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Addressing Adversarial 
Attacks Against Security 
Systems Based on 
Machine Learning

Abstract: Machine-learning solutions are successfully adopted in multiple contexts 
but the application of these techniques to the cyber security domain is complex and 
still immature. Among the many open issues that affect security systems based on 
machine learning, we concentrate on adversarial attacks that aim to affect the detection 
and prediction capabilities of machine-learning models. We consider realistic types of 
poisoning and evasion attacks targeting security solutions devoted to malware, spam 
and network intrusion detection. We explore the possible damages that an attacker can 
cause to a cyber detector and present some existing and original defensive techniques 
in the context of intrusion detection systems. This paper contains several performance 
evaluations that are based on extensive experiments using large traffic datasets. 
The results highlight that modern adversarial attacks are highly effective against 
machine-learning classifiers for cyber detection, and that existing solutions require 
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1. IntroductIon

Solutions based on machine- and deep-learning algorithms are becoming pervasive 
in multiple fields [1], with documented successes for computer vision, speech 
processing, social media analysis and healthcare [2]. However, the application of 
these techniques to cyber security is still affected by several shortcomings that limit 
their effectiveness in real scenarios. Recent results evidence that utmost care and due 
diligence should be adopted when considering defensive methods based on machine 
learning  to protect current organizations [3, 4, 5]. There are several motivations for 
these problems: attacks are relatively infrequent compared to the massive number 
of events generated by modern enterprises; they evolve rapidly, with consequences 
for possible ground truth for validation; and attackers are not constrained by rules 
as in artificial intelligence gaming. In this paper, we consider the additional problem 
presented by the inherent vulnerability of machine-learning methods to adversarial 
attacks, through which opponents can thwart the system by inducing the generation of 
incorrect or undesirable results [6]. This issue is aggravated by the multiple variations 
of malicious actions that can be performed during the training- or test-time of the 
machine-learning algorithms [7, 8].

Adversarial attacks against machine learning have been explored in image processing 
[9], but lack adequate analyses in the cyber security domain. The papers that evaluate 
the performance of cyber detectors in adversarial settings (e.g., [7, 10]) consider a 
limited number of cyber security problems, few machine-learning classifiers, and 
a restricted subset of adversarial attacks. The main focus is on spam and malware 
analysis [11, 12], while we consider this issue from a network intrusion detection 
perspective [13], where experimental evaluations and novel solutions are lacking 
[5]. We provide a comprehensive overview of adversarial attacks against cyber 
security applications of machine learning and propose a taxonomy of these threats 
in three areas: network intrusion detection, malware analysis, and spam and phishing 
detection. We present existing solutions to counter this menace, and propose an 
original method for mitigating attacks based on data poisoning. We have executed a 
large set of experiments to evaluate and compare the performance of cyber detectors 

improvements in several directions. The paper paves the way for more robust machine-
learning-based techniques that can be integrated into cyber security platforms.
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under normal and adversarial settings. In addition, we have measured the effectiveness 
of some countermeasures, including the strategy proposed in this paper.  

The remainder of this paper is structured as follows. Section 2 provides a thorough 
description of adversarial attacks in the cyber security sphere. Section 3 explores 
existing strategies for countering these threats and proposes our original methodology 
against poisoning attacks. Section 4 presents the experimental results and evaluations. 
Section 5 concludes the paper with final remarks and future work.

2. AdversArIAl AttAcks And cyber securIty

To defend against cyber threats, security operators rely on techniques borrowed 
from the machine-learning domain [14, 15] because of their anomaly detection 
capabilities, which may identify novel attacks and which are not recognizable through 
signature-based approaches [16, 17]. Machine-learning algorithms can be divided 
into supervised and unsupervised techniques, depending on the requirement of the 
training phase, with a set of labelled data [18]. Both groups can solve cyber security 
problems [3], but supervised methods are appreciated due to their ability to provide 
actionable results, such as detecting an attack [4]. On the other hand, unsupervised 
techniques are employed for ancillary tasks such as data clustering [19]. All these 
methods present several open issues that must be considered when integrating them 
into security systems [18]. Here, we focus on the topic of adversarial attacks.

