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The Role of Machine Learning in Cybersecurity

GIOVANNI APRUZZESE∗ and PAVEL LASKOV∗, University of Liechtenstein, Liechtenstein

EDGARDO MONTES DE OCA and WISSAM MALLOULI,Montimage, France

LUIS BÚRDALO RAPA, S2 Grupo, Spain
ATHANASIOS VASILEIOS GRAMMATOPOULOS and FABIO DI FRANCO, ENISA, Greece

Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains

already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a

significant discrepancy between research and practice. Such discrepancy has its root cause in the current state-of-the-art,

which does not allow to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless its

pros and cons are understood by a broad audience.

This paper is the first attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain—to

any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection

methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrinsic

problems affecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute to

future developments of ML in cybersecurity, which is essential for further progress in this field. Our contributions are

complemented with two real case studies describing industrial applications of ML as defense against cyber-threats.

CCS Concepts: • Security and privacy; • Computing methodologies→Machine learning;
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1 INTRODUCTION
With the rising complexity of modern information systems and the resulting ever increasing flow of big data, the

benefits of Artificial Intelligence (AI) are nowwidely recognized. Specifically, Machine Learning (ML) methods [85]

are already deployed to solve diverse real world tasks—especially with the advent of deep learning [98]. Fascinating

examples of practical achievements of ML are machine translation [168], travel and vacation recommendations

[77], object detection and tracking [139] and even various applications in healthcare [57]. Furthermore, ML is

rightly considered to be a technology enabler, as it has shown great potential in the context of telecommunication

systems [114] or autonomous driving [8].
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Nevertheless, modern society is increasingly relying on information technology (IT) systems—including

autonomous ones—which are also actively leveraged by malicious entities. Digital threats are, in fact, continuously

evolving [90], and according to Gartner attackers will have sufficient capabilities to harm or kill humans by

2025 [3]. To prevent such incidents and mitigate the plethora of risks that can target current and future IT systems,

defensive mechanisms require the capability to quickly adapt to the (i) mutating environments and (ii) dynamic

threat landscape.

Coping with such twofold requirement via static and human-defined methods is clearly unfeasible, and

deployment of ML in cybersecurity is inescapable. Not surprisingly, abundant work addressed integration of

ML in cybersecurity, as evidenced by recent survey papers (e.g., [23, 36, 71]) and technical reports (e.g., [35,

106]). Despite impressive results in research settings, however, the development and integration of ML in

production environments is progressing at a slow pace. A recent survey [93] shows that although over 90% of

companies already use some AI/ML in their defensive tools, we observe that most of these solutions still leverage

‘unsupervised’ methods (e.g., [2, 97]) and mostly for ‘anomaly detection’. Such observation demonstrates a drastic

discrepancy between research and practice, especially in comparison with other domains where ML has already

become an indispensable asset.

The peculiarity of the security domain is that all operational decisions—made by the top management—are

about the trade-off between losses and losses [83]. In simple terms, the rationale is “paying 𝑥 to avoid paying

𝑦 ≫ 𝑥”. Investment in security should be justified by the prevention of substantially higher but ultimately
unpredictable losses from security incidents. Hence, decision makers must have a clear understanding of the

(i) benefits, (ii) problems, and (iii) challenges of a cybersecurity solution before endorsing their adoption in

practice. However, the current state-of-the-art of ML for cybersecurity fails to deliver such understanding. Taken

individually, research papers—commonly claiming to outperform previous work—often lead to contradictory

results. For instance, [166] show that deep learning methods outperform ‘traditional’ ML methods, but the

opposite is claimed by [134] in the exact same setting. Furthermore, existing literature surveys related to ML

in cybersecurity do not provide a holistic coverage suitable for operational decisions. Some of them are too

technical and hence tailored for ML experts (e.g., [180]), others focus only on research efforts neglecting real

world implications (e.g., [23]) or have a limited scope (e.g., only deep learning [36]). As a result, the role of ML in

cybersecurity is portrayed in a highly fragmented way, thus hindering deployment of ML in practice—despite its

great potential for cybersecurity.

We attempt to rectify this problem. Specifically, this paper is the first effort to provide a comprehensive

analysis of the role of ML in cybersecurity. We distill scientific knowledge and industrial experience related to

deployment of ML within the entire domain of cybersecurity. One of our goals is to make the current state-of-the-

art understandable to any reader, irrespective of their prior expertise in cybersecurity or ML. We also take this

opportunity to clarify manymisconceptions related to ML in the context of cybersecurity. We highlight the benefits

of using ML in cybersecurity by listing all the tasks where it outperforms or provides novel capabilities with

respect to traditional security mechanisms. We also elucidate the intrinsic problems of ML in the cybersecurity

context. Such analysis reveals the challenges that require the joint contribution of all relevant stakeholders in

order to improve the quality of ML-driven security mechanisms.

Let us explain how we achieve our objective and outline the structure of our paper, which comprises several

self-contained sections. We begin (§2) by introducing the key concepts of the ML paradigm in a notation-free
form. We also define the intended audience of this paper and outline the differences of our work from previous

literature surveys and reports.

Then, in §3, we present the most emblematic application of ML in security: cyberthreat detection.We distinguish

between three broad areas: network intrusion detection, malware detection, and phishing detection, which is

common in related literature [23, 163]. The goal of this section is to highlight the added value of ML with respect

to traditional detection mechanisms.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Next, in §4, we elucidate the cybersecurity tasks orthogonal to threat detection that can exploit the capabilities

of ML to analyze unstructured data. In contrast to detection problems which require (costly) labels, raw data

is abundant in cybersecurity and can also be exploited via ML. For instance, alerts can be filtered to remove

annoying false alarms, or compressed into more manageable reports. Furthermore, information from diverse

sources can be cross-correlated to anticipate novel attacks, or to identify the weak-spots of a given organization.

The goal of this section is to illustrate that there exist many (and vastly unexplored) additional areas in which

ML can be deployed to enhance the security of modern systems.

We continue (§5) by emphasizing the intrinsic problems of cybersecurity applications of ML. Some of these

problems (e.g., concept drift, adversarial examples, confidentiality) are fundamental and arise from the contrasting

assumptions of cybersecurity and ML. Further problems are specific to either in-house development (e.g., hidden

maintenance costs) or commercial products (e.g., limited scope and transparency). The goal of this section is

highlighting that ML is not perfect and real deployments involve many tradeoffs, which must be known (to

decision makers), mitigated (by ML engineers), and addressed (in future work).

As our main constructive contribution, we outline the impending challenges of ML in cybersecurity in §6.

Solving these challenges will strongly facilitate the operational deployment of ML in cybersecurity. However, it

requires the joint effort of (i) regulatory bodies, (ii) corporate executives, (iii) ML engineers and practitioners,

and (iv) the scientific community. Our takeaway is that rectifying the current immaturity of ML in cybersecurity

requires a radical re-thinking of future technological developments. For instance, research efforts should focus on

more pragmatic results instead of merely “outperforming the state-of-the-art”. However, such efforts necessitate

an increased availability of real data whose disclosure requires authorization by senior management, as well as

potentially new regulations that enable public release of such data.

To establish a connection between research and practice, we discuss two real industrial applications of ML in

cybersecurity in §7. We note that commercial security products are typically provided as ‘black boxes’ with little

technical details about the actual implementation of ML. This section sheds light into the operational tradeoffs

and ‘tricks of the trade’ needed to meet the practical needs of the customers. These case studies are provided

with the contribution of Montimage and S2Grupo.

This paper is a result of collaboration between researchers, industry practitioners and policy-makers. Our

findings reflect the insights from both recent technical reports and scientific literature. To the best of our

knowledge, no previous work combines such a broad scope with our heterogeneous intended audience.

