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Abstract—We propose to generate adversarial samples by
modifying activations of upper layers encoding semantically
meaningful concepts. The original sample is shifted towards
a target sample, yielding an adversarial sample, by using the
modified activations to reconstruct the original sample. A human
might (and possibly should) notice differences between the
original and the adversarial sample. Depending on the attacker-
provided constraints, an adversarial sample can exhibit subtle
differences or appear like a “forged” sample from another
class. Our approach and goal are in stark contrast to common
attacks involving perturbations of single pixels that are not
recognizable by humans. Our approach is relevant in, e.g., multi-
stage processing of inputs, where both humans and machines
are involved in decision-making because invisible perturbations
will not fool a human. Our evaluation focuses on deep neural
networks. We also show the transferability of our adversarial
examples among networks.

Index Terms—Adversarial Attacks, Semantic Attacks, Deep
Learning

I. INTRODUCTION

Adversarial samples are typically generated to be non-
recognizable by humans [1], [2]. This is commonly achieved
by adding perturbations resulting from a specific optimization
process to the inputs. While this is arguably a preferred adver-
sarial scenario, in this work, we aim at a different objective:
generating adversarial samples by modifying “higher-level
concepts”. This leads to adversarial samples that are, possibly
with some effort, recognizable through human inspection.

An attacker might aim to construct adversarial samples that
are not only classified differently from their ground truth but
also contain specific attributes and are therefore perceived
differently by a human. This likely holds in a multi-stage
classification process with a human in the loop. For example, a
seller might list an item for sale on an online marketplace (e.g.
a house or a car), and upload images or other information on
such item. Such a marketplace might employ existing artificial
intelligence (AI) systems relying on deep learning (DL) to
obtain a price estimate [3]. An attacker, i.e., a malicious seller,
may want to simultaneously trick (i) such an AI system to
output higher price estimates, and (ii) potential buyers by
making them believe that the price is appropriate. The attacker
might want to enhance visual aspects, increasing the item’s
appeal (e.g., making a house appear under lighting conditions
impossible in reality or employing perspective distortions).
Thus, the optimization objective for an attacker might be
to change a given (original) sample towards a target sample
(e.g., an image of an expensive house with appealing lighting

conditions). Put differently, adversarial and original samples
tend to exhibit visible differences that are likely to aim to
deceive or nudge a human observer—a theme that recently
attracted much attention (e.g., [4]). The predicted class of the
resulting adversarial sample should generally be identical to
the class of the target sample but could be any class. The
adversarial sample should also contain specific characteristics
(also called “concepts”) of the target sample—at least to some
extent, since we constrain the adversarial sample to be similar
to the given (original) sample. For example, consider an online
seller of fashion articles whose website is crawled by a search
engine classifying images into brands. The fashion seller might
want to fool humans by altering the images of its articles.
Potential buyers should perceive it as more appealing but
should not complain that the shown product differs from the
actual physical product. Aside from tricking humans, the seller
might also aim to mislead an AI of the search engine, i.e.,
conduct search engine poisoning [5]. The search engine might
utilize image recognition to identify brands of items. The
seller might want the search engine to confuse the image of
his/her product with that of a well-known, commonly searched,
expensive brand.

Optimizing for non-recognizability by humans might not
necessarily be the best option to disguise an adversarial sample
if humans check (some) inputs and outputs of an AI to detect
attacks. Misclassifications due to imperceptible adversarial
perturbations (e.g., [2]) are “astonishing” for humans, who
will likely suspect that an adversarial attack is taking place
and will quickly react (e.g., sanitizing the input, applying
defenses, or re-training the AI system). However, if the
misclassified sample looked somewhat confusing, though still
well-recognizable, a human is less likely to suspect an attack.
Legal consequences can differ if such a sample could occur
in reality. In this case, it is difficult to prove that the sample
was created to deceive the classifier, since altering depictions
of articles are common practice (in marketing). Rather the AI
system might be said to perform poorly.