Adversarial attacks against machine-learning solutions represent a major limitation to 
the adoption of a fully autonomous cyber defence platform. These threats are based 
on the generation of specific samples that induce the model to produce an output 
that is favourable to the attacker, and leverage the intrinsic sensitivity of machine-
learning models to their internal configuration settings [14, 20, 21]. Although 
adversarial perturbations affect all applications of machine learning, the cyber 
security field presents several characteristics that further aggravate this menace: there 
is a constantly evolving arms race between attackers and defenders; the system and 
network behaviour of an organization can be subject to continuous modifications. 
These unavoidable and unpredictable changes are denoted as the concept drift 
[22] problem, which decreases the performance of any model based on anomaly 
detection. Mitigations involve periodic retraining and adjustment processes that 
can identify behavioural modifications and recent related threats. While performing 
such operations is a challenging task in itself [18], it also facilitates the execution of 
adversarial attacks [23].

Many research results (e.g., [6, 24, 8]) show that machine-learning algorithms are 
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unsuitable to face adversarial settings. The first examples of adversarial attacks date 
back to 2004 [25], but the advent of  deep learning drew the attention of the research 
community to this issue [26]. Possible countermeasures have appeared in the computer 
vision literature [9], with several papers proposing solutions for improving the 
robustness of deep neural networks for image classification in adversarial environments 
[27]. However, the performance of machine-learning algorithms depends on their 
application contexts, hence it is of paramount importance to understand the effects 
of adversarial threats against cyber security detectors. We consider different classes 
of attacks by proposing a taxonomy inspired by the work of Huang et al. [6], where 
threats are classified on the basis of two properties: the influence determines whether 
an attack is performed at training-time or test-time; the violation denotes the type of 
security violation that may affect availability or integrity of the system. 

• Influence
° Training-time: these attacks include the manipulation of the training set 

used by the machine-learning model through the insertion or removal 
of specific samples that alter the decision boundaries of the algorithm. 
They are also known as poisoning attacks.

° Test-time: These attacks assume that the detector has been deployed and 
aim to subvert its behaviour through the submission of specific samples 
during its operational phase.

• Violation
° Integrity: often referred to as evasion attacks, these attacks aim to 

increase the false negative rate of the model by introducing malicious 
samples that are classified as benign. Hence, when successful, these 
stealthy threats do not cause any defensive action to be taken by the 
targeted organization.

° Availability: these attacks make the targeted model useless, for example 
by causing overwhelming spikes of false alarms. For this reason, attacks 
of this type usually induce some sort of response action by the defending 
side, such as temporary shut-down and recalibration of the model.

A comprehensive classification of adversarial attacks requires a definition of the 
attacker model. According to Biggio et al. [24], we should consider the following 
main features.

• The goal is related to the security violation purpose of the adversarial attack.
• The knowledge denotes the information possessed by the attacker on 

the machine-learning system that may include the adopted algorithm, its 
parameters, and its training data set. Depending on the type of information, 
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we can distinguish between black box attacks (zero knowledge), grey box 
attacks (partial knowledge), and white box attacks (complete knowledge).

• The capability determines the type of actions that an attacker can perform 
against the targeted environment that includes, but is not limited to, the 
machine-learning system. As a strict requirement, it is important to specify 
which kind of access the attacker has to the cyber detector: he can have full 
access (that is, reading its output and modifying its internals), limited access 
(can only read its output) or no access at all. 

• The strategy denotes the workflow pursued by the attacker to achieve his 
goal by leveraging previous knowledge and capabilities.