Contribution Our main goal is to foster the deployment of ML in cybersecurity by bridging the gap between

research and practice. Specifically, our paper make the following contributions:

• it provides an overview of the benefits and problems of ML in the entire cybersecurity domain;

• it considers the twofold perspective of the research and industrial community;

• it identifies many misconceptions that are becoming common in this field;

• it highlights how (i) regulatory bodies, (ii) corporate executives, (iii) engineers, and (iv) the research

community can contribute to future developments of ML in cybersecurity.

• it elucidates two real deployments of ML products.

Furthermore, this paper is meant to be understandable by any reader, irrespective of their technical expertise.

2 BACKGROUND AND MOTIVATION
To set-up the stage for our paper, we first introduce the main concepts of Machine Learning in a simplified way,

accessible to any reader (§2.1). Our goal is to present the established terminology as well as the common classes

of existing ML methods. We then define the scope and target audience of this paper (§2.2), and highlight the

differences of our effort with respect to previous work (§2.3).
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2.1 Soft Introduction to Machine Learning
The goal of Machine Learning (ML) is to develop machines

1
that automatically learn to make decisions. The

learning is done through a training phase: by instructing a computing device to analyze some ‘existing’ (training)

data via a given ML algorithm, a ML model is developed. Such a model incorporates all the knowledge learned

during the training phase, and implements a function to make decisions on ‘future’ data. Before a ML model

can be deployed in an operational environment, its performance must be assessed. To this end, some ‘validation’

data is processed by the ML model and its predictions are either analyzed by humans or compared with some

known ground truth. We can hence define a ML method as “the process for developing a ML model by using ML

algorithms on some training data”. An exemplary workflow of the training and validation phases is schematically

depicted in Fig 1.

Training 
Data

Benign

Malicious

ML algorithm 
(Random Forest,

SVM,
Neural Network)

ML model

Learning

input develop

ML Training Phase

Validation 
Data

Benign

Malicious

ML model

ML Validation Phase

for each

Sample
correct?

analysis

Good 
Performance

Poor 
Performance

yes

no

= benign

= malicious

Fig. 1. Machine Learning development. After collecting some training data and analyzing such data via a ML algorithm, a
ML model is obtained. Such ML model must be tested via some validation data. If the performance of such assessment is
appreciable, then the ML model can be deployed in production.

A crucial factor in the development of ML models is the notion of labels, which represent the target value

for a prediction function on a given sample (e.g., benign or malicious). Depending on the availability of labels,

ML methods can be classified into supervised and unsupervised. Supervised methods explicitly require labelled

training data. In some cases, such labels occur naturally
2
, otherwise acquiring labels involves dedicated manual

verification. On the other hand, unsupervised methods either do not require labels, or involve limited supervision.

For instance, in reinforcement learning the ML model is built through a feedback mechanism
3
that is completely

automated.

An orthogonal classification of ML methods is between shallow and deep learning. Deep learning refers to

ML methods based on neural networks, which typically require more computational power and larger training

datasets compared to shallow ML methods—requirements that could only be met in the recent years [98]. Let

us point out the first misconception: deep learning is not not necessarily better than shallow ML. Indeed,

when the data to analyze has a small number of features, shallow ML can attain similar performance as deep

learning [23], but the latter still requires more resources and the results are more difficult to interpret (e.g., [14]).

In contrast, the advantages of deep learning lie in its ability to deal with data with high complexity, such as

images, unstructured text, or when temporal dependencies must be taken into account. In all such cases, shallow

ML simply cannot be used. Deep learning methods can be supervised or unsupervised, and can also leverage

reinforcement learning—e.g., the popular generative adversarial networks (GAN) [17].

1
The notion of a ‘machine’ refers to a software component that can be deployed on any computing device, even in the cloud.

2
In time-series forecasting [44], the learning is done by analyzing the past history of a given phenomenon, which is used to make the future

predictions. Such history can be seen as the training data, where each element is associated to its timestamp and its known value (i.e., the

label).

3
Such mechanism only requires defining the ‘actions’ that can be taken by the ML model, and the ‘reward’ that should be provided to the ML

model depending on the effects of its actions on the ‘environment’.
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We provide an overview of some of the most popular ML algorithms in the above mentioned categories in

Fig. 2. For a more comprehensive description, we refer the reader to [23].

Shallow

Supervised

Deep

Unsupervised

Typical Machine Learning Algorithms

Deep Boltzmann Machines
Stacked AutoEncoders
Generative Adversarial Network

Convolutional Neural Network
Feedforward Neural Network
Recurrent Neural Network

Clustering Algorithms
Association Rules
Reinforcement Learning

Random Forests
Support Vector Machines
Logistic Regression
K-Nearest Neighbot
Decision Tree

Fig. 2. Typical Machine Learning algorithms. An algorithm can be ‘deep’ if it relies on neural networks, otherwise it is ‘shallow’.
Algorithms requiring labelled data are used for ‘supervised’ tasks, otherwise they can be used also in ‘unsupervised’ tasks.

Finally, let us briefly address the performance assessment of ML models. The most common quality measure is

the accuracy metric, which represents the percentage of correct predictions made by the ML model. However,

accuracy can be misleading in the presence of imbalanced data distributions, which is typical in cyber-threat

detection because malicious activities tend to be rare events and are (hopefully) overshadowed by benign samples.

In such context, it is common to differentiate between ‘positives’ (i.e., malicious activities) and ‘negatives’ (i.e.,

benign activities). The performance can then be measured by taking into account the correct (i.e., True Positives

and True Negatives) and incorrect (i.e., False Positives and False Negatives) predictions generated by a given

ML model. A complete list of the most common performance metrics is in Table 1. Note that performance

assessment pertains to ML models and not methods. Depending on the specific setting—e.g., the training data, the

ML algorithm, its parameters—a ML method may yield many ML models, each having a different performance.

2.2 Scope and Target Audience
The scope of our paper is bridging the gap between scientific research and operational practice of ML in

cybersecurity. We do so by unifying in a single document the benefits, problems, and future challenges of ML in

the entire cybersecurity domain. Our paper is meant to be understandable by any reader that is interested in ML

and its relationship with cybersecurity.

Specifically, we address the following three classes of target readers:

• Decision makers (e.g., Corporate Executives, Chief Information Security Officers) who need to understand the

state-of-the-art. This paper should allow more sound decisions on the adoption of ML and its integration

into existing systems to enhance the productivity of security operation centers.

• Security professionals (e.g., security consultants and administrators, digital forensics experts) who should

understand the operational issues affecting ML applications in cybersecurity. Such understanding is crucial

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 1. Typical ML performance metrics. Cyber-threat detection represents a binary classification problem: samples are
positive (malicious) or negative (benign). Accuracy is useful for cybersecurity tasks where such distinction is not possible.
Acronyms: True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

Metric Description Formula
Accuracy

(𝐴𝑐𝑐)

It denotes the percentage of correct predictions among all predictions.

It is misleading in the presence of imbalanced distributions (common in cybersecurity).

𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Detection Rate

(𝐷𝑅)

It measures the capacity of identifying attacks, but it does not consider false alarms.

It is also known as Recall, or True Positive Rate. 𝐷𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

False Positive Rate

(𝐹𝑃𝑅)

It represents the percentage of incorrect ‘positive’ predictions.

Useful for measuring the amount of false alarms.

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

Precision

(𝑃𝑟𝑒𝑐)

It denotes the percentage of correct predictions among all ‘positive’ samples.

High values implies low false positives, but nothing can be said about false negatives.

𝑃𝑟𝑒𝑐 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

F1-score

(𝐹1)

It combines Precision and Detection Rate into a single metric.

Useful for ‘overviews’, but it is difficult to interpret.

𝐹1 = 𝑇𝑃
𝑇𝑃+0.5(𝐹𝑁+𝐹𝑃 )

for a reliable operation of such instruments in practice, as well as for transparent marketing and assessment

of commercial ML solutions.

