the activities of each internal host within each 

layer. This fine-grained analysis is motivated by the observation that an attack 

related to a single host within a large internal network cause very small alterations 

that are not visible in an aggregated model comprising all layers and all hosts. 

Similar “global” approaches work well only to identify massive attacks or network-

wide anomalies [29, 4].  

As a further advantage, since anomaly detection on different layers and hosts can be 

performed in parallel, the analytics core scales linearly with respect to the number 

of monitored hosts and layers. In such a way, we can extend and improve an instance 

of the framework by adding more layers and/or nodes without having to change the 

information flow and the overall architecture. The algorithms adopted by the 

analytics core for layers modeling and anomaly detection are presented in Section 4. 

The attack prioritization module takes as its input the anomalies identified by the 

analytics core, and correlates them with the goal of detecting different attack 

scenarios, each one corresponding to activities that an attacker may perform from a 

compromised internal host. It is also possible to include novel attack detection 

algorithms with limited computational effort because they can leverage the common 

fine-grained analyses already performed by the analytics core. The details of the 

attack prioritization algorithms are discussed in Section 5. 

The output of the attack prioritization module is a risk score assigned to each internal 

host for each considered attack. Attack specific risk scores for all hosts represent the 

input of the autonomous triage module that aids security operators by visualizing 

the few hosts with higher ranks and the attacks in which they are likely involved. 

4. ANALYTICS CORE 

This section describes the algorithms used by the analytics core for layers modeling 

and for anomaly detection within each layer. The objective is to identify statistical 

anomalies for each host on all the layers, which will be correlated and ranked by the 

attack prioritization module. The analytics core is designed for online processing and 

scalability. 
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4.1. LAYERS MODELING 

Raw data are collected from the probes as soon as they are produced, and temporarily 

stored for a time defined by the current time window of size Δ. If 𝑡 denotes the current 

time, then the layers modeling module maintains all raw data generated between  

𝑡 − Δ and 𝑡. Since literature shows that most network activities are characterized by 

a daily periodicity [29, 23], it is convenient to set Δ equal to one day. At every 

sampling interval 𝜏, all raw data in the current time window are used to compute the 

current representation of all layers. Since anomalies can be detected only after their 

appearance in the current representation of a layer, “early” prioritization is 

influenced by the choice of the parameter 𝜏 that is conveniently chosen in the order 

of few minutes. Lower values cause useless oversampling of data (as an example, 

Netflow records [30] related to long-lived connections are refreshed every 2 

minutes), while higher values introduce detection delays. We use the notation 𝐿𝑖(𝑡) 

to identify the current representation of the layer 𝑖 that is built using raw data in the 

current time window.  

As shown in Figure 2, each 𝐿𝑖(𝑡) is modeled as a graph, in which the nodes represent 

hosts of the internal network, and the edges denote some specific features of network 

activities occurring between the two hosts. As an example, a layer representing the 

number of bytes exchanged between internal hosts can be defined as a directed and 

weighted graph, in which edge direction denotes the direction of data transfer (from 

source to destination) and the weight represents the amount of transferred bytes.  

 

 
Figure 2: Activities of the layer modeling module. 

 

Table 1 reports the list of considered layers and their descriptions. These 

characteristics are commonly adopted to identify anomalies in traffic [31]. For 

example, time series of flows, packets, bytes and ports are used to identify 

reconnaissance activities [6] and data exfiltration [23]; graphs of internal 
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communications are adopted for identification of worm propagation [7]; ARP 

messages can be useful for detecting eavesdropping activities [32]. 

 

Table 1. Considered layers. 
 Layer Description 

𝐿1 Packets 
 

Directed weighted graph. Nodes are internal hosts and edges connect two nodes 
that exchange packets using any protocol. Direction is from source to target, 

and the weight of the edge is the total number of packets transmitted. 

𝐿2 Bytes Directed weighted graph. Nodes are internal hosts and edges connect two nodes 

that exchange packets using any protocol. Direction is from source to target, 
and the weight of the edge is the total number of bytes transmitted. 

𝐿3 Flows Directed weighted graph. Nodes are internal hosts and edges connect two nodes 

that exchange packets using any protocol. Direction is from source to target, 

and the weight of the edge is the total number of network flows. 

𝐿4 Ports Directed weighted graph. Nodes are internal hosts and edges connect two nodes 

communicating through TCP or UDP protocols. Direction is from source node 

to target node, and the weight of the edge is the number of different destination 
port numbers.  

𝐿5 Durations Directed weighted graph. Nodes are internal hosts and edges connect two nodes 

that exchange packets using any protocol. Direction is from source to target, 
and the weight of the edge is the average duration of network flows. 