The attacker model distinguishes the adversarial attacks against cyber security systems 
from offences against other domains of application of machine learning. For example, 
most papers on image recognition [9, 28] assume that the attacker has complete 
knowledge and capability. These assumptions are unrealistic in cyber security 
applications for two reasons: cyber detectors are protected by multiple defence layers; 
if an attacker overcomes these barriers and can modify the detector, he can achieve 
his goals without relying on adversarial attack strategies. Thus, in the remainder of 
this paper, we consider attacks in which the attacker has limited or no access to the 
machine-learning system.

In Table 1, we classify the most important examples of adversarial attacks against 
three cyber security areas (Network intrusion detection, Malware analysis, Spam 
detection) representing scenarios where machine-learning methods are achieving 
appreciable results (e.g., [14, 15, 29]). In this table, columns indicate the cyber 
security problem while rows denote the adversarial attack class. Each cell reports the 
machine-learning algorithms that are tested against the related class of attacks. We 
remark that algorithms written in bold are evaluated for the first time in this paper. 
The existing literature focuses mainly on integrity attacks, with several algorithms 
evaluated for Malware analysis and Spam analysis. Few solutions exist and are tested 
in the Network intrusion detection context, and this observation motivates this paper. 
There are few documented attacks targeting the system availability, and there are no 
specific studies at test-time. 
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TABLE 1. MAPPING OF THE CATEGORIES OF ADVERSARIAL ATTACKS TO CYBER SECURITY 
PROBLEMS. LEGEND: RF=RANDOM FOREST; MLP=MULTI-LAYER PERCEPTRON; KNN=K-NEAREST 
NEIGHBOUR; NB=NAÏVE BAYES; SVM=SUPPORT VECTOR MACHINE; LR=LOGISTIC/LINEAR 
REGRESSION; DNN=DEEP NEURAL NETWORK.

3. defences AgAInst AdversArIAl AttAcks

Devising effective solutions against adversarial attacks is a challenging task. We 
present existing methods proposed in the literature that aim to mitigate these critical 
threats. Countermeasures can be divided into two groups: those conforming to the 
security-by-design paradigm that are effective against perfect-knowledge attacks; and 
methods that are only effective against partial- or zero-knowledge attacks. One of the 
main limitations of most solutions against adversarial attacks is that they may worsen 
the performance of the cyber detector in the absence of adversarial attacks, typically 
causing higher false positive rates (e.g., [40, 27, 41, 42]). 

A. Defences Against Attacks at Test-time
Since there are no known examples of availability attacks at test-time, we focus on 
defences against attacks targeting the integrity of the system. These threats involve 
the creation of specific samples that evade the detection mechanism. For example, an 
opponent can alter a malicious sample to induce its classification as a benign sample. 
The security-by-design countermeasures aim to improve the machine-learning system 
capabilities to detect even adversarially manipulated samples.
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• Adversarial training. These solutions train the model on datasets that 
include samples of possible adversarial attacks [43]. A recent proposal 
[42] suggests the adoption of a generative adversarial network (GAN) to 
automatically generate a similar dataset, achieving promising results. 
However, these approaches are not a “catch-all” solution, because it is 
simply unfeasible to obtain a dataset that contains all possible variations of 
realistic adversarial samples. 

• Robust optimisation. The authors in [44] and [45] propose techniques 
aimed at smoothing the decision boundaries of the machine-learning 
algorithm, thus reducing the effects of adversarial samples. Similar solutions 
can help to mitigate some attacks, but expert opponents are still able to craft 
malicious samples that look like licit activities.

• Feature selection. Other proposals (e.g., [40, 5]) suggest training the 
detection model by considering only the subset of features that cannot be 
manipulated by an attacker. While this method can prevent certain types 
of evasion attacks, feature removal reduces the detection rates in non-
adversarial scenarios [40]. 