• Researchers and Engineers who are interested in devising novel ML solutions for cybersecurity, improving

existing ML systems, or mitigating some of their limitations. The open issues and challenges presented in

this paper should guide future developments of ML for cybersecurity.

The takeaways of this paper leverage the contribution
4
and take into account the standpoints of all the above-

mentioned classes of readers. For example, experienced engineers may be aware of the shortcomings of ML, but

they may not know how such issues are received by decision makers. At the same time, security professionals

may know how ML is used, but they can benefit from understanding the most significant future developments in

this field.

2.3 Related Work
With the advent and increasing popularity of ML, abundant works proposedML solutions for diverse cybersecurity

tasks, resulting in hundreds of research papers. Such abundance inspired many literature surveys that aggregate

or summarize the state-of-the-art. However, most of such studies may provide a detailed analysis but on a

single application, such as cyber risk assessment [137] or IoT security [45]. Others may focus on a specific cyber

detection problem, e.g., malware [13, 71, 160], spam [70, 89] or intrusion detection [46, 102]. Some papers do not

explicitly focus on ML (e.g., [82]), whereas others do not focus on cybersecurity (e.g., [81, 127]). Finally, many

works only consider specific ML paradigms, such as generative adversarial networks (e.g., [180]), adversarial ML

(e.g., [24, 108]), reinforcement learning [121], or deep learning [36]—the latter of which is not necessarily the

best ‘universal’ ML solution for cybersecurity. Such finding was shown in the well-known work by Apruzzese et

al. [23], which has a more limited scope than our paper because they (i) focus on the separation between shallow

and deep learning, (ii) do not delve into cybersecurity tasks beyond threat detection, and (iii) only consider

scientific works. Indeed, ML has undergone significant advances in cybersecurity since the publication of [23]—as

we will show in our study.

All these papers, while being useful for interested and experienced researchers, cannot be appreciated simulta-

neously by security specialists, executives and stakeholders—which are included in our target audience. Indeed,

the excessive depth or limited scope of prior work does not allow to grasp the true role (current and future) played

by ML in the entire cybersecurity domain. At the same time, technical reports (e.g., [35, 106]) may be easier to

4
The identity of the authors were concealed during the review process to meet the Double Blind submission policies of ACM DTRAP.
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understand by security personnel, but are not useful for researchers due to lack of comprehensive guidelines, and

do not provide much insight on real ML deployments.

We aim to close the gap between research and practice of ML in cybersecurity with a single document. To this

end, we shape this paper so that it is understandable—and usable—by any reader, regardless of their technical

competence in ML.With respect to past works, this paper represents a ‘meta-review’ of the state-of-the-art
5
which

provides a (i) comprehensive overview and (ii) practical recommendations and research directions (iii) within the

entire cybersecurity sphere. Moreover, we (iv) clear many misconceptions that are becoming prevalent in this

domain. Finally, we (v) address all potential stakeholders—which include but are not limited to researchers. To

the best of our knowledge, no existing paper unifies all of the above in a single contribution.

3 MACHINE LEARNING FOR THREAT DETECTION
The security lifecycle spans over three processes: prevention, detection, reaction [171]. The complete prevention

of any cyber threat is recognized as an impossible task, whereas the reaction phase assumes that the damage has

already taken place. Hence, most security mechanisms (including ML-based ones) focus on threat detection. For
instance, it is not possible to prevent the creation of a phishing webpage; however, such threat can be defused by

detecting that a given webpage is compromised, and alerting the users before they fall victim to a phishing ‘hook’.

The detection of cyber threats can leverage two distinct approaches: misuse-based and anomaly-based. The
former, also referred to as signature- or rule-based, require defining specific ‘patterns’ that correspond to a given

threat—under the assumption that future threats will exhibit the same patterns. The latter require defining a

notion of ‘normality’, and aim to detect events deviating from such normality—under the assumption that such

deviations correspond to security incidents. These two detection approaches are complementary: misuse-based

approaches are very precise, but can only detect known threats; anomaly-based approaches tend to generate

more false alarms, but have a better chance against novel attacks.

Before the advent of ML, detection mechanisms required manual definition of all the necessary elements for a

given approach (either misuse- and anomaly-based). Aside from being a time consuming and error prone task,

such efforts could not cope with the increasing growth of modern environments. Hence, with the progress of

data analytics techniques, detection systems began to leverage data-driven solutions, such as ML. These solutions

not only required less manual effort but, in some cases, even outperformed traditional hand-written detection

schemes [46]. In the context of ML, such increased performance is due to the intrinsic ability of ML to learn ‘weak’

signals—unnoticed by human operators—in the analyzed data, and use such signals to enhance their detection.

The distinguishing characteristic of ML applications for cyber threat detection (schematically depicted in Fig. 3)

is whether supervised or unsupervised MLmethods can be deployed. The former can be used as complete detection

systems, but require labelled data created via some human supervision. The latter do not have a human in the loop,

but can only perform ancillary tasks
6
. Depending on the data-type to analyze, labels may be easier to acquire: for

instance, any layman can distinguish a legitimate webpage from a phishing one [99], but distinguishing benign

from malicious network traffic is harder [63].

It is common to associate ML methods with anomaly detection (even recent papers suffer from such confusion,

e.g., [34]). This is a misconception, because ML can be used also for misuse-based approaches [91]. Specifically,

by analyzing large amounts of data, ML methods can learn the patterns differentiating benign events from

malicious ones, so as to automatically define the ‘signatures’ for misuse-based approaches. At the same time, ML

can be used for anomaly detection by automatically identifying the ‘normal’ activities that correspond to regular

behaviors within a given environment.

5
We observe that our paper includes almost 200 referenced works. However, most of such works are cited only once, i.e., in the section

devoted to the specific problem addressed by the referenced paper.

6
For instance, anomaly detection can be done in an unsupervised fashion, but not all anomalies correspond to security incidents.
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Machine Learning
for 

Threat Detection

Supervised Approaches

PRO: can be used as full
detection sytstems

CON: require labelled
data, which is costly

Unsupervised Approaches

PRO: can be applied on
raw-data

CON: can only perform
ancillary tasks to detection

Fig. 3. Pros and Cons of Supervised and Unsupervised ML for Cyber Threat Detection.

Let us elucidate some successful applications of ML aimed at the detection of illicit activities that may occur in

a modern enterprise. Without loss of generality, we organize this section by distinguishing three broad cyber

detection areas: network intrusion detection (§3.1);malware detection (§3.2); and phishing detection (§3.3). There are
hundreds of works proposing ML for these tasks, and analyzing all such proposals is outside our scope. Hence,

we focus on some interesting and recent applications of ML, emphasizing their practical results. Our case-studies
in §7 will consider two exemplary applications of ML for cyberthreat detection.

3.1 Machine Learning in Network Intrusion Detection
One of the cybersecurity areas of main interest to modern enterprises is that of Intrusion Detection, which is

accomplished by means of Intrusion Detection Systems (IDS). An IDS can belong to either of two categories: a

Network Intrusion Detection System (NIDS) analyzes activities at the network level; whereas a Host Intrusion
Detection System (HIDS) analyzes activities at the individual host level. In this section we consider NIDS, because

HIDS mostly focus on detecting (local) malware which we discuss in § 3.2.

In the last decade, many ML solutions have been proposed to improve the effectiveness of NIDS, both in

scientific literature [11, 23, 36, 46], and in patents (e.g., [131, 140]). A NIDS can be deployed anywhere in a

network environment, and can exploit ML to detect threats against diverse targets, such as cloud, IoT, endpoint

devices [93], and even automotive controllers [104]. We report in Fig. 4 the typical deployment of a NIDS that

leverages the support of ML, which can analyze data of different types, e.g., full packet-captures (PCAP), network

flows
7
(NetFlows), SMNP, or even DNS records. Specifically, with the increasing growth of modern networks,

NetFlow analyses are preferred due to many advantages over traditional PCAP, such as: reduced privacy concerns,

less space required for storage, and faster processing times [176].