This paper discusses how to generate adversarial samples
by modifying higher-level representations of inputs. We focus
on how to create adversarial samples similar to a given target
or desired sample, i.e., exhibiting characteristics that should
be present in the adversarial sample. Technically, our work is
based on encoding and decoding between different spaces, i.e.,
a space derived from representations of classification models,
a space derived from visual representation as perceived by
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humans, and linear interpolation. To demonstrate the effective-
ness of our method, we evaluate common DL models against
our adversarial examples and assess their transferability across
different DL models.

II. BACKGROUND AND RELATED WORK

Machine Learning (ML) represents a valuable asset for
modern tasks [6]; in particular, Deep Learning has become
a true technology enabler [7]. However, many efforts have
shown that all such methods are vulnerable to adversarial
attacks (e.g., [8]), giving birth to a new research area com-
monly referred to ‘adversarial machine learning’ [9]. Let us
summarize this field and outline the unique traits of our paper.

A. Adversarial Machine Learning

Attacks against ML leverage the so-called ‘adversarial
samples’: the principle is to apply a perturbation to an in-
put sample so as to trick an ML model into producing an
incorrect output [10]. Previous efforts showed that similar
attacks could break any ML model, including those based on
traditional classifiers (e.g., SVM [11]) and DL ones (e.g., [2]).
Noteworthy is also that adversarial attacks can be successful
in diverse domains (and, hence, on different data types),
such as computer vision [2], speech analysis [12], or cyber
detection [13]. Even real ML systems have been defeated
(e.g., [14], [15]).

Adversarial attacks are denoted with a threat model describ-
ing the relationship of the attacker with the target system, usu-
ally in the form of goal, knowledge, capability and strategy [9].
Common terms associated to such threat models are ‘white-
box’ and ‘black-box’ [10]: the former envision attackers with
complete knowledge of the target ML system, whereas in
the latter the attacker knows nothing. Depending on such
assumptions, the attacker can opt for different strategies, such
as crafting the ‘perfect’ perturbation—e.g., the well-known
‘Projected Gradient Descent’ (PGD) method [16]—or exploit
the transferability property of adversarial examples [17]. Al-
though all adversarial attacks share the same objective (i.e.,
compromising the decisions of a ML system), the attacker may
have more specific goals. Such goals can include minimizing
the perturbations [2], reducing the amount of interactions with
the target system [18], inducing a ‘targeted’ output [19]; but
also more advanced goals are possible (e.g. [20]).

With respect to previous works, we consider a unique threat
model: such uniqueness is given by the different goals and
strategies of our adversarial samples. Indeed, we assume that
the attacker wants to introduce perturbations that can be
spotted by a human; to do so, the attacker leverages high-level
concepts provided by the first layers of deep neural networks.
This differs considerably from previous work (e.g., [2], [21]).
Our attacks can be considered as introducing perturbations
during the “preprocessing” phase of an AI system (e.g., [22],
[23]); however, our proposal differs in the method used to
generate such perturbations. Indeed, we leverage techniques
(i.e., [24]) within the explainable AI (XAI) domain [25]: some
papers use similar techniques to ‘explain’ adversarial attacks

(e.g., [26]), but no paper uses such techniques to ‘generate’
adversarial samples—to the best of our knowledge.

In particular, our perturbations involve techniques (i.e., [24],
[27]) within the explainable AI (XAI) domain [25]: some
papers use similar techniques to ‘explain’ adversarial attacks
(e.g., [26]), but no paper uses such techniques to ‘generate’
adversarial samples—to the best of our knowledge. Our work
also relates to natural adversarial samples or out-of-distribution
samples [28], [29], since our resulting samples can look natural
but different from typical, frequent samples.