• Game theory. These approaches represent the problem of adversarial 
attacks as a zero-sum game between the attacker and the defender, and work 
under several assumptions. They require a model of the attacker knowledge 
and capabilities that must be integrated into the machine-learning algorithm. 
The optimal defence course against the modelled attacker is found when the 
system reaches an equilibrium. An example of application to spam detection 
is described in [46]. The main limitation of these strategies is that they are 
only able to counter attacks that strictly conform to the considered attacker’s 
model, because even small deviations nullify their effectiveness. Since the 
cyber security world is intrinsically unpredictable and fuzzy, most of these 
solutions are not applicable to real contexts.

• Ensemble methods. The paper by Biggio et al. [47] shows that it is possible 
to counter evasion attacks at test-time by devising systems composed by 
multiple classifiers. However, each classifier represents a weak link in the 
security chain because the misconfiguration of even one component can lead 
to poor results, as shown in [48].

Most black- and grey-box evasion attacks involve a probing step, in which the 
adversary aims to gather information on the detector by submitting specific inputs to 
the system and observing the subsequent response. Thus, existing defences address 
these malicious exploratory activities by providing misleading information to the 
attacker. For example, the authors in [47] suggest classifiers that are difficult to 
reverse-engineer or propose a randomization of the detector output. The problem of 
these solutions is that they tend to work against attackers with limited time or skill 
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that adopt automated tools. Expert opponents can detect such deception activities and 
bypass them.

B. Defending Against Attacks at Training-time
Attacks performed at training-time alter the decision process of the machine-learning 
algorithm by modifying the configuration of the model before the training phases, 
that is, by manipulating the training dataset(s). Existing solutions focus on protecting 
the training dataset with the objective of minimizing the effects of adversarial 
perturbations. We identify the following two groups of security-by-design defences.

• Data sanitization. Poisoning attacks are countered through a data sanitization 
process that aims to detect and remove poisoned samples introduced in the 
training data [49]. The problem is that some assumptions of these approaches 
are not always applicable to the cyber security field. For example, the work 
in [50] assumes that each poisoning sample significantly affects the training 
process. This assumption is not valid in many situations in which an attacker 
introduces few samples just to avoid some specific detections of his interest. 
Other solutions [51] leverage the machine unlearning concept that allows 
the effects of poisoned data to be cancelled without the need to retrain the 
machine-learning model. The main limitation of this approach is that it needs 
to know which (poisoned) data to unlearn, that is, it requires the knowledge 
of which poisoned data samples have been introduced by the attacker. This 
is an unrealistic assumption in real cyber security contexts.

• Ensemble methods. The adoption of multiple-classifier systems can also 
be effective against attacks at training-time [50]. These solutions present the 
same advantages and problems characterizing their test-time version, that 
is, a misconfiguration of even one component can damage the results of the 
entire detection mechanism.

Defences against partial- or zero-knowledge attacks include the collection of training 
data from randomized sources [52] with the goal of making it harder for the attacker 
to devise effective adversarial samples; and the application of strategies to prevent 
the attacker from controlling the actual training dataset [52]. As an example of this 
latter group, we propose an original methodology based on the idea of generating the 
actual training set only at training-time. The approach introduces data transformation 
procedures on the training dataset. In this way, even if an adversary manages to poison 
the stored dataset by injecting malicious samples that are labelled as benign, the data 
transformation step ensures that the model is not trained on those exact poisoned 
samples. The expected result is that these samples will have a significantly smaller 
impact on the detector. The complete description of this solution is as follows. 
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We assume an organization that adopts a cyber detector relying on a supervised 
algorithm, which is periodically retrained. The training is based on a dataset 𝑋’ that 
is stored on a dedicated database server. Let Τ be an invertible function with domain 
𝐾 so that:

Τ-1(Τ(𝑘)) = Τ-1(𝑘’) = k,   ∀ 𝑘 ∈ 𝐾

The organization employs the transformation defined by Τ. More specifically, each 
time a new piece of data 𝑥 is added to the dataset 𝑋’, it is transformed as Τ(𝑥) = 𝑥’. 
When it is necessary to retrain the detector, the dataset 𝑋’ is retrieved and is inversely 
transformed through Τ-1, providing the original training dataset, 𝑋. 