𝐿6 Conns Directed unweighted graph. Nodes are internal hosts and edges connect two 

nodes that exchange IP datagrams. Direction is from source to target. 

𝐿7 Paths Bipartite directed graph. Both sets of nodes represent internal hosts. Edges 
connect each host from the first set, to the hosts of the second set that are 

reachable by it through a “path” composed of at least 3 hosts. 

𝐿8 DNS Bipartite directed graph. One set of nodes represents hostnames of internal 
hosts, the other set of nodes represents IP addresses. Edges connect a hostname 

to the associated IP address in DNS resolutions. 

𝐿9 ARP Bipartite directed graph. One set of nodes represents IP addresses of internal 

hosts, the other set of nodes represents MAC addresses. Edges connect the IP 
address and the MAC address that are bound as part of an ARP transaction. 

 

The representations of all layers are passed in input to the processing modules that 

perform anomaly detection.  

4.2. LAYER ANOMALY DETECTION  

The goal is to identify hosts that exhibit anomalous behaviors in any of the layers. 

This step does not depend on the identifiable attacks nor on the feature represented 

by each layer, hence all layers are subject to the same anomaly detection algorithms, 

which can be executed in parallel and independently. For each layer, we adopt two 

complementary detection approaches, as shown in Figure 3: the former identifies 

quantitative anomalies and state changes; the latter detects novel or uncommon 

events.  
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Figure 3: Structure of a layer anomaly detection module. 

 

The former approach processes all current layer representations 𝐿𝑖(𝑡). The goal is to 

extract scalar values from graphs and to build time series. For each host, the 

framework computes two scalar values: the weighted in-degree and the weighted 

out-degree [33] representing the number of incoming and outgoing connections of 

each host in the current layer, respectively. Since a new 𝐿𝑖(𝑡) is received by the layer 

anomaly detection module (one at every sampling interval 𝜏), scalar values for 

consecutive 𝐿𝑖(𝑡) are used to build two current time series representing recent values 

of in-degree and out-degree for each host. If 𝑡 denotes the current instant of time, the 

current time series includes values between 𝑡 − Δ and 𝑡. Moreover, to perform 

anomaly detection, it is necessary to build two historical time series including older 

scalar values between 𝑡 − 𝑊 and 𝑡 − Δ (excluded), where 𝑊 represents the size of 

the historical window. 𝑊 should be large enough (in the order of few weeks) to have 

a reliable baseline for the past behavior of each host [28]. Traffic among internal 

hosts exhibits more stability with respect to traffic among internal and external hosts, 

characterized by higher variability and consequent difficulties to achieve stable 

baseline models [29]. Anomaly detection is performed on each current time series 

through the online and adaptive detection algorithm proposed in [28] trained over 

the period 𝑊. This algorithm identifies both point anomalies and state changes [1] 

that reflect different kinds of relevant deviations between the current and past 

behaviors of an internal host.  

 

The latter approach (cf. Figure 3) identifies new edges that never appeared in the 

historical window. For example, these edges may represent novel persistent 

connections of an attacker trying to perform lateral movement. For each 𝐿𝑖(𝑡), the 

detection algorithm computes its current adjacency matrix [33], which is a 

mathematical representation of the edges in 𝐿𝑖(𝑡), whose rows and columns 
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represent the internal hosts: the matrix element (𝑗, 𝑘) is set to 1 if 𝐿𝑖(𝑡) has an edge 

from host 𝑗 to 𝑘, to 0 otherwise.  

Older versions of the current adjacency matrix, built on previous 𝐿𝑖(𝑡) belonging to 

the historical time window 𝑊, are used to compute the historical adjacency matrix. 

Its values are rational numbers between 0 and 1. In particular, (𝑗, 𝑘) denotes the 

frequency of occurrence of the edge from 𝑗 to 𝑘 in the older instances of 𝐿𝑖(𝑡). For 

example, the value (𝑗, 𝑘) is set to 1 if all older instances of 𝐿𝑖(𝑡) layer contain an 

edge from 𝑗 to 𝑘; if one fifth of older 𝐿𝑖(𝑡) layers include an edge from 𝑗 to 𝑘, then 

the value (𝑗, 𝑘) is set to 0.2. The historical time window is updated every Δ. 

At every sampling interval 𝜏, the detection algorithm subtracts the historical 

adjacency matrix to the current adjacency matrix. The result, defined as novelty 

matrix, allows an immediate identification of new or uncommon edges that are 

present in 𝐿𝑖(𝑡), but never or seldom appeared in the historical time window. 