B. Artificial Sample Generation

Synthtetically generating samples from latent spaces, as
done in this work, is a rich topic in research. It has been
extremely successful in the last few years using generative
adversarial networks [30] as well as variational autoencoders
which can (re)construct images from a latent space. In cre-
ative domains, e.g., the arts, the latent representation used
to generate new samples is often randomly chosen [31].
In contrast, we focus on latent representations originating
from actual samples or interpolations between their latent
representations. In security, outputs of the last layer of ML
models have been used to reconstruct training samples [32].
Their the goal is not to generate novel samples but rather to
retrieve as much information on a specific training sample
as possible. Traversing the latent space to generate samples
between two classes is commonly used to understand the
decisions of classifiers, which is relevant to XAI. For instance,
the authors of [33] construct contrastive explanations by using
a variational autoencoder, and a linear SVM—the latter served
as a separate classifier from the model to understand. They
traversed the latent space feeding latent codes into a CNN to
assess when a sample changed its class and can be considered
contrastive. With respect to [33] we assume a different setting.
Specifically, we do not use a linear SVM (but rather parts of
the model to be attacked). We potentially alter (given) original
and target samples to be assessed before embedding them into
the latent space, i.e., we consider multiple embedding spaces—
the auto-encoding space, and the space of the classifier, i.e.,
activations of layer Lt.

III. PROBLEM DEFINITION

A. Requirements

Our method requires complete knowledge of a DL model
M = (L0, L1, ..., Lk−1) being a sequence of k layers, a target
layer Lt ∈M , an original sample XO and a dataset X = {X},
i.e., (input) samples that stem from the data distribution the
model should handle, e.g., training data without any label in-
formation. We denote by M-t and Mt- the submodel consisting
of the first layers up to layer t (including it) and from Lt+1

up to the last layer Lk−1 (including it). The output of the
model M(X) is a probability p(Y |X) for each class Y , the
output of a model M-t(X) are the activations of layer Lt for
the input X . We denote Y G

X as the ground truth class of X
and YM

X as the predicted class by model M . Such settings can
represent either ‘white-box’ (if M is the attacked model) or a



‘black-box’ (if M is a surrogate of the attacked model [18])
assumptions: as we will show (§V), our adversarial examples
can transfer between similar M . Finally, we assume an attacker
that cannot1 affect the training procedure of M .

B. Objectives

We consider three objectives to construct an adversarial
sample XA based on the original sample XO for a given target
sample XT .

1) Being “mis-classified”: The adversarial sample should
be classified as the class of XT , i.e., YM

XA
= Y G

XT
.

2) Mimicking (concepts of) a target sample: The adversarial
sample XA should be similar to XT as measured by a
given encoding function f , i.e., the L2-norm ||f(XA)−
f(XT )|| should be small. The encoding function f might
measure semantic differences by transforming to the
feature space of the classifier using f(X) := M-t(X),
the identity function f(X) := X or an encoder (of an
autoencoder trained on X ) or, possibly, f is given by
human judgment assessing to what extent XO and XA

are similar with respect to pre-defined characteristics.
The identity function f(X) = X constrains visual dif-
ferences in image space (recognizable by humans), while
f(X) := M-t(X) constrains differences of information
relevant to the classifier. It can happen that two samples
X,X ′ appear identical for the classifier (at a higher ab-
straction level), i.e. ||M-t(X)−M-t(X

′)|| = 0, although
they appear very differently for a human. We use the
identity function f(X) = X , i.e., ||XO − XA|| < η.
That is, we constrain differences in image space.

3) Remaining similar to the original sample: The adver-
sarial sample XA should be close to the original, i.e.,
||f(XO) − f(XA)|| < η for a given η and encoding
function f . We consider the same encoding function f
as described priorly.

Additionally, one might require that XA is a sample of
the distribution the model M was trained for. Assume P
provides the likelihood of a data sample then we might
aim for maxP (XA). The likelihood function P could be
approximated using the training data. Our method perturbing
only upper layer activations tends to produce “likely” samples
XA, i.e., samples often (but not always) appear to be realistic
and they do not contain “invisible” (unnatural) modifications
that trigger a misclassification (unlike traditional attacks).

IV. METHOD

Our method aims to compute an adversarial sample XA that
bears semantic similarity to a target sample XT , while obeying
constraints on the maximum perturbation. One way to achieve
this is to linearly interpolate between the original sample XO

and the target sample XT , i.e. XA := b ·XO+(1− b) ·XT by
minimizing b ∈ [0, 1] given the constraint ||XO −XA|| < η.
To find a (locally) optimal coefficient b binary search can be
used as stated in Algorithm 1.