Now, let us assume that an attacker obtains full access to the database server containing 
𝑋’. The attacker attempts a poisoning attack by introducing some samples  x̅ in 𝑋’ 
that are labelled as benign, and that represent malicious actions. (For example, the 
underlying code or network behaviour of a piece of malware, or a spam email). As the 
attacker is unaware of the data transformation, he does not try to infer the existence of 
a similar function by analysing the dataset and does not apply the data transformation 
Τ to the  ̅x samples. When the detector is retrained, these samples  ̅x will undergo the 
transformation Τ-1, resulting in samples  ̅x -1 with different characteristics than those 
of the malicious actions that the attacker wanted to evade detection. This results in 
poisoning samples whose effect on the detector will be different from that desired by 
the attacker. We report the entire workflow of the proposed approach in Figure 1 and 
Figure 2. 

FIGURE 1. WORKFLOW OF THE PROPOSED POISONING COUNTERMEASURE: OPERATIONS 
PERFORMED BEFORE THE (RE)TRAINING.

FIGURE 2. WORKFLOW OF THE PROPOSED POISONING COUNTERMEASURE: OPERATIONS 
PERFORMED AT (RE)TRAINING-TIME.



10

To provide an improved understanding of the proposed method, we present the 
following example. Consider an organization adopting a classifier Ϲ that analyses 
network flows [53] to distinguish between malicious and benign traffic; let  ^𝑋 be the 
dataset of network flows used to train the classifier, and let ^T be a transformation that 
modifies a flow sample by multiplying the flow_duration by 𝑑∈ℝ, and dividing the 
flow_exchanged_bytes by 𝑏∈ℝ; conversely, ^T-1 modifies a flow sample by dividing 
its flow_duration by 𝑑 and multiplying its flow_exchanged_bytes by 𝑏. With these 
assumptions, the dataset  ^𝑋 is stored in the organization database as  ^𝑋’. That is, 
every flow sample ^x∈ ^𝑋 is modified into ^x’ by having the values of its flow_duration 
multiplied by d, and the values of its flow_exchanged_bytes divided by 𝑏. Therefore, 
every time the dataset  ^𝑋’ is updated with a new set of flows, the flows are subject to 
the transformation denoted by ^T. Consequently, whenever the classifier Ϲ undergoes 
a retraining process, each flow ^x’∈ ^𝑋’ will be inversely transformed by ^T-1 into its 
original version, ^x.

Now, if an unaware attacker attempts to poison the stored dataset  ^𝑋’ by inserting some 
adversarial samples ⩟x that are wrongly labelled, he will not perform the transformation 
defined by  ^T, that is, the adversarial flows will not have their flow_duration and flow_
exchanged_bytes modified. Hence, when the classifier, Ϲ is retrained, the adversarial 
samples ⩟x will be transformed by  ^T-1 into ⩟x -1. As a practical example, if 𝑏=10 and 𝑑=2, 
and if an attacker introduces in  ^𝑋’ the adversarial sample, ⩟x having flow_duration=2 
and flow_exchanged_bytes=240, then  ^T-1 will modify it into ⩟x -1 having flow_duration 
=1 and flow_exchanged_bytes=2400. Thus, this sample will have different effects on 
the retraining process of classifier Ϲ than the ones intended by the attacker.

4. experImentAl results

We present an original evaluation of integrity attacks performed at training- and 
test-time against network intrusion detection systems based on three supervised 
machine-learning algorithms that achieve appreciable detection performance [14]: 
Random Forest, Multi-layer Perceptron, K-Nearest Neighbour. We initially present 
the application scenario, the experimental testbed, and the baseline performance of 
the considered detectors. Then, we evaluate them in adversarial scenarios and assess 
the effectiveness of possible countermeasures.