ML methods based on unsupervised learning are particularly appreciated because acquiring labelled data for an
entire network is difficult [63]. Among these approaches, we highlight the results obtained by clustering methods.

For example, in [26] the authors aim to detect attacks by clustering NetFlows with similar temporal behavior and,

subsequently, finding the clusters containing hosts that raised alarms from a commercial NIDS based on manual

signatures. The results showed a remarkable increase in detection performance
8
with respect to the commercial

signature-based NIDS, which only detected 3 malicious hosts, whereas the integration of ML allowed to detect 12.

Unsupervised methods can also be used to support the (manual) generation of rules for misuse-based NIDS. In

CyberProbe [117], the authors cluster honeypot traffic, and create specific rules for each cluster: such rules allowed

to detect over 75% attacks which were not included in any security feed. Some papers also exploit unsupervised

approaches to counter lateral movement9: the approach in [43] can successfully detect such instances (over

90% recall) with low false positives (10%). Finally, NIDS can also benefit from deep unsupervised algorithms. As
an example, in Kitsune [113] the authors use deep learning to analyze PCAP data and improve the detection

7
Netflow: https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/

8
A similar approach has been successfully integrated even in a commercial product, which we cannot name due to NDA.

9
Lateral Movement: https://www.lastline.com/blog/lateral-movement-what-it-is-and-how-to-block-it/
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Fig. 4. Typical deployment of a ML-NIDS. The border router forwards all the outgoing/incoming network traffic to a NIDS,
which further analyzes such data via a ML model.

rate from below 1% to over 95% while maintaining a low false positive rate (below 0.1%). The advantages of

unsupervised ML methods make them suitable for commercial products: as an example, the method in [105] is

used by Aizoon
10
to support botnet detection via DNS analyses, achieving less than 0.1% false positive rate. Our

detailed case study in §7.1 presents the deployment of unsupervised ML used by Montimage to detect anomalous

activities in a modern network.

On the other hand, approaches based on supervised learning, due to their reliance on good quality labels, are

more expensive to deploy but can also provide excellent results. For instance, Exposure [40] leverages labelled

DNS records to detect domains involved in malicious activities, and achieves less than 10% false alarm rate. A

notable effort against botnets is [155], where the authors collect and label some NetFlows, and then use such

labelled data to develop a ML botnet detector achieving over 95% precision. Moreover, the work in [19] proposes

the usage of probability labels (instead of binary labels) to detect botnet NetFlows that may evade traditional

ML-NIDS, and reach over 97% precision. Remarkable successes also include deep learning methods, such as

the approach in [84] which achieves almost 95% detection rate. In particular, we highlight those solutions that

combine deep learning with temporal analyses: such twofold perspective allows to detect additional malicious

patterns that can improve detection performance. For instance, in [56] the F1-score improves from 0.90 to 0.95

when also temporal dependencies are considered. We will present a real deployment of a similar solution in §7.2,

describing how S2Grupo protects Industrial Control Systems (ICS), showcasing the pros (and cons) of ML with

respect to older techniques based on heuristics.

Let us concludewith a remark: the superiority of deep learning forNIDS is not yet proven. For instance, the
authors of [134] and [166] both evaluate shallow and deep ML methods on the same dataset (the CICIDS17 [147]):

while [166] claims that deep learning outperforms traditional ML, the authors of [134] achieve the opposite

result. Specifically, [166] shows a ‘deep’ neural network achieving 0.96 F1-score and a ‘shallow’ decision tree

achieving 0.95 F1-score; whereas [134] show a ‘deep’ neural network also achieving 0.96 F1-score, but their

‘shallow’ decision tree reaches 0.99 F1-score. Our stance on this subject is that, under the assumption that deep

learning is superior, the marginal improvement does not justify its adoption due to its additional complexity and

computational requirements.

10
https://www.aizoongroup.com/
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3.2 Machine Learning in Malware Detection
The fight against malware is one of the most emblematic challenges of cybersecurity. Because malware affects

a specific device, its detection is performed by analyzing data at the host-level, i.e., through HIDS. Indeed,

antiviruses can be considered as a subset of HIDS [94]. A given malware variant is tailored for a given operating

system (OS). The popularity of Windows OS made it the most common malware target for more than two decades.

However, attackers are now turning their attention to mobile devices running, e.g., Android OS
11
.

Malware detection can use two types of analyses: static or dynamic. The former aim to detect malware without

running any code, by simply analyzing a given file. The latter focus on analyzing the behavior of a piece of

software during its execution, usually by deploying it in a controlled environment and monitoring its activities.

Both static and dynamic analyses, schematically depicted in Fig. 5, can benefit from ML.

File

pdf, 
apk, 
exe, 
[...]

extract 
features

ML model

File

pdf, 
apk, 
exe, 
[...]

1 2 3 ...
analyze execute

monitor behavior
ML model

analyze

Static Malware Detection via ML Dynamic Malware Detection via ML

attributes, 
code segments, 

hash, 
...

Fig. 5. Malware Detection via ML. In static analyses, the properties of a given file are extracted and analyzed by a ML model.
In dynamic analyses, the file is executed and the entire behavior is monitored, and then analyzed by a ML model.

Static Analysis. These analyses are simple, particularly effective against known pieces of malware, and can

be enhanced via ML in many ways. For instance, clustering is useful to identify properties of similar pieces of

malware. A similar method is proposed in [80], with the goal of finding a common treatment against all elements

in each cluster, and reaches up to 90% precision. In contrast, the authors of [100] leverage clustering to improve

the detection of Android malware, and exceed 95% detection rate. Static analyses can be further improved When

labelled data is available. An early example is the detection of malicious PDF files in [153]: here, the authors use

ML to analyze the structural properties of PDF files, extracting features that yield proficient detection results

(over 99% detection rate with less than 0.001% false positive rate). Recently, a different approach leverages deep

learning to transform executables into images, which are then used to perform the detection: the authors of [87]

achieve over 99% accuracy in identifying Windows malware.

Despite these successes, all static malware detection approaches are prone to evasion. This can be easily achieved

by modifying the malware executable, which can be implemented without changing its underlying malicious

logic. To aggravate the problem, advanced malware variants (e.g., polymorphic or metamorphic) automatically

modify their executables, defeating any static detection approach.

Dynamic Analysis. The combination of dynamic approaches with ML techniques yields effective countermea-

sures against polymorphic malware. Multiple ML solutions exploit clustering: grouping malware with similar

behavior allows to focus only on those clusters that have not been seen before. For example, [141] proposes a

dynamic approach combining clustering and anti-virus scanners to detect and sanitize entire groups of malware

variants, achieving almost perfect accuracy against Windows malware. More recently, the work in [15] focuses

11
https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware
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on Windows malware by leveraging a combination of graph- and NLP-techniques applied to dynamic API

calls, and achieves 99.99% accuracy. Some papers even propose deep learning, such as [103] which uses deep

neural networks to extract the most relevant dynamic features to classify Android malware, achieving nearly

80%𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. Moreover, the authors of [7] apply deep learning to detect Windows ransomware, and achieve

93% detection rate and 97% precision. An interesting work is HeNet [52], which leverages ML for dynamic

malware detection by analyzing hardware-specific (i.e., Intel CPU) data streams, achieving perfect accuracy on

real benchmarks. Finally, it is possible to combine static with dynamic analyses via ML: this is done in EC2 [49]

which combines unsupervised with supervised ML to detect novel android malware, achieving over 90% detection

rate.