1This is a realistic assumption [34]: an attacker with write-access to X
would poison such dataset (e.g., [35]) instead of using our proposed method.

Algorithm 1 Linear interpolation with constraints
Input: Target sample XT , original sample XO, encoder E,
decoder R′, max. difference η
Output: Adversarial sample XA

1: b0 := 0; b1 = 1 {value range for linear interpolation}
2: ε := 1e − 2 {Stopping criterion, i.e., precision of linear

interpolation coefficient}
3: while b1 − b0 > ε do
4: b := b0+b1

2
5: E(XA) := b · E(XO) + (1− b) · E(XT ) {encoding of

adversarial sample}
6: XA := R′(E(XA)) {(decoded) adversarial sample}
7: if ||XO −XA|| < η then b0 := b
8: else b1 := b
9: end while

10: return XA

As we shall discuss (§V-A), the outcome of linear in-
terpolation of samples tends to be easily recognizable as
being artificially constructed. Therefore, one might perform
the interpolation in a latent space given by an encoder E
stemming from an autoencoder AE = (E,R′), i.e., E(XA) :=
b ·E(XO)+(1− b) ·E(XT ). The AE, i.e., the encoder E and
decoder R′ are trained on training data X . The adversarial
sample can be obtained using the decoder, i.e., XA :=
R′(E(XA)). However, we propose to interpolate from an input
X ′O of XO that contains only information on XO captured at
layer Lt, i.e., by M−t(XO). We obtain X ′O using a decoder R,
i.e., X ′O = R(M−t(XO)). The decoder R is trained by using
activations M−t(X) as inputs and reconstructing X , i.e., the
decoder R minimizes ||X − R(M−t(X))|| for X ∈ X [24],
[27]. The process to obtain an adversarial sample XA is
illustrated in Fig. 1. To understand the process, conceptually,
we can think of two spaces: a classifier embedding space, and
a latent embedding space from the autoencoder. To alter the
class of a sample we can move in either space and use a
decoder to get a sample based on the latent representations.
When using the classifier embedding space, specific concepts
of the original sample (and target sample) might be ignored,
because they are not relevant for classification as discussed
in the context of explainability [24], [27]. In our work, we
also aim to obtain samples similar to a given target sample.
Thus, linearly interpolating between encodings of the original
sample and the target sample in classifier space seems not the
right way, since the encoding of the target sample is stripped
of information that we do not necessarily want to discard. Our
objective is to be visually similar to the target sample. It seems
more appealing to interpolate in an autoencoding space which
allows to accurately reconstruct samples. A viable approach
is to either use the original sample’s encoding directly, or
an encoding of the original sample.Samples with irrelevant
information or rare characteristics of a sample tend to be
poorly reconstructed. Their reconstruction can appear “blurry”
resembling more of an average. For example, if a T-shirt



Fig. 1: Semantic attack using an original sample XO and a target sample XT . We first remove information not relevant for classification from the original
sample through encoding and decoding before reconstructing an interpolation between the autoencoded representation of the original and the target sample.

has a very unique pattern, shape or color, none of which
is very relevant for classification, the reconstruction might
fail to reconstruct it accurately, resulting in a blurry outline
(shape), “average” pattern (e.g., uniform color), and an average
color (e.g., grey tone) [27]. Thus, generally, the reconstruction
appears more of an average. Therefore, common samples close
to the average will be reconstructed better, whereas ‘outliers’
are poorly decoded.Overall, removing non-classification rele-
vant information from XO, i.e., using X ′O = R(M−t(XO)),
pushes XO to denser areas, where reconstructions are better,
i.e., difference ||XA −XO|| is lower, and it is not negatively
impacting the objective to maximize, i.e., p(Y G

D |XA).

V. EVALUATION

We perform a qualitative and quantitative evaluation focus-
ing on image classification using CNNs. We assess multiple
methods based on linear interpolation with the target sample
XT and original sample XO embedded in a (latent) space with
appropriate reconstruction. We investigate four scenarios using
linear interpolation:
• No encoding: Interpolation from XO to XT in image

space.
• Classifier encoding M-t: Interpolation from M-t(XO) to
M-t(XT ) in space given by M-t; as decoder we use R;

• Encoder E from the autoencoder AE = (E,R′) and
a version of XO maintaining information relevant for
classification: We transform XO using R(M-t(XO)) and
interpolate from E(R(M-t(XO))) to E(XT ) in the latent
space given by E; as decoder we use R′.