A. Experimental Environment
We consider a typical context, shown in Figure 3, where the network of a large 
enterprise is monitored by a NIDS based on a machine-learning classifier that inspects 
the network flows of the border router [53]. The NIDS is periodically retrained with 
updated data stored on a dedicated database server.
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FIGURE 3. SCENARIO ADOPTED FOR THE EXPERIMENTS.

The testbed is based on a publicly available collection of multiple datasets of network 
flows captured in a monitored environment with dozens of hosts, where some machines 
are infected with malware belonging to seven botnet families [54]. Overall, these 
datasets contain over 20 million network samples that are labelled as either legitimate 
or illegitimate. In the evaluation, we split each detector into several instances, each 
devoted to one botnet family. Each instance is trained on a training set containing 80% 
of the malicious samples of the related botnet family, while the remaining 20% is used 
in the test-set. We use a fixed 85:15 ratio of legitimate-to-illegitimate samples for each 
training- and test-set. The quality of each detector is measured through the traditional 
performance indicators Precision, Recall (or Detection Rate), F1-score and Accuracy:

where TP, TN, FP and FN denote true positives, true negatives, false positives and false 
negatives, respectively. A positive refers to a malicious sample. The values presented 
in Table 2 represent the average of the results for each detector. These detectors obtain 
an appreciable performance that is comparable to the state-of-the-art [14, 55].
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TABLE 2. BASELINE PERFORMANCE OF THE CLASSIFIERS.

To measure the effectiveness of adversarial integrity attacks and their countermeasures, 
we introduce the attack severity (AS) metric, where attacks with higher (respectively, 
lower) magnitude will obtain AS scores that are closer to 1 (respectively, 0):

B. Evaluation of Adversarial Attacks at Test-time
The first experiments involve integrity violations performed at test-time. We consider 
an attacker that has already established a foothold within the enterprise’s internal 
network by compromising one or more machines with botnet malware; these bots 
communicate with an external Command and Control server. The attacker model is 
based on the following three assumptions: his goal is to evade detection in order to 
expand his control of the internal network [56]; he knows that the organization adopts 
a botnet detector based on machine learning, which is trained on malware samples 
that are similar to the variant used by the bots; he can interact with the controlled 
bots, but he cannot access the botnet detector. To achieve his goal, the attacker plans 
to slightly modify the network communications performed by the bots (e.g., small 
increments in the amount of exchanged data and in the communications duration) 
so that these small perturbations can induce misclassifications of botnet flows. We 
simulate this realistic attack scenario by altering the following flow-based features: 
exchanged_bytes, duration, total_packets. This process is repeated for all the samples 
of each botnet variants. Table 3 reports the average results for the three detectors 
considered, when tested against these adversarial samples. All these algorithms are 
severely affected by the adversarial attacks: the detection rate in the second column is 
about one-third of the original rate.
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TABLE 3. EFFECTS OF THE EVASION ATTACK ON EACH CLASSIFIER.

To defend against similar threats, we explore two of the countermeasures proposed in 
the literature: adversarial retraining and feature removal. 

For the former case, we harden the detectors by inserting some of the adversarial 
samples that we manually crafted into their training sets (with the appropriate 
malicious label), and we repeat the training process. Then, we test the classifiers again 
on the respective adversarial datasets. The results of this evaluation are reported in 
Table 4, which compares the severity of the attacks before and after retraining. The 
decreased severity of the attack after retraining shows the validity of adversarial 
retraining. However, it should be observed that this technique does not guarantee 
detection against other types of adversarial perturbations.

TABLE 4. EVALUATION OF THE COUNTERMEASURE BASED ON ADVERSARIAL RETRAINING.

The defences based on feature removal aim to nullify the effects of evasion attacks by 
adopting a set that does not include features related to duration, exchanged_bytes and 
total_packets. By training each detector without these features, the results are optimal 
because the attack severity measure drops to 0. The problem with this approach is 
that it typically affects the detector performance in scenarios that are not subject to 
adversarial attacks. By comparing the performance in non-adversarial settings for 
each detector before and after retraining with the modified feature set, we obtain the 
results presented in Table 5. All the performance metrics considered fall well below 
acceptable values for any NIDS. It is possible to attenuate the performance drop by 
excluding only those features that have a small impact in the decision process of the 
detector, but this approach will not prevent all evasion attacks. 
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TABLE 5. EVALUATION OF THE COUNTERMEASURE BASED ON FEATURE REMOVAL IN NON-
ADVERSARIAL SETTINGS, AND COMPARISON WITH THE BASELINE PERFORMANCE.

C. Adversarial Attacks at Training-time
We analyse the effects of poisoning attacks that focus on integrity violations. The 
attacker model considers an opponent who has compromised the targeted network 
and plans to infect other hosts with novel malware. He is aware that the network is 
monitored by a NIDS based on some supervised machine-learning algorithms, and he 
also knows that this detector is periodically retrained. His goal is to ensure that the 
deployed new malware variants evade detection mechanisms. The attacker has full 
access to the server that contains the training dataset, but he cannot interact with the 
detector. To reach his goal, the attacker plans to poison the training dataset through 
malicious samples representing the behaviour of the deployed malware variant, but 
that is classified with the benign label. 

To simulate this attack scenario, we craft sets of malicious flows that slightly differ 
(to account for the novel malware variant) from those contained in the testbed, and we 
label them as benign. This procedure is performed by selecting the existing malicious 
samples and increasing their duration by [1-5] seconds, their exchanged_bytes by [1-
1024], and their total_packets by [1-10]. Then, we inject some of these samples into 
each training dataset. We measure the effectiveness of a similar attack by comparing 
the performance of the detectors on the poisoned samples before and after the poisoned 
retraining phase. The results shown in Table 6 highlight that, before the poisoning 
attempt, the classifiers were able to identify the novel attack samples with detection 
rates comparable to other proposals against zero-day malware [17]. The performance 
of the same algorithms suffered a significant drop after a retraining phase with the 
poisoned data. The high attack severity score gives a clear idea of the impact of the 
effect.  
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TABLE 6. EFFECTS OF THE POISONING ATTACK ON EACH CYBER DETECTOR.

We now evaluate the original methodology presented in Section 3.B by introducing 
a custom data transformation procedure on the training set, and then replicating 
the poisoning attack. For the sake of clarity, we consider a simple function ^T that 
multiplies the duration by d∈ℝ, and divides the exchanged_bytes by b∈ℝ. In this 
way, the poisoned samples introduced by the attacker are (inversely) transformed into 
samples that are different from the flows generated by the malware variant, because 
they have durations of +[  ,  ] seconds (instead of +[1,5]) in which the hosts exchange 
+[1*b,1024*b] bytes (instead of +[1,1024]). 

In Table 7, we compare the attack severity of the poisoning attempt before and after 
the application of the countermeasure, from which we can deduce that the proposed 
approach can significantly mitigate the effects of a poisoning attack. 

TABLE 7. EVALUATION OF THE PROPOSED DEFENSIVE METHOD. 
THESE RESULTS ARE OBTAINED BY SETTING d=2 AND m=5.

5. conclusIons

Machine- and deep-learning algorithms are adopted in many application domains, but 
in the cyber security field, they are affected by several open issues. In this paper, we 
consider adversarial attacks where the machine-learning model is compromised to 
induce an output favourable to the attacker. Literature on this subject is still immature, 
and most documented examples of adversarial attacks against security systems 
consider only few algorithms and few application areas. We present a taxonomy of 
adversarial attacks that evidences which cyber security areas and which machine-
learning algorithms have been evaluated against what type of threat. This analysis 
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evidences that there is space for novel research in the context of adversarial attacks 
against network intrusion detection systems based on machine learning. We are 
confident that the large set of original experiments and the novel way to address issues 
related to adversarial attacks presented here can pave the way for cyber detection 
platforms that are based on more robust machine-learning algorithms.
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