3.3 Machine Learning in Phishing Detection
Phishing represents one of the most common vectors for penetrating a target network and is still a rampant

threat in the cybersecurity landscape [90]. Early detection of phishing attempts is of paramount importance to

modern organizations, and can greatly benefit from ML. Specifically, we distinguish two different applications of

ML to counter phishing attempts: detection of phishing websites, where the goal is identifying webpages that
are camouflaged to resemble a legitimate website; and detection of phishing emails, which either point to a

compromised website or induce a response that includes sensitive information. The main difference between

these two approaches is the type of analyzed data: for websites, it is common to use the URL of the webpage, its

HTML code, or even its visual representation [159]; for emails, it is typical to analyze the text, the header or the

attachments of an email [9]. A schematic representation of such applications is shown in Fig. 6, which we now

describe in more detail.

Email

Header

Attachments

BodyText

ML model

extract

analyze

Webpage

URL

Image

HTML

extract

ML model

analyze

Phishing Email Detection via ML Phishing Website Detection via ML

Fig. 6. Phishing Detection via ML. For websites, the ML model can analyze the URL, the HTML, or the visual representation
of a webpage. For emails, the ML model can analyze the body text, the headers, or the attachment of the email.

Phishing Webpage Detection. Phishing websites are mostly dealt with via blacklists. However, such lists quickly

become unreliable because expert adversaries frequently move their phishing hooks from site to site: as shown

in [159], over 90% of ‘squatting’ phishing websites are not detected by popular blacklists. ML represents a viable

alternative to manual and static blacklisting, and modern web-browsers already leverage its potential [101].

Compared to malware or network intrusion detection, works proposing unsupervised ML against phishing

websites are less prevalent. An example is [185], exploiting clustering to support the detection of phishing

websites, and achieving over 95% accuracy. In contrast, supervised ML is abundant because verifying the legitimacy

of a webpage is relatively simple, which facilitates labelling procedures and allows to develop complete ML

detectors [55, 99, 159]. Some works use ML to analyse features extracted from a given URL. It is interesting to

note that while the authors of [33] use up to 130 features to achieve 99% detection rate, other works (e.g., [144])

use less than 30 features and achieve similar results. Other proposals leverage third-party information provided
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by reputable sources (e.g., DNS records) which can be derived from the URL: an example is PhishMon [122] which

achieves nearly 96% accuracy while maintaining a low 1% rate of false positives. Some papers consider the twofold

perspective provided by the analysis of both URL- and HTML-based features, which is advantageous when the

single URL is not enough to identify a webpage as phishing or not. For example, the work in [32] achieves 95%

detection rate by combining these two data types. A significant work is [55] which combines the inspection

of the underlying HTML code of the webpage with image processing techniques (based on deep learning) to

identify compromised websites: the results show over 95% detection rate at the cost of 1% false positive rate.

Finally, [159] uses all of the above (images, HTML and URL): for nearly 1000 squatting phishing websites, manual

blacklisting only detected 9%, whereas ML detected 70% of such phishing attempts.

Phishing Email Detection. One of the earliest applications of ML for cybersecurity involves the detection of

unsolicited emails (also often referred to as ‘spam’). Recent advances in Natural Language Processing (NLP) can

be leveraged by ML to analyze the body of an email and identify malicious intent [39].

Only few proposals leverage unsupervised ML, such as [61] which achieves over 95% detection rate. However,

as it is the case for phishing website detection, acquiring ground truth labels for emails is a trivial task, which

facilitates the deployment of supervised ML used by email providers to enhance their automatic filters [89]. For

instance, [9] analyses the text of an email, and reaches almost 99% accuracy with less than 0.01% false positive

rate. The authors of Themis [67] exploit deep learning to analyze both the text and the header of an email and

exceed 99% accuracy. Finally, we mention the work in [73], where the authors leverage supervised ML to detect

spear-phishing attacks by analyzing an email from different perspectives, and achieve over 90% detection rate at

the cost of 1% false positives. Attachments can also be analyzed by any malware detection technique (§3.2).

As a small digression, we mention that the fight against phishing (and spam) has recently moved to Online

Social Networks. This setting exhibits many similarities with the detection of phishing in emails, as it also involves

NLP techniques. As an example, the authors of [172] use deep learning to detect malicious tweets, and obtain

promising results with almost 95% detection rate but with 5% false positive rate. Similarly, MalT
𝑃
[96] specifically

focuses on tweets luring victims to phishing websites, achieving over 95% detection rate and nearly 90% precision.

Takeaway. Using ML for cyberthreat detection has proven to be greatly successful (e.g., [52, 113, 159]).

4 BEYOND DETECTION: ADDITIONAL ROLES OF MACHINE LEARNING IN CYBERSECURITY
Besides threat detection, there are many additional roles that ML can cover in cybersecurity. Indeed, modern

environments constantly generate massive amounts of data, which may come from heterogeneous sources—

including the very same ML models described in §3. Analyzing such data via (additional) ML can provide insights

that further improve the security of digital systems.

Without loss of generality, we classify all these complementary roles of ML in four tasks: alert manage-

ment (§4.1), raw-data analysis (§4.2), risk exposure assessment (§4.3), and cyber threat intelligence (§4.4). We

now describe each of these tasks, schematically summarized in Fig. 7.

We highlight an enticing characteristic shared by most ML applications described in this section: they do not

require extensive and human-guided labelling procedures, and hence belong to the unsupervised ML category. The

potential of using raw-data almost ‘as-is’ makes all the ML methods discussed in this section readily applicable in

many real scenarios.

4.1 Alert Management
It is well-known that developing the ‘perfect’ detection system is not possible (with or without ML). Hence, to

prevent the automated execution of actions based on wrong predictions, the output of detection systems usually

comes in the form of alerts. Depending on such alerts (e.g., their relevance, the involved hosts, or their number) a
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Fig. 7. Additional tasks that can be addressed via ML in cybersecurity. All such tasks mostly involve dealing with raw and
unstructured data from heterogeneous sources, and provide fertile ground for ML.

more appropriate response can be taken. However, modern environments generate thousands of alerts every

hour (as shown in, e.g., [26, 175]), making manual triaging an impossible task. To address this problem, ML can

be used for filtering, prioritization, a or even fusion of alerts into more general events.

• Alert Filtering. By definition, an alert is not necessarily malicious, and a significant percentage of alerts

correspond to false alarms. Because being notified by many irrelevant alerts is impractical and annoying,

ML can help in filtering redundant alerts, e.g., because they are related to the same underlying problem. An

example is [157], which is specifically tailored for false alarms generated by ML-NIDS: its effectiveness on

real botnet traffic is a remarkable reduction of 75% of the time spent on triaging of false alerts, outperforming

non-ML mechanisms by 45%.

• Alert Prioritization. If security administrators face too many alerts, prioritization techniques can be applied

to identify the most critical alarms. ML is beneficial as it can automatically ‘learn’ the most relevant ranking

criteria with limited supervision. For instance, the very recent work in [164] shows that ML correctly ranks

the most sensitive alerts at the top position in 95% of the cases.

• Alert Fusion. Themost intuitive way to manage large amounts of alerts is to aggregate similar alerts, and then

to find correlations between these groups in order to identify causal relationships relevant for security tasks.

For instance, ASSERT [125] leverages clustering to identify which are the preferred protocols and network

ports targeted by malicious activities. Their results highlight that modern attacks are increasingly relying

on the Remote Desktop Protocol (RDP), as it enables lateral movement activities through pivoting [28].

All of the techniques above can be combined together. In this context, we mention the alert management solution

in [110] exploiting deep learning to condense and prioritize alerts: the resulting platform was tested and found

usable by real security analysts.