• As the prior scenario but interpolating from E(XO) to
E(R(M-t(XT ))).

Setup. We consider common DL methods. For the classifier
we used different variants of VGG, i.e., VGG-11 and VGG-13,
and ResNet-10. In particular, for the model M to attack we
focused on a V GG−11. We also used the adversarial samples
on evaluation classifiers MEv ∈ {V GG− 13, ResNet− 10}
to see if adversarial samples are transferable. For VGG-11
we reconstructed after a ReLU unit associated with a conv
layer. We used the second last layer corresponding to the last
conv-layer of V GG − 11 as target layer Lt, i.e., t = 10. All
encoders, i.e., E and M-t, share the same architecture, i.e.,
encoders are models M-t of a VGG-11 network and decoders

R and R′ are given by ClaDec [24]. ClaDec use a standard
decoder design relying on 5x5 deconvolutional layers.

We employed two datasets namely Fashion-MNIST and
MNIST. Fashion-MNIST consists of 70k 28x28 images of
clothing stemming from 10 classes. MNIST of 60k digits
objects in color; for both datasets, 10k samples are used
for testing. As maximal difference of ||XA − XO|| we used
η = 15 for Fashion-MNIST and η = 25 for MNIST. The
thresholds can be chosen arbitrarily: larger thresholds yield
adversarial samples that more likely fool a classifier, but also
look more different to the original sample XO. As data-
preprocessing, we scaled all images to 32x32, performed
standardization and autoencoded all images using a separately
trained autoencoder to “smoothen” outliers. For MNIST this
makes very little difference, since autoencoders tend to almost
perfectly reconstruct all samples. For Fashion-MNIST it has
not impact for somewhat common samples, but it helps for
outliers. For outliers, clothes with a seemingly random dotted
pattern cannot be reconstructed well and are transformed to
more common samples. For such outliers our method would
otherwise fail to work, since the encoding and decoding using
AE = (E,R′) even for the unmodified original sample XO

would result in an error larger than the permitted threshold η,
i.e., ||XO −R′(E(XO))|| > η.

We train all models for reconstruction using the Adam
optimizer for 64 epochs, i.e., the autoencoder for data and the
decoder R from classifier representations M-t. The classifiers
to be attacked were trained using SGD for 64 epochs starting
from a learning rate of 0.1 that was decayed twice by 0.1. We
conducted 3 runs for each reported number, e.g., we trained all
networks (classifiers, encoders, decoders) 5 times. We show
both averages and standard deviations. The baseline perfor-
mance on each dataset matches the state-of-the-art without
data augmentation: for MNIST we achieved mean accuracy
above 99% and for Fashion-MNIST above 90%. For each class
c we used all samples in the test data of classes not c as original
samples. For each original sample, the target sample XT was
chosen randomly from samples of class c. Thus, we computed
about 9k adversarial samples for each class (and each run).



Fig. 2: Original, target and adversarial samples for different en-/decodings and interpolation for Fashion-MNIST(left) and MNIST(right). Yes/No indicates,
whether the model got fooled by XA, i.e. it outputs the class of XT for XA

A. Qualitative Results

Fig. 2 show adversarial samples for all four evaluated
methods for interpolation. It can be observed that interpolation
in image space (XO to XT ) is easily recognizable, i.e., both
the original and target sample are well-recognizable when
looking at the resulting adversarial sample. For example, in the
last row (and last column) of each panel, it is easy to recognize
the shoe and the T-shirt and digits 2 and 5. As such, the attack
is easy to disguise. Methods employing encoding and decoding
can yield non-interpretable images, as shown in the last row of
each panel. This often happens if visual differences between
the target and original samples are large. It also depends on
the embedding, i.e., how classes are positioned in the encoded
space. When comparing interpolation (M-t(XO) to M-t(XT ))
in latent space using the classifier M-t to those using the
encoder E, it can be seen that the encodings using the classifier
M-t tend to lead to non-desirable differences between the
adversarial, target and original sample. For instance, in Fig. 2
for the shoe in the 3rd row, it increases the height of the heel
both the target sample and the original sample, which have no
or lower heel size, i.e., the adversarial sample disagrees with
both. Adversarial samples from “E(XO) to E(R(M-t(XT )))”
and “E(R(M-t(XO))) to E(XT )” look similar, overall the
former are somewhat better. This can be seen, for example,
for the shoe in the 3rd column having a small black area
(which also exists for the target sample, i.e., the sandal), and
it has lower brightness in the upper part of the shoe compared
to the original boot. This indicates a slight move towards
the target sample, which suffices to classify the adversarial
sample as the target sample, i.e., as a sandal. Thus, while

differences between the reconstructions of the two methods
appear more subtle, they are often sufficient to lead to different
classification outcomes. However, it also becomes evident that
some of the reconstructions appear to be instances of the
other class. That is, they might be called “forged samples”
that contain some but not very pronounced features of the
original sample. For example, the first row in Fig. 2. There are
also samples containing elements of both target and original
samples and seem somewhat ambiguous with respect to what
class they belong to. For instance, the third row and 4th column
for Fashion-MNIST depicts a sample that looks like a dress
based on the upper part, but in the lower part it has elements of
a pant, i.e., a dark area indicating a separation as for pant legs.
For MNIST the second and third rows contain such samples,
i.e., the nines (3rd and 4th column) do appear as nines but the
loop of the ”9” is not very pronounced and the samples can be
easily mistaken as 1. Similarly, in the next column the 3rd and
4th column still look more like the original sample. Still, they
contain elements of the target sample, i.e., a vertical line in
the lower part, and the top part of the 5 only has a very short
horizontal bar. In conclusion, some generated samples differ
only subtly from the original, some are mixtures containing
elements of both, and some appear more like samples from the
target class. The outcome depends on the maximal allowed
perturbations and learnt embeddings, e.g., whether original
and target classes are embedded near each other, which also
depends on their visual similarity.

B. Quantitative Results

From the quantitative results in Table I, we can see that
our samples are well-transferable between classifiers, i.e., an



TABLE I. Results for MNIST and FashionMNIST

Dataset Interpolation ||XA −XT || ||XA −XO|| Acc(M)(VGG-11)) Acc(MEv)(VGG-13) Acc(MEv)(Res.-10)

MNIST

XO to XT 12.42±1.25 24.73±0.149 0.08±0.073 0.11±0.075 0.09±0.081

M−t(XO) to M−t(XT ) 24.38±1.71 24.71±0.15 0.44±0.117 0.41±0.134 0.42±0.124

E(XO) to E(R(M−t(XT ))) 19.87±1.794 24.85±0.11 0.28±0.081 0.26±0.079 0.27±0.084

E(R(M−t(XO))) to E(XT ) 20.41±1.837 24.73±0.172 0.21±0.078 0.2±0.077 0.2±0.079

Fashion-
MNIST

XO to XT 20.83±1.317 14.95±0.043 0.42±0.14 0.44±0.15 0.41±0.132

M−t(XO) to M−t(XT ) 27.23±1.44 14.84±0.037 0.64±0.052 0.62±0.056 0.62±0.049

E(XO) to E(R(M−t(XT ))) 25.84±1.436 14.85±0.03 0.57±0.059 0.58±0.057 0.56±0.055

E(R(M−t(XO))) to E(XT ) 25.22±1.365 14.92±0.048 0.53±0.065 0.53±0.065 0.51±0.06

adversarial sample obtained using model M also works on
a different classifier without any changes to it. Furthermore,
results are consistent for both datasets, i.e., the ordering of
methods with respect to metrics, accuracy and difference to
target sample ||XA−XT || is the same. We conducted statistical
tests showing that differences between any two methods are
significant at p < 0.001 for accuracy and ||XA−XT || except
the last two methods where we only have p < 0.01.

We can also see that interpolating directly between the
original and the target sample yields the lowest loss to the
target sample, i.e., ||XA − XT ||, and the lowest correct
classifications by M , i.e., Acc(M). However, as shown in our
qualitative evaluation, interpolations in the image space are
often easily recognizable and, therefore, inadequate. Moreover,
operating in the latent space given by layer Lt (i.e., the
encoder M-t) yields poorest results among all methods (i.e.,
largest difference to the target sample XT ) and also leads
to fewest samples XA being classified as XT (i.e., correct
classification are highest). This is because reconstructions from
M-t are generally poor since the latent representations only ac-
curately represent information relevant to classification. Thus,
the constraint ||XA−XO|| is violated without much movement
towards the target sample XT . For XT that can be considered
rare or outliers it might happen that even the reconstruction
R(M-t(XT )) of the latent representation M-t(XT ) of XT

shows large differences to XT . Using encodings E(XT ) of
the target sample leads to better results than using those of
R(M-t(XT )) maintaining only classification relevant informa-
tion. This is expected, since using R(M-t(XT )) we adjust
XA towards a sample that differs from the proposed target
XT , i.e., we move towards the wrong “target”, as also shown
with examples in our qualitative evaluation. Compared to other
adversarial attacks, the model accuracy might seem fairly high,
i.e., Acc(M) is commonly above 30% for adversarial samples.
This is not unexpected, since often the original sample XO is
difficult to transform to the target class, i.e., that of XT . For
instance, it is non-trivial to make a shoe appear like a T-shirt
or turn a 2 into a 5 (see last row in Fig. 2). In such cases, the
adversarial samples might be of low quality.

VI. DISCUSSION AND FUTURE WORK

We altered dense representations in an auto-encoded space
and in a space resulting from layer activations of a classifier.
Adversarial and original samples tend to exhibit visible differ-
ences that aim to deceive or nudge a human. The parameter η
allows controlling the degree of the differences. However, very

small η likely do not result in adversarial samples classified
differently from the original sample for our technique based
on linear interpolation. In future work, we might also consider
attacks not based on a target sample, but directly manipulating
layer encodings X ′O := M-t(XO) using conventional attack
methods (e.g., [36]) to yield perturbations p. These attacks will
result in misclassifications on the upper classifier Mt-(X

′
O),

i.e., Mt-(X
′
O) 6= Mt-(X

′
O + p), and adversarial samples

XA := R(X ′O + p) through reconstruction. Our optimization
procedure using binary search converges to a local optimum,
which could be improved by using multiple search intervals.

To derive our results, we first preprocessed data using a
separate autoencoder. Generally, our method (Fig. 1) using en-
coders and decoders introduces noise that reduces the possible
addition of perturbation through optimization towards adver-
sarial samples. Therefore, high-quality encoders and decoders
and, in turn, sufficient training data for them are relevant and a
limitation of our technique. While public datasets are available
for many real-world objects, for more specialized datasets such
as MRI images, this might not hold.

One might also approach our problem as a two-step prob-
lem: Create a sample that fools a human and then alter this
sample using conventional adversarial attacks. However, this
defies one of our motivations, i.e., an adversarial sample
should be “realistic” in the sense that it is a sample that might
occur in normal usage. Additionally, joint optimization of both
objectives possibly leads to better outcomes.

Our method requires complete knowledge of a DL model,
which can be associated with ‘white-box’ attackers. We ob-
serve that, in some domains, our assumptions are viable:
for instance, many deep learning systems are trained on the
ImageNet dataset [37], which is publicly available [38]. In
these settings, even a ‘black-box’ attacker can be successful
because they can create a surrogate model and transfer the
successful adversarial examples to the original model [17].
Our evaluation showed that our adversarial examples can be
leveraged for similar strategies (§V).

VII. CONCLUSIONS

In this paper, we investigated adversarial attacks to construct
adversarial samples that might present visible differences to a
given (original) sample. Our adversarial samples should be
similar to a target sample though they are still constrained to
be similar to the original sample. Considering that existing
systems rely on the cooperation of AI and humans, our
adversarial samples will represent an attractive strategy for
well-motivated attackers.
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