Uncommon edges having a low value in the historical adjacency matrix will result 

in values that are close to 1 in the novelty matrix; common edges with high values 

in the historical adjacency matrix will result in values close to 0 in the novelty 

matrix. The layer anomaly detection algorithm can sum the values included in each 

row of the novelty matrix to evaluate the “novelty” of all the edges starting from the 

corresponding host. Similarly, the “novelty” of all edges that end in any internal host 

is computed by summing the values on the corresponding column of the novelty 

matrix.  

Anomalies, state-changes and novel edges detected by the analytics core are then 

used by the algorithms that evidence malicious activities and prioritize them.  

5. ATTACK PRIORITIZATION AND RANKING 

The main goal is to prioritize signals of malicious activities that may be part of an 

advanced attack. To this purpose, we correlate the anomalies, state-changes and 

novel edges detected by the analytics core. 

5.1. EXPERIMENTAL TESTBED 

There are several possible indicators associated with malicious activities. In this 

paper, we consider: reconnaissance (R), data transfer to a dropzone (DTD), Man in 

the Middle (MITM), watering hole through DNS spoofing (WH), lateral movement 

through pivoting (LM). Table 2 indicates which layer models are included in the 

analysis of each attack scenario. The presence of multiple layers increases 

confidence that a suspicious activity is actually occurring. The attack prioritization 

module evaluates a risk score for each internal host by combining the anomalies, 



 

 

 

  10 

 

 

state-changes and novel edges detected by the analytics core. We refer to the 

following notations: 

 𝑨𝑳𝒊

𝒊𝒏 (resp. 𝑨𝑳𝒊

𝒐𝒖𝒕) denotes the intensity of the biggest point anomaly in the 

incoming (resp. outgoing) time series related to layer 𝐿𝑖 of an internal host 

during the observed window [3]. For example, a burst in the outgoing bytes. 

 𝑪𝑳𝒊

𝒊𝒏 (resp. 𝑪𝑳𝒊

𝒐𝒖𝒕) denotes the intensity of possible state-changes in the 

incoming (resp. outgoing) time series related to layer 𝐿𝑖 of an internal host. 

For example, a state-change is detected if the average number of packets in 

the current window doubles for a long period (hence, it is not only a point 

anomaly [4]).   

 𝑵𝑳𝒊

𝒊𝒏 (resp. 𝑵𝑳𝒊

𝒐𝒖𝒕) denotes the number of new incoming (resp. outgoing) 

edges of an internal host in the graph of layer 𝐿𝑖. For example, it can be 

used to detect the number of newly contacted hosts in the current time 

window.   

All formulas and scores in this section are computed for each host. 

 

Table 2. Layers used to prioritize different types of attacker activities. 
 𝑳𝟏 𝑳𝟐 𝑳𝟑 𝑳𝟒 𝑳𝟓 𝑳𝟔 𝑳𝟕 𝑳𝟖 𝑳𝟗 

  Attack Packets Bytes Flows Ports Durations Conns Paths DNS ARP 

Reconnaissance   x x x x    

Data transfer x x   x x    

MITM x x x   x   x 

Watering hole     x x  x  

Lateral movement      x  x   

 

In the experiments, we consider an internal network consisting of more than 1,000 

hosts composed of about 800 clients and 200 servers. The client machines have 

heterogeneous operating systems including several versions of Mac OS, Linux, and 

Windows. The server machines host mainly websites and DBMS, but also high 

performance computations, code versioning and NAS storage. We place monitoring 

probes in the main 1Gbit switches of the network. Our algorithms are executed on a 

cluster of eight blades, each having an Intel Xeon 2.6GHz CPU and 16GB of RAM. 

Network flows are sampled every five minutes.  

To evaluate scalability, we consider three scenarios consisting of 96, 287 and 1,012 

hosts, respectively. One cluster node is sufficient for computations related to 96 and 

287 hosts, while four nodes are necessary for the scenario with 1,012 hosts. This 

scalability is achieved because all computations of the analytics core are performed 

independently for each host and for each layer. Operations of the attack prioritization 

module do not scale linearly, but their computational cost is negligible with respect 

to the anomaly detection algorithms of the analytics core. We present the details 

about prioritization of the five attack scenarios, and how risk scores are shown to the 

security operators. 
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5.2. PRIORITIZATION OF SUSPICIOUS ACTIVITIES 

For each scenario, we inject multiple attacks in some hosts of the network, we apply 

our analytics and evaluate a risk score for each host. 

 

5.2.1 Reconnaissance in internal network 
An attacker having control of an internal host likely scans neighbor hosts looking 

for (known or zero-day) vulnerabilities [6, 26]. We define the risk score 𝑅 for 

reconnaissance as follows:  

 

𝑅 =
𝐴𝐹𝑙𝑜𝑤𝑠

𝑜𝑢𝑡 + 𝐴𝑃𝑜𝑟𝑡𝑠
𝑜𝑢𝑡 + 𝑁𝐶𝑜𝑛𝑛𝑠

𝑜𝑢𝑡

1 + 𝐴𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑜𝑢𝑡  

 

where a higher value of 𝑅 denotes a higher likelihood that an internal host is 

performing a scan. Intuitively, when an internal host performs a reconnaissance 

activity, the average duration of its connections decreases (due to many volatile 

communications) while the numbers of flows, ports and contacted hosts increase. To 

evaluate the risk score for this attack, we carry out reconnaissance activities from 10 

hosts by varying the scan intensity in terms of number of scanned hosts and ports, as 

described in Table 3.   

 

Table 3. Reconnaissance attacks injected in the internal network from 10 hosts. 

Attack #ports scanned #hosts scanned 
horizontal scan 1 single port from 50 to 1,000 distinct hosts 

vertical scan from 50 to 1,000 distinct ports 1 single host 

block scan from 50 to 1,000 distinct ports from 50 to 1,000 distinct hosts  

 

Since our approach produces a ranking, we evaluate how many times an internal host 

performing the attack is prioritized within the top-K hosts. Table 4 reports the results 

of multiple experiments executed over several weeks, where each row represents the 

percentage of times an internal host performing the attack has been ranked within 

the top-K. Each column corresponds to horizontal, vertical, or block scan 

experiments as described in Table 3.  

 

Table 4. Percentage of times a host performing a reconnaissance is ranked within the top-K. 

In top-K Horizontal scan Vertical scan Block scan 

in top-5 94.3% 92.4% 99.2% 

in top-10 99.5% 99.1% 99.7% 

in top-25 100% 99.7% 100% 

in top-50 100% 100% 100% 
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Table 4 shows that in more than 99% of the cases a host performing a reconnaissance 

activity is ranked within the top-10. Horizontal scans are easier to detect because 

they span over multiple hosts, whereas vertical scans are harder because it is more 

common for clients to contact servers on multiple ports if they offer more than one 

service. As expected, block scans have higher rankings, because they span both over 

multiple ports and multiple hosts.   

Figure 4 reports an example of the traffic time series used to compute the risk score 

𝑅, extracted from the layers Ports, Flows, Conns, Durations. The X-axis represents 

time, and the Y-axis reports the value of different metrics. Small arrows highlight 

significant anomalies: a horizontal scan around 12:48 and two vertical scans around 

17:55 and 22:20. 

 

  
Figure 4. Time series of an internal host performing horizontal and vertical scans. 

  

5.2.2 Data transfer to dropzone before exfiltration  
Attackers often move data to be exfiltrated towards an internal dropzone [23, 12], 

used as intermediate point from which the exfiltration is easier to perform. These 

activities can be detected through the risk score 𝐷𝑇𝐷 defined as follows:  

 

𝐷𝑇𝐷 =
𝐴𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑜𝑢𝑡 + 𝐴𝐵𝑦𝑡𝑒𝑠
𝑜𝑢𝑡 + 𝐴𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑜𝑢𝑡

1 + 𝑁𝐶𝑜𝑛𝑛𝑠
𝑜𝑢𝑡  

 

where a higher value of 𝐷𝑇𝐷 suggests that an internal host is likely transferring data 

to an internal dropzone. In the numerator, we consider point anomalies instead of 
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state changes because the higher bandwidth of internal networks – typically in the 

order of Gbps – allows for short transfer times. In the denominator, we consider 

𝑁𝐶𝑜𝑛𝑛𝑠
𝑜𝑢𝑡  to rule out legitimate intensified network activity, such as p2p protocols.   

We perform several experiments in which we simulate DTD attacks of increasing 

transfer sizes from 10MB-50MB to 100MB-1GB. We use five controlled hosts as 

possible attackers and we transfer data to a Web server of the organization as an 

emulated dropzone. Table 5 reports the percentage of times a host performing a DTD 

is ranked within the top-K: for small amounts of data (10-50MB), in about 92% of 

the cases the hosts are ranked within the top-10. This is the most challenging scenario 

for detection because clients may use multiple hosts/devices for backup, hence it is 

tough to identify anomalous transfers unless we integrate anomaly detection with 

white/black lists of internal hosts (where storage is or is not allowed), but similar 

integrations are out of the scope of this paper. The most compelling result is that in 

99% of the cases, the 50-100MB internal transfers are ranked within the top-10.  

 

Table 5. Percentage of times a host performing a DTD is ranked within the top-K.  

In top-K 10-50MB 50-100MB 100MB-1GB 

in top-5 87.5% 95.4% 99.7% 

in top-10 91.7% 99.1% 100% 

in top-25 95.6% 99.8% 100% 

in top-50 99.5% 100% 100% 

 

 

As an example, Figure 5 reports time series that show evolution of several layers 

referring to an internal host used for injecting data transfers to dropzone. The X-axis 

represents time, and the Y-axis reports the different metrics. Two arrows highlight 

peaks of about 100MB and 1GB, respectively – corresponding to the injected data 

exfiltration. We also observe an increment of the average flow duration in 

correspondence of the two data transfers, whereas other statistics (e.g., number of 

contacted hosts) remain stable.  

 



 

 

 

  14 

 

 

 
Figure 5. Time series of an internal host in which two DTDs of 100MB and 1GB are injected. 

  

5.2.3 MITM: Man in the Middle attack 
Man in the Middle (MITM) attacks are important to perform advanced 

reconnaissance or to steal credentials, because an attacker can eavesdrop 

communications of hosts within the same subnet. Here, we consider one of the most 

subtle forms of MITM performed through ARP spoofing [34]. In this scenario, an 

attacker sends fake correspondences between IP and MAC addresses with the goal 

of acting as “hidden” proxy between a victim and the gateway of its subnet. Netflows 

record no explicit communication between the eavesdropper and the victim, but our 

experiments evidence that once a host becomes victim of MITM, then all packets 

sent and received by the victim pass twice through the switch. This attack can be 

captured by the state-change detection algorithm of the analytics core. In order to 

prioritize possible victims of MITM we define the following risk score: 

 

𝑀𝐼𝑇𝑀 = (
𝐶𝐵𝑦𝑡𝑒𝑠

𝑖𝑛 + 𝐶𝐵𝑦𝑡𝑒𝑠
𝑜𝑢𝑡 + 𝐶𝑃𝑘𝑡𝑠

𝑖𝑛 + 𝐶𝑃𝑘𝑡𝑠
𝑜𝑢𝑡

1 + 𝐶𝐹𝑙𝑜𝑤𝑠
𝑖𝑛 + 𝐶𝐹𝑙𝑜𝑤𝑠

𝑜𝑢𝑡 + 𝑁𝐶𝑜𝑛𝑛𝑠
𝑖𝑛 + 𝑁𝐶𝑜𝑛𝑛𝑠

𝑜𝑢𝑡
) ∗ 𝑁𝐴𝑅𝑃

𝑜𝑢𝑡  

 

In the numerator we consider state-changes instead of point anomalies because 

MITM is usually an activity that lasts for some time to get useful information. The 

parameter 𝑁𝐴𝑅𝑃
𝑜𝑢𝑡  is a multiplicative factor because if 𝑁𝐴𝑅𝑃

𝑜𝑢𝑡  =0 there is no new 

correspondence in the ARP layer (see Section 4).  In the denominator, we include 

state-changes and novel edges in Flows and Conns layers, because they must remain 

approximately stable with respect to a past window even if MITM is occurring. 

Experimental results are achieved through controlled Man in the Middle attacks of 

varying durations where we use one host as the eavesdropper and other 10 hosts as 

victims. From Table 6, we can observe that in more than 95% of the cases, even 

MITM lasting for just 15-30 minutes are prioritized in the top-10; if an attack lasts 
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for at least 1 hour, the victim hosts are ranked within the top-5 in more than 98% of 

the cases.  

 

Table 6. Percentage of times a host victim of a MITM is ranked within the top-K. 

In top-K 15-30min 1-2hr 12-24hr 24-72hr 

in top-5 89.8% 98.2% 99.4% 99.8% 

in top-10 95.4% 99.1% 99.8% 100% 

in top-25 99.0% 99.8% 100% 100% 

in top-50 99.7% 100% 100% 100% 

 

As a motivation, in Figures 6 we report the time series of a host related to Packets 

and Bytes layers, where the Y-axis denotes the different metrics, and the X-axis 

reports time. The plots report two days separated by a vertical dashed line. When the 

MITM is occurring on the second day, it is possible to observe that the number of 

packets and bytes increases significantly.  

 

 
Figure 6. Comparison showing changes in Packets and Bytes layers when MITM occurs.   

 

5.2.4 Watering hole through DNS spoofing 
Watering hole is a technique used by attackers to increase their coverage and 

persistence by infecting multiple hosts of an organization simultaneously. We 

consider a particular type of watering hole attack performed through DNS spoofing 

[35], where the attacker spoofs DNS responses to redirect victims to a compromised 

sever. To prioritize internal hosts that may correspond to watering holes, we define 

the risk score 𝑊𝐻 as follows: 

 

𝑊𝐻 = (𝑁𝐶𝑜𝑛𝑛𝑠
𝑖𝑛 + 𝐶𝐶𝑜𝑛𝑛𝑠

𝑖𝑛 + 𝐶𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖𝑛 ) ∗ 𝑁𝐷𝑁𝑆

𝑜𝑢𝑡  

 

where a high value of 𝑊𝐻 represents a higher likelihood that a host is performing a 

watering hole through DNS spoofing. Intuitively, this can be prioritized when a host 

has many new incoming connections, its IP corresponds to a new DNS resolution, 

and has a state-change in the number and duration of incoming connections. We 
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observe that 𝑁𝐷𝑁𝑆
𝑜𝑢𝑡  is a multiplicative factor, because 𝑁𝐷𝑁𝑆

𝑜𝑢𝑡 = 0 implies that no DNS 

spoofing occurred.   

 

To evaluate the risk score 𝑊𝐻, we use five internal clients as “spoofers” of three 

internal Web servers offering different services: Server 1 (small), Server 2 (medium) 

and Server 3 (large)  that are used by an average number of clients per hour of about 

10, 50 and 250, respectively. We perform a DNS spoofing at times 10am, 2pm, 4pm, 

6pm. Table 7 reports the percentage of times a “watering hole” host (that was 

redirecting traffic to itself through DNS spoofing) has been ranked within the top-K 

hosts in the different scenarios. This table shows that for Server 1 (having small 

activity) the spoofer is prioritized in the top-10 in more than 96% of the cases, while 

this percentage is even higher for servers with high number of clients where the 

intensity of the redirect is more evident. 

  

Table 7. Percentage of times a host performing “watering hole” is ranked within the top-K. 

 

In top-K 

Server 1 

(small) 

Server 2 

(medium) 

Server 3 

(large) 

in top-5 94.7% 98.9% 99.9% 

in top-10 96.2% 99.8% 100% 

in top-25 99.5% 100% 100% 

in top-50 99.8% 100% 100% 

 

As an example, Figure 7 reports a bipartite graph representation of the Conns layer 

over different days: on day 6, the dotted circle highlights a host that started 

performing a watering hole attack through DNS spoofing. We can observe an 

increase in the number of the incoming communications.  

 
Figure 7. Bipartite communications graph derived from Conns layer over 7 different days. 

 

5.2.5 Lateral movement through pivoting 
To get closer to his target, an attacker tends to compromise several internal hosts 

with higher privileges or to access to the most internal parts of the corporate network. 
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This activity is called lateral movement [12]. Figure 8 reports an example through a 

common technique named pivoting [36], where an attacker creates a tunnel of 

communications among multiple hosts (namely, pivoters) to access a LAN that 

cannot be reached directly from the external.   

 

Attacker
LAN1 LAN2 LAN3

 
 

Figure 8. Example of lateral movement through pivoting. 

 

To prioritize lateral movements, we define the risk score 𝐿𝑀 as follows: 

 

𝐿𝑀 = (𝑁𝑃𝑎𝑡ℎ𝑠
𝑖𝑛 + 𝑁𝑃𝑎𝑡ℎ𝑠

𝑜𝑢𝑡 + 𝐶𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑖𝑛 + 𝐶𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑢𝑡 ) 

 

where 𝑁𝑃𝑎𝑡ℎ𝑠
𝑖𝑛  and 𝑁𝑃𝑎𝑡ℎ𝑠

𝑜𝑢𝑡  take into account new paths in the communications graph 

(see Section 4), while 𝐶𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑖𝑛  and 𝐶𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑢𝑡  check whether an increment in the 

average duration of the flows has occurred. (We recall that a pivoting tunnel has to 

last for some time [36]). We perform several experiments involving up to 10 

controlled clients as intermediate pivoter hosts in the lateral movement (see Figure 

8). Table 8 reports the percentages of times a pivoter host is ranked within the top-

K risky nodes. The different columns correspond to different lengths of the pivoting 

tunnel. For example, Figure 8 presents a tunnel of length 2 with two pivoter hosts.  

 

Table 8. Percentage of times a host performing LM is ranked within the top-K. 

In top-K 1 pivoter 3-5 pivoters 8-10 pivoters 

in top-5 96.2% 99.7% 99.9% 

in top-10 97.9% 99.9% 100% 

in top-25 99.1% 100% 100% 

in top-50 99.8% 100% 100% 

 

5.3. AUTONOMOUS TRIAGE TO SUPPORT SECURITY ANALYSTS 

We present how results can be combined to produce an overall ranking useful for 

security analysts to focus on few suspicious hosts.   
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Figure 9. Online autonomous triage of internal hosts for different attack scenarios.  

 

Figure 9 reports the overall rankings, with each line corresponding to a different 

attack: R for reconnaissance, DTD for data transfer to dropzone, MITM for Man in 

the Middle, WH for watering hole through DNS spoofing, LM for lateral movement 

through pivoting. On the leftmost (resp. rightmost) side, there is the host with higher 

(resp. lower) risk score on that line. All hosts are represented as rectangles, where 

the size is proportional to the number of top-K rankings in which a host appears. For 

example, host h202 appears in two top-five rankings (first for WH, and third for 

LM), hence its rectangle has a double size. As ranking operations are evaluated 

online, rectangles with a dashed outline denote hosts that recently entered a top-five 

ranking. A similar visualization supports security analysts in monitoring several 

cyber threats occurring in the core of large networks. The number of top-K hosts to 

show can be chosen adaptively depending on the size of the organization and the 

amount of human resources. As a final remark, it is important to observe that our 

proposal makes it hard for an attacker to elude ranking, because we monitor changes 

in activity of each individual host with respect to its history, and we produce an 

overall ranking considering all hosts of the internal network. Hence, an attacker 

would require a complete view of all hosts behaviors/history to evade prioritization 

successfully.   

6. CONCLUSIONS 

In this paper, we propose a novel approach based on ranking and prioritization 

instead of “guaranteed” detection. We consider an innovative perspective in which 

we start by analyzing individual host behaviors, and then post-correlate outputs to 

compute various indicators corresponding to different attacker activities. A 

prioritized list of likely compromised hosts is passed to human analysts, who can 

focus their attention only on the most suspicious hosts and activities. Experimental 
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evaluations and use-case examples in real-world internal networks of more than 

1,000 hosts demonstrate the feasibility and scalability of the proposed approach for 

online autonomous triage of different attack scenarios. Future works include the 

integration of attack indicators from external traffic, such as text analysis and 

statistical characterization of DNS queries to identify possible C&Cs.  

7. REFERENCES 

 

[1]  V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection: A survey," 

ACM computing surveys (CSUR), 2009.  

[2]  E. S. Pilli, R. C. Joshi and R. Niyogi, "Network forensic frameworks: Survey 

and research challenges," Elsevier Digital Investigation, 2010.  

[3]  T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels and 

E. Kirda, "Beehive: Large-scale log analysis for detecting suspicious activity 

in enterprise networks," in Proceedings of the 29th ACM Annual Computer 

Security Applications Conference, 2013.  

[4]  M. Andreolini, M. Colajanni and M. Marchetti, "A collaborative framework 

for intrusion detection in mobile networks," Elsevier Information Sciences, 

2015.  

[5]  W. Wang and T. E. Daniels, "A graph based approach toward network 

forensics analysis," ACM Transactions on Information and System Security 

(TISSEC), 2008.  

[6]  S. J. Stolfo, "Worm and attack early warning: piercing stealthy 

reconnaissance," IEEE security & privacy, 2004.  

[7]  M. P. Collins and M. K. Reiter, "Hit-list worm detection and bot 

identification in large networks using protocol graphs," in International 

Workshop on Recent Advances in Intrusion Detection, 2007.  

[8]  M. Bailey, E. Cooke, F. Jahanian, Y. Xu and M. Karir, "A survey of botnet 

and botnet detection," in Conference For Homeland Security, CATCH'09, 

Cybersecurity Applications \& Technology, 2009.  

[9]  L. Bilge, D. Balzarotti, W. Robertson, E. Kirda and C. Kruegel, "Disclosure: 

detecting botnet command and control servers through large-scale netflow 

analysis," in Proceedings of the ACM 28th Annual Computer Security 

Applications Conference, 2012.  



 

 

 

  20 

 

 

[10]  G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong and W. Lee, "BotHunter: 

Detecting Malware Infection Through IDS-Driven Dialog Correlation," in 

Usenix Security, 2007.  

[11]  G. Gu, R. Perdisci, J. Zhang and W. Lee, "BotMiner: Clustering Analysis of 

Network Traffic for Protocol-and Structure-Independent Botnet Detection," 

in USENIX Security Symposium, 2008.  

[12]  R. Brewer, "Advanced persistent threats: minimising the damage," Network 

Security, pp. 5-9, 2014.  

[13]  M. Colajanni, D. Gozzi and M. Marchetti, "Enhancing interoperability and 

stateful analysis of cooperative network intrusion detection systems," in 

Proceedings of the 3rd ACM/IEEE Symposium on Architecture for 

networking and communications systems, 2007.  

[14]  M. Marchetti, M. Colajanni and F. Manganiello, "Framework and Models for 

Multistep Attack Detection," International Journal on Security and Its 

Applications, 2011.  

[15]  K. Ruan, J. Carthy and T. Kechadi, "Survey on cloud forensics and critical 

criteria for cloud forensic capability: A preliminary analysis," in Proceedings 

of the Conference on Digital Forensics, Security and Law, 2011.  

[16]  J. Grover, "Android forensics: Automated data collection and reporting from 

a mobile device," Elsevier Digital Investigation, 2013.  

[17]  P. Bhatt, E. Toshiro Yano and P. M. Gustavsson, "Towards a Framework to 

Detect Multi-stage Advanced Persistent Threats Attacks," in IEEE 

International Symposium on Service Oriented System Engineering (SOSE), 

2014.  

[18]  E. M. Hutchins, M. J. Cloppert and R. M. Amin, "Intelligence-driven 

computer network defense informed by analysis of adversary campaigns and 

intrusion kill chains," in Proceedings of the 6th International Ionference on 

i-Warfare and Security, 2011.  

[19]  R. Brewer, "Advanced persistent threats: minimising the damage," Network 

Security, pp. 5-9, 2014.  

[20]  I. Jeun, Y. Lee and D. Won, "A practical study on advanced persistent 

threats," Computer Applications for Security, Control and System 

Engineering, pp. 144-152, 2012.  

[21]  N. Virvilis and D. Gritzalis, "The big four-what we did wrong in advanced 

persistent threat detection?," in IEEE International Conference on 

Availability, Reliability and Security (ARES), 2013.  



 

 

 

  21 

 

 

[22]  M. Marchetti, F. Pierazzi, A. Guido and M. Colajanni, "Countering 

Advanced Persistent Threats through security intelligence and big data 

analytics," in Cyber Conflict (CyCon), 2016 8th International Conference on, 

Tallin, Estonia, 2016.  

[23]  M. Marchetti, F. Pierazzi, M. Colajanni and A. Guido, "Analysis of high 

volumes of network traffic for Advanced Persistent Threat detection," 

Elsevier Computer Networks, 2016.  

[24]  J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti and M. Christensen, 

"Portvis: a tool for port-based detection of security events," in Proceedings 

of the 2004 ACM workshop on Visualization and data mining for computer 

security, 2004.  

[25]  V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe and H. Zhang, 

"LADS: Large-scale Automated DDoS Detection System," in USENIX 

Annual Technical Conference, General Track, 2006.  

[26]  M. H. Bhuyan, D. Bhattacharyya and J. K. Kalita, "Surveying port scans and 

their detection methodologies," The Computer Journal, 2011.  

[27]  S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. 

Hoagland, K. Levitt, C. Wee, R. Yip and D. Zerkle, "GrIDS-a graph based 

intrusion detection system for large networks," in Proceedings of the 19th 

national information systems security conference, 1996.  

[28]  S. Casolari, S. Tosi and F. Lo Presti, "An adaptive model for online detection 

of relevant state changes in Internet-based systems," Performance 

Evaluation, pp. 206-226, 2012.  

[29]  F. Pierazzi, S. Casolari, M. Colajanni and M. Marchetti, "Exploratory 

security analytics for anomaly detection," Computers & Security, pp. 28-49, 

2016.  

[30]  "nProbe," [Online]. Available: 

http://www.ntop.org/products/netflow/nprobe/. 

[31]  A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras and B. Stiller, "An 

overview of IP flow-based intrusion detection," IEEE communications 

surveys & tutorials, 2010.  

[32]  P. Goyal, S. Batra and A. Singh, "A literature review of security attack in 

mobile ad-hoc networks," International Journal of Computer Applications, 

2010.  

[33]  M. Newman, Networks An introduction, Oxford University Press, 2010.  



 

 

 

  22 

 

 

[34]  V. Ramachandran and S. Nandi, "Detecting ARP spoofing: An active 

technique," in International Conference on Information Systems Security, 

2005.  

[35]  U. Steinhoff, A. Wiesmaier and R. Araujo, "The State of the Art in DNS 

Spoofing," in Proc. 4th Intl. Conf. Applied Cryptography and Network 

Security (ACNS).  

[36]  "Pivoting," 2016. [Online]. Available: https://offensive-

security.com/metasploit-unleashed/pivoting/. 

 

  

 