4.2 Raw-data Analysis
The cybersecurity domain must deal with heterogeneous systems, each generating raw-data of different nature

(e.g., logs, reports, alerts). Such setting represents a fertile ground for ML, whose capabilities could be leveraged

to maximize the opportunities provided by such raw-data. We can differentiate two areas of application of ML in

this context: the support of operational decisions via log data analyses; and the use of (unlabelled) data to optimize
labelling efforts and foster deployment of supervised ML.

Operational Decisions. The abundance of log data in modern information systems makes ML promising in the

context of operational security. The importance of log data analysis became evident after several high-profile

security incidents that involved stealthy exfiltration of confidential data
12
. Beehive [178] was one of the first

(unsupervised) ML systems focused on knowledge extraction from heterogeneous log data (generated by proxy,

DHCP or VPN servers). The goal was combining all these logs in an anomaly detection fashion: data points not

12
An example is the well-known RSA incident: https://www.theregister.co.uk/2011/04/04/rsa_hack_howdunnit/.
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associated with ‘typical’ log patterns represented ‘incidents’ that required manual intervention. Beehive was

evaluated on two weeks of log data at the EMC Corporation and detected almost 800 incidents, 65% of which

related to true security incidents (malicious activities or policy violations). In comparison, non-ML methods

performed much worse, as they were only capable of detecting 8 correct incidents (with a recall of just 1%).

Despite being unsupervised ML, Beehive still required manual feature engineering: the most relevant pieces of

information from every log source had to be determined via expert knowledge. Such problem was overcome with

the advent of deep learning. A prominent example is DeepLog [64], which analyzes heterogeneous log data (e.g.,

Hadoop, or OpenStack logs) with a similar objective as Beehive. DeepLog achieves impressive results in a lab

environment, with close to 100% detection rate after training on only 1% of the available data.

Labelling Optimization. Many threat detection techniques (§3) rely on supervised ML, which may require

huge amounts of labelled data. Such requirement prevents their applicability in real scenarios, because manual

labelling can be prohibitive—especially in Network Intrusion Detection. In contrast, unlabelled data is common

in cybersecurity, and many efforts proposed semi-supervised learning methods to increase the ‘return’ of small

sets of labelled data, and hence enable deployment of fully-supervised ML methods [29]. For instance, the botnet

detector in [184] reaches 0.83 F1-score with only 2400 labels; in contrast, the detector in [21] reaches 0.95 F1-score

on the same network scenario, but requires millions of labelled samples. A parallel line of research leverages

the so-called active learning paradigm. The idea is to use a ML model (trained on a small labelled dataset) to

‘suggest’ which samples should be labelled in a (large) unlabelled dataset, to maximize its ‘learning rate’. As an

example, [183] shows that it is possible to save significant labelling effort (from 30% up to 90%) by providing the

ground truth of only a restricted amount of samples. An intriguing property of active learning is that it can be

used even for already deployed ML models, by following the so-called lifelong learning principle: for instance,

Tesseract [130] can boost its performance from 57% to 70% after being retrained on 700 samples ‘actively labelled’

by a human expert.

4.3 Risk Exposure Assessment
Although the complete prevention of any cyber attack is an unreachable objective, a system can be significantly

strengthened by focusing on its weak spots and anticipating the most likely threats. In this context, ML can help

for several tasks, such as penetration testing, or estimation of compromise indicators.

Penetration Testing. By automatically ‘attacking’ existing security systems, ML can be a great asset for vulnera-

bility assessment. For instance, [74] apply reinforcement learning to synthetically craft attacks against traditional

NIDS: the ML approach found the same amount of vulnerabilities in half the time of manual inspection, and

achieved a speedup of 90% with respect to a random attack procedures. More recently, [21] adopted a deep

reinforcement learning approach to automatically evade, and then harden, a ML-based botnet detector. Sim-

ilarly, [161] assessed the vulnerabilities of databases to SQL-injection attacks crafted via ML. There are even

proposals of dedicated ML-assisted platforms for performing all such assessments [50]. According to a recent

survey [111], the potential of ML for penetration testing is still vastly unexplored.

Estimation of Compromise Indicators. It is possible to use ML to estimate the most likely compromised hosts

in a given system. The authors of [177] study a corporate environment, using ML to analyze information from

heterogeneous sources, such as the behavior of each individual host and of the entire network—as reported

by end-point protection devices (McAfee); or even personal information on the specific user of each host. The

findings revealed that visits to ‘business’ websites represented the most common indicator of a compromised

host (almost 30%), with second place for ‘travel’ websites (nearly 15%)—this is intriguing, considering that such

activities were performed during working hours. A potential opportunity is combining ML with honeypots (with

a different scope than [117]): such strategy is exploited in [72] to identify which hosts are more likely to be
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infected by botnet malware. Finally, Facebook exploits ML to identify fake accounts by correlating different

sources [173], allowing to reduce such annoyance by nearly 30%.

4.4 Threat Intelligence
The main task of threat intelligence is to collect and analyze information for anticipating novel attacks. This is

clearly a powerful instrument for keeping defenses up-to-date in a proactive approach [39]. However, we observe

that a crucial aspect in the protection of enterprises revolves around the value of the items being considered:

hence, ML methods for cyber threat intelligence should be configured so as to prioritize the protection of the

most business-critical infrastructures. Failure to take this into account may limit the usefulness of ML.

Nevertheless, applications of ML for threat intelligence can leverage either internal or external data sources (or
both).

Internal Sources. Foreseeing future attack strategies via ML can be done with exclusive reliance on internal

corporate data. For instance, [158] leverages ML to artificially create alerts corresponding to past cyberattacks,

and then use such alerts to study an attacker’s behaviour—potentially by using additional ML solutions. As

an example, SAGE [116] exploits ML to compress over 300k individual alerts in less than 100 ‘attack graphs’

representing the specific steps of an entire offensive strategy. Another possibility is to use deep learning to

‘disassemble’ some code executables, allowing to identify some potentially malicious patterns that can reappear

in future malware: for instance, EKLAVIA [54] achieves a remarkable 80% accuracy in such task. Finally, internal

and external data sources can be mixed: the authors of [88] exploit historical malware information (provided by

Symantec) to foresee how future malware could affect a corporation, and their ML solution provided up to 4

times as many correct predictions as non-ML baselines.

External Sources. It is possible to use ML for the so-called open source intelligence (OSINT). For example, the

authors of [146] focus on security incidents mentioned on Twitter. Their ML approach identified many malicious

activities occurring in 2016, such as the Mirai botnet (October 2016) or the data breach at AdultFriendFinder

(November 2016), where over 400 million accounts were exposed. Similarly, the deep learning method in [165]

analyzed tweets to study the development of ransomware attacks. It is also possible to use information from

security feeds, such as the Common Vulnerability Score (CVS) stored on well-known databases
13
. For instance,

in [51] the authors use ML to predict the CVS with almost 1 week earlier than traditional cybersecurity feeds.

Prediction of the CVS with ML can also be done via darkweb data as shown in [12]. The authors use ML to

crawl underground forums and correlate meaningful information with vulnerability descriptions. By validating

the results via third-party signatures (e.g., Symantec), the proposed ML method successfully predicted the

exploitability for about 40% of recorded vulnerabilities compared to about 10% of common feeds. Automated

analyses via ML of underground forums (in different languages) aimed at uncovering ‘cyber-criminal markets’ are

also performed in [135], allowing to infer the prices of malicious exploits. Finally, we even mention the existence

of patents that leverage ML to predict cyberattacks in modern environments [126].

Takeaway. There are many tasks complementary to threat detection that can be covered by ML. The main

challenge lies in obtaining relevant information from unlabelled (e.g.,[29, 125]) or unstructured data coming from

heterogeneous sources (e.g., [12, 64, 173]). Such challenge, however, also represents an intriguing opportunity.

13
An example is the CVE database, storing vulnerabilities as well as their exploitance likelihood: https://cve.mitre.org/.
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5 INTRINSIC PROBLEMS OF MACHINE LEARNING IN CYBERSECURITY
As shown in §3 and §4, ML can cover a plethora of roles in cybersecurity. Yet, in this specific domain, unleashing

the full benefits of ML in practice is difficult. Such difficulty stems from the underlying conflict between (a) the

intrinsic characteristics of the cybersecurity domain, and (b) the fundamental assumptions of ML.

Understanding such conflict is crucial for a comprehensive assessment of all the tradeoffs pertaining to ML-

based cybersecurity solutions. Therefore, we now discuss the intrinsic problems of ML in cybersecurity, for which
we provide an overview in Fig. 8. Specifically, we begin by presenting the problems affecting any ML solution for

cybersecurity (§5.1); then, we elucidate the problems of ML solutions developed in-house (§5.3); and we conclude

with the problems related to the adoption of commercial-off-the-shelf (COTS) ML products (§5.3).

Concept Drift
Adversarial Setting
Data Confidentiality

Limited Scope
Transparency

Development
Maintenance

In-house ML solutions COTS ML solutions

Intrinsic Problems of ML in Cybersecurity

Fig. 8. Problems of ML in Cybersecurity. Some are specific to either in-house solutions, or to commercial-off-the-shelf (COTS)
ML products. Others are shared by both of these categories.

We stress that all problems herein described are intrinsic: they can be mitigated to some degree, but the current

state-of-the-art does not allow to completely resolve them.

5.1 General Problems of ML in Cybersecurity
Machine Learning follows the so-called “indipendent, identically distributed random variables” (iid) principle [65].
Such principle states that the data analyzed during the development of the ML model will be similar to the ‘future’

data that the ML model will analyze after its deployment. If the iid assumption is not met, then the deployed

ML model will exhibit a different performance than the expected one (measured during development). Such iid

principle impairs ML deployment in cybersecurity because it interferes with three characteristics of this domain:

the concept drift, the adversarial setting, and the data confidentiality. Let us elaborate each of them.

Concept Drift. Modern systems are continuously evolving: new devices, services, and even users, are added (or

removed) every day. All such mutations contrast the iid assumption, preventing the reliable application of ML in
the long term because the training data quickly becomes obsolete. This problem is often referred to as concept drift,
and while it can affect any application of ML, some domains are less touched by it. For instance, in computer vision

“a cat will always be a cat”, allowing to use a ML model trained on the same data for decades—e.g., the ImageNet

dataset (collected in 2011) is still used today [139]. This is not the case in cybersecurity, and especially for threat

detection: the environment constantly changes, and the adversaries also adapt. A schematic representation of the

concept drift is shown in Fig. 9.

For example, a new vulnerability may be discovered, meaning that some samples previously considered as

benign should be treated as malicious
14
; a new segment may be attached to a network, with a considerably

different behavior than the other segments, hence generating a lot of (false) anomalies; finally, attackers can

14
For instance, hundreds of apps in well-known marketplaces were recently found to be malicious [92].
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Fig. 9. Machine Leaning in the presence of Concept Drift. The ML model expects that the data will not deviate from the one
seen during its training. In cybersecurity, however, the environment evolves, and adversaries also become more powerful.

devise novel strategies that cannot be detected by existing mechanisms (e.g., zero-day exploits). As a matter of

fact, many research efforts highlighted the significant performance degradation of ML detectors in the presence

of concept drift [18, 86]. The only practical remedy to concept drift is through constant update of ML systems

with new data (labelled, if supervised ML is used) that reflects the current trends.

Adversarial Setting. The cybersecurity domain implicitly assumes the presence of adversaries. Although most

attacks are ‘stationary’ (which explains why signature-based methods are still widely employed), motivated

adversaries constantly refine and change their offensive strategies. Aside from the risk of zero-day attacks,

deployment of ML also exposes to the threat of adversarial samples [154], which specifically target ML systems.

Such threat, schematically depicted in Fig. 10, involves applying tiny ‘perturbations’ to some input data with

the goal of compromising the predictions of a ML model. Even imperceptible modifications can affect proficient

cybersecurity ML detectors. For instance, [25] evaded 20 ML botnet detectors by appending a few bytes of junk

data to some network communications; whereas [133] and [154] showed a similar effect against ML malware

detectors. Even commercial products are affected, such as Google Chrome’s phishing detector [101]. There exist

a wide array of strategies to carry out attacks based on adversarial samples, which can affect either the pre-

or post-deployment phase of a ML model [24, 154]. Despite the proposal of many countermeasures against

adversarial samples, (e.g., [19, 76]), no universal solution has been found so-far, and some mechanisms can even

decrease the baseline performance (as shown in [21, 59]). The best defense, according to Biggio and Roli [39],

is a proactive approach: the adversary must be anticipated and evaluated (and, possibly, countered) before ML

deployment.

To further stress the importance of such threat, let us clear two misconceptions:

• it is common to refer to adversarial samples as ‘illegitimate’. Such notation is wrong from a security

standpoint: any sample (adversarial or not) analyzed by a ML model is considered as legitimate (i.e., trusted)
by the underlying system that forwarded such sample to the ML model. What is illegitimate is the attack, i.e.,
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Fig. 10. Typical Adversarial Attack against a deployed ML model. By inserting tiny perturbations in the input data, it is
possible to fool a ML model and induce an incorrect prediction.

the application of a perturbation that is specifically crafted to thwart a ML model—but not the adversarial

sample.
15

• in related literature, it is common to search for the ‘minimal’ perturbation that allows a sample to thwart a

target ML model. However, real attackers are not subject to such constraint.
16

The latter observation is crucial for demystifying the effectiveness of the so-called certified defenses [138], which
only work if the perturbation is minimal or restricted within a very small boundary.

Confidentiality. The cybersecurity domain is characterized by its sensitivity to data-privacy, representing a

strong barrier for long-term reliance on ML. Let us provide a few examples. The increasing usage of encryption can
make some ML systems simply unusable. For instance, a ML-NIDS that inspects the payload of HTTP traffic will

not work if the traffic is encrypted via HTTPS—and HTTPS is increasingly replacing the insecure HTTP protocol

worldwide. Such problem can also affect other use-cases of ML, such as phishing email detectors: if the emails are

encrypted (e.g., via PGP) then it is impossible to analyze their contents with ML. Another problematic scenario

can involve the analysis of confidential data: the constant changes in data regulation (e.g., the GDPR [167]) make

it difficult to identify data that can be reliably used in the long-term. For instance, consider the approach in [177]

(cf. §4.3), which leverages (among others) user information to estimate the infection risk. Such approach could

not be applied today without the explicit consent of all the users of a company. Moreover, both of these issues

(confidential and encrypted data) also impair labelling procedures, because it is not possible to (manually) verify

the ground truth of a sample if such sample cannot be ‘seen’ by a human expert. Finally, it is understandable

that enterprises do not want to publicly disclose their data, generating an overall shortage of publicly available

datasets that can be used to evaluate ML systems [147]. Although this latter problem primarily affects research,
it also implicitly affects practice because showing a ML system that works in different settings can foster its

adoption in real scenarios. We discuss potential solutions to the limited data availability in §6.2.

5.2 Problems with in-house development of ML systems
Despite the problems presented in §5.1, an organization may be willing to create a completely in-house ML

solution. In this case, the organization can fully control the scope, data and overall suitability of the resulting

ML model. However, such advantage comes at a price: the ML model must be first developed and must also be

maintained. Both of these procedures are challenging in cybersecurity.

15
To provide a concrete example, let us consider [22]: it is legitimate to increase the size of network communications, but it is illegitimate to

do so with the intent of thwarting a ML model. However, a ML model considers all analyzed samples as trusted, because the ML model is

oblivious of the intent of the data generation process.

16
For instance, in [22] adding 1KB of data is more effective than adding only 1B. Hence, a real attacker is more likely to add 1KB than just 1B.
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Initial Development. Developing the initial ML model requires three steps: (i) selecting a ML algorithm; (ii) find-

ing the right data; and (iii) fine-tuning the performance. In some domains, these steps are almost straightforward.

For instance, in computer vision it is established that deep learning algorithms outperform others; moreover,

suitable data (potentially labelled) is easier to acquire—either because it is publicly available (e.g., ImageNet [139])

or because it can be cheaply produced (e.g., the popular captchas [47]). Unfortunately, none of these advantages

apply to cybersecurity. For instance, some research works show that deep learning is worse (e.g., [21, 134]) while

others claim the opposite (e.g. [123, 166]). Similarly, there is confusion with respect to which features should be

taken into account (cf. §3.3 where [33] use 130 features and [144] use 30, achieving similar performance). Finding

the right data is also inherently more challenging in cybersecurity. Such challenge includes acquiring data of high
quality and in the right amount. Labelling requires expert knowledge, and according to [112] a company cannot

afford to label more than 80 malware samples per day. For reference, the initial deployment of Tesseract [130]

required 50 thousand labelled samples. Unlabelled data may be easier to acquire, but as shown in §4 it can come

from heterogeneous sources and be in different formats, requiring a detailed preprocessing pipeline to collect,

store, and forward such data to the ML model. Furthermore, the iid assumption (cf. §5.1) prevents a reliable use

of data originating from different environments [149], hence even the (few) publicly available data can have

questionable effectiveness. Finally, a commonmisconception is thinking that the performance of a ML model

is linearly dependant on the size of its training data
17
: in some cases, smaller datasets can yield to superior ML

models—we will show this in our case studies (§7.1). Nevertheless, any given dataset must also be balanced: in real

environments, a malicious event is a rare occurrence and a given dataset should reflect such distribution [170].

To aggravate all of the above, it is not possible to determine a priori which combination (algorithm, fea-

tures, dataset, balancing) yields the best performance after deployment. Hence, empirical and time consuming

evaluations—by training and testing multiple ML models—are always a necessity. As a result, finding the most

optimal tuning for real deployments may require a huge amount of manual effort by trial-and-error.

Constant Maintenance. Tomitigate the disruptive effects of concept drift (§5.1), it is fundamental to continuously

update a given ML solution with data reflecting the current trends. Such procedures are costly but can be alleviated

via lifelong learning solutions (cf. §4.2). However, a common misconception is that ‘update’ procedures simply

entail finding (and, if necessary, labelling) new data. This is an underestimation, because such procedures

also require to: (i) decide what to do with ‘old’ data; and (ii) finding the ‘sweet spot’ that yields the adequate

performance. Indeed, maintaining old data can be detrimental in some cases (e.g., if some ‘benign’ samples are

discovered to be ‘malicious’), but completely removing it can also adversely affect the performance (e.g., some

‘old’ phenomena can reappear in the future). Nonetheless, even small changes in the training data can decrease

the performance of a ML system (e.g., this is the fundamental principle of poisoning attacks [24]). These issues

require additional manual labour through trial-and-error.

A potential mitigation for all such tuning operations (both pre- and post-deployment) may come in the

development of techniques focused on explaining the decisions of ML systems (e.g. [107]), which are currently

difficult to interpret—especially for deep learning [14]. This is an intriguing direction of research, which has very

recently also touched the area of adversarial ML (e.g. [16, 60])

5.3 Problems of Commercial-off-the-Shelf ML products
Developing an in-house ML model may be prohibitive (e.g., in terms of computational or human resources),

and COTS solutions represent a viable alternative. In this case, all the operations presented in §5.2 must be

performed by the product vendor. However, we point out two drawbacks of such COTS solutions, aggravated in

cybersecurity scenarios. Specifically, such solutions implicitly have a limited scope, and they may (inadvertently)

suffer from lack of transparency.
17
According to the founder of Deep Learning, Andrew Ng, this is also becoming true for Deep Neural Networks [152].
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Limited Scope. Relying on third-party solutions limits any end-user to their intended scope, meaning that some

tasks simply cannot be accomplished with products currently on the market. For instance, any commercial ML

model cannot be trained on the exact data used by an organization—at least initially. The organization can allow

the vendor to collect their data, and use such data to refine the ML model; however, this may not be possible

due to confidentiality reasons (§5.1). Therefore, some commercial solutions can be used only if the deployment

environment (of the organization) resembles the pre-deployment environment (of the vendor) used to generate

the data for the corresponding ML model. For example, phishing websites are malicious ‘everywhere’, meaning

that it is possible to transfer [179] ML phishing detectors. However, such transferring cannot be easily done

for other cybersecurity tasks, such as NIDS [27]. This is because every network is unique [149], and a malicious

behavior in one network can be benign in a different network. Due to such issue, most COTS products leverage

(unsupervised) ML, and mostly for anomaly detection (e.g., [2, 97]).

Lack of Transparency. COTS solutions come as a ‘black-box’, and the decision to deploy such solutions depends

on their advertised performance. This fact leads to many issues, all sharing a common culprit: the cost of

misclassifications in cybersecurity. In some domains, incorrect predictions do not have severe consequences: for

instance, a recommender ML system (e.g., the one in AirBnb [77]) that makes an incorrect recommendation

is not a cause of concern. In contrast, in cybersecurity a single false negative can be the difference between

a compromised and a secure system. At the same time, both employees and security analysts are annoyed by

false alarms, which can even be exploited by attackers to conceal more severe threats [53]. By considering

the performance metrics reported in Table 1 (cf. §2.1), we remark that each metric focuses on a single aspect,

and even good scores can be meaningless if not contextualized.
18
Nonetheless, even if a COTS ML solution is

fully transparent (i.e., all metrics are reported and contextualized), the performance will always refer to the

environment of the vendor, which is likely to differ from the real deployment setting. Finally, we mention that—to

the best of our knowledge—no COTS ML solution (including those not pertaining to security tasks) reports its

robustness to potential adversarial attacks, which is a severe deficiency in cybersecurity scenarios.

Takeaway. In cybersecurity, ML can provide great benefits but also presents many risks due to the intrinsic

adversarial setting and the dynamic ecosystem. Such risks must be taken into account today, and should be

addressed by future works.

6 THE FUTURE OF MACHINE LEARNING IN CYBERSECURITY
We have elucidated the benefits (§3 and §4) as well as the problems (§5) of ML for cybersecurity. There are

potentially infinite ways to advance the state-of-the-art, such as increasing existing performance (e.g., [62]),

mitigating known issues (e.g., the poor explainability [16, 145]), as well as development of novel applications of

ML in cybersecurity (e.g., the integration of quantum computing [75]).

As a constructive step forward, this section highlights which future developments can completely revamp
the state-of-the-art of ML in cybersecurity. Although every improvement is appreciated, we believe that the

existing gap between research and practice can only be closed by the joint contribution of four players: regulatory
bodies, corporate executives, engineers, as well as the research community. Specifically, we identify four future

challenges that—if properly addressed—can revolutionize ML in cybersecurity. We now elucidate these challenges

(schematically shown in Fig. 11), explaining their root causes and our recommended course of action for each of

the four ‘players’ indicated above.

18
As an example, consider a detector evaluated on a dataset containing 9990 benign samples and 10 malicious samples: an Accuracy of 99.99%

can be obtained by only detecting 1 malicious sample (out of 10), despite its inability to detect 90% of the attacks. Another example is a FPR of

1%: it may appear low, but if the environment generates 300k alarms (as in [116]) such FPR corresponds to 3000 false alarms. Note that also

the inverse is true: an increment of just 1% in the TