

NATO Cooperative Cyber Defence Centre of Excellence Tallinn, Estonia

International Conference on Cyber Conflict

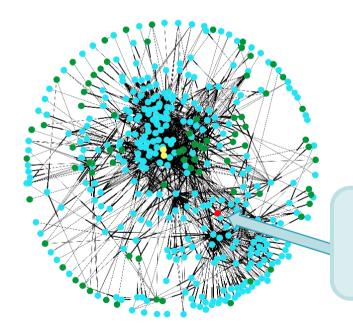
International Conference on Cyber Conflict 30 MAY - 2 JUNE 2012, TALLINN, ESTONIA

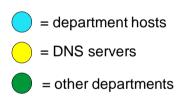
Early detection of internal cyber threats

<u>Fabio Pierazzi</u> Postdoctoral Researcher University of Modena and Reggio Emilia, Italy

> <u>Presentation of paper:</u> "Scalable architecture for online prioritization of cyber threats" F. Pierazzi, G. Apruzzese, M. Colajanni, A. Guido, M. Marchetti

- Perimetral network defenses are commonly adopted to protect the border
- Limited solutions exist for defending the core of a network, once the attacker gets in
 - Once a host is compromised, the attacker may perform Reconnaissance, data transfer to dropzone, Man in the Middle, Watering hole, Lateral movement, Pivorting, ...


Some examples of cyber attacks to internal networks:


- Operation Aurora (2010--)
- Operation Night Dragon (2011--)
- BlackEnergy (2015)
- MEDJACK (2016)
- Archimedes (2017),...

Defending the network core

Graph of internal communications (real data from department of large organization)

Final objective: To identify the one or few host that are performing malicious activities

Defending the network core

Graph of internal communications (**real data** from department of large organization)

Assumptions

Only client-to-server and server-toclient communications are legit

Clients and **servers** are easy to distinguish by analyzing traffic

Low number of internal communications

Reality

Many legit client-to-client communications (Windows NetBIOS, Dropbox, Skype), and also **server-to-server** communications (e.g., to DNS and storage servers)

Many clients expose legitimate services (e.g., SSH server), servers are often used as clients (e.g., through SSH or as proxies)

- other departments

Many internal communications:

~ **10M per day** in a single department

B

Key aspects of proposal

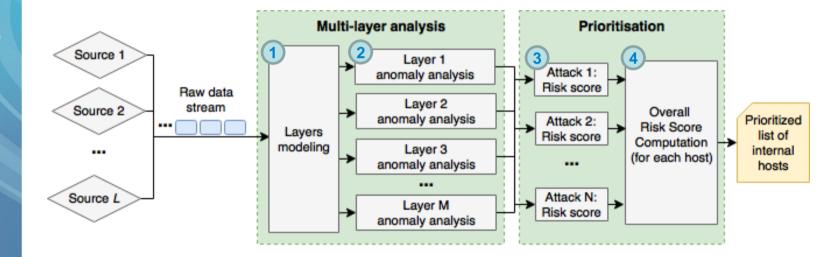
Multi-layer analysis vs. single-layer analysis

Consider **different layers (i.e., perspectives)** of network traffic (e.g., packets, bytes, DNS resolutions,...)

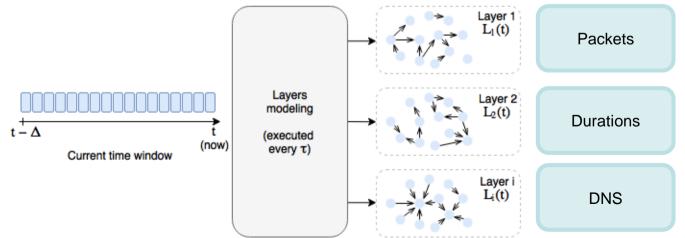
- To correlate different events
- To improve accuracy

Prioritisation vs. detection

Certain "detection" is almost impossible

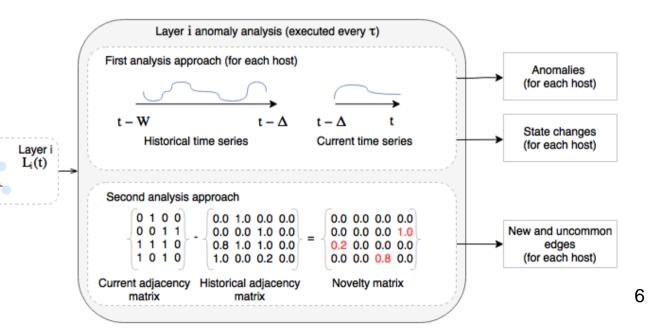

Instead, we propose prioritisation

- Risk score: likelihood that a host is involved in one or more internal attacks
- Security experts can investigate the most suspicious hosts



Multi-layer analysis Phase 1: Layers modelling

Layers: graphs of different network metrics → Look at data from different perspectives


5

Il Conferenc Inflict

Multi-layer analysis Phase 2: Anomaly analysis

Performed in parallel for each layer

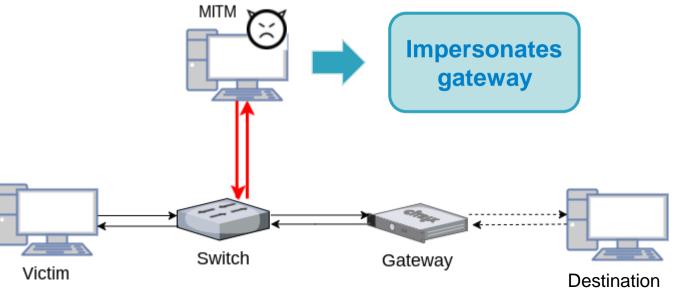
Prioritisation Phase 3: Attacks risk scores

The **outputs** of the Multi-Layer analysis are **correlated** to provide a **risk score** for different types of **internal cyber attacks** (for each host)

R: Reconnaissance

DTD: Data Transfer to Dropzone

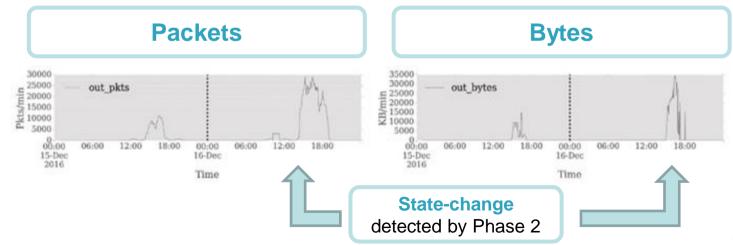
MITM: Man in the Middle through ARP spoofing


WH: Watering Hole through DNS spoofing

LM: Lateral Movement Through Pivoting

Prioritisation Man in the Middle

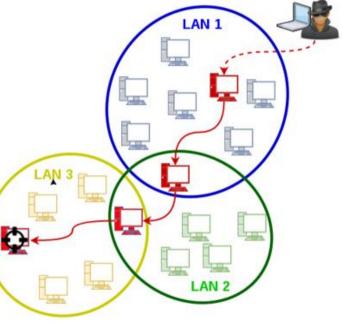
- Attacker intercepts (possibly manipulates) all victim communication
- ARP spoofing: no evidence in IP communications from victim IP



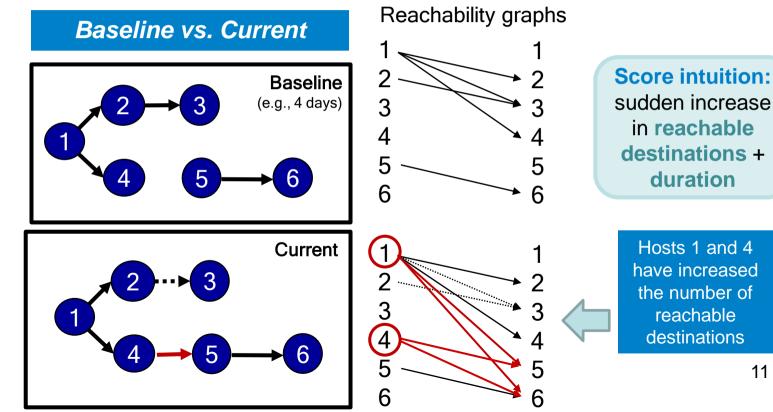
8

Prioritisation Man in the Middle – Risk score

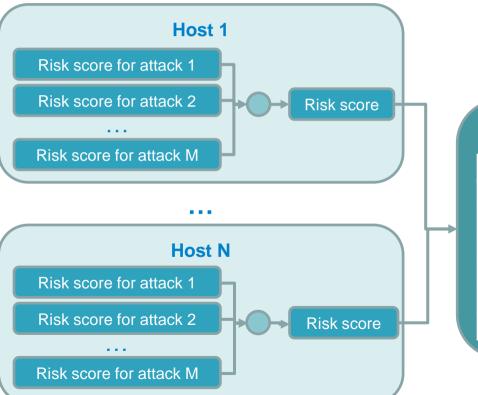
- Number of contacted hosts remains stable
- New correspondence IP-MAC in the ARP layer
- Packets and bytes are duplicated in the switch
 - → possible to capture via **state-change analysis**



Prioritisation Lateral Movement through Pivoting


Once he compromises a host, attacker wants to **move deeper** in the internal network

Pivoting is a technique where an attacker **propagate commands** through two or more internal hosts


Prioritisation Lateral Movement – Risk score

Prioritisation

Phase 4: Overall risk score

Prioritized internal hosts

Rank	Host ID	Risk Score
1	h128	321
2	h32	312
3	h18	130
4	h384	120
5	h748	89

Prioritisation – Results

Phase 1. Overall risk score

Injection of Man in the Middle of increasing duration

In top-K	15-30min	1-2hr	12-24hr	24-72hr
in top-5	89.8%	98.2%	99.4%	99.8%
in top-10	95.4%	99.1%	99.8%	100%
in top-25	99.0%	99.8%	100%	100%
in top-50	99.7%	100%	100%	100%

Injection of lateral movement with different number of hosts involved

F In top-K	1 pivoter	3-5 pivoters	8-10 pivoters	
in top-5	96.2%	99.7%	99.9%	
in top-10	97.9%	99.9%	100%	
F in top-25	99.1%	100%	100%	
in top-50	99.8%	100%	100%	

12

Conclusions

- Protecting enterprise networks is increasingly challenging
- Novel approaches for **defending the core** are needed
- Key proposals:
 - Correlate multiple layers to find (internal) cyber threats
 - Prioritisation instead of detection

International Conference on Cyber Conflict 30 MAY - 2 JUNE 2017, TALLINN, ESTONIA

Questions & Answers

Fabio Pierazzi University of Modena, Italy fabio.pierazzi@unimore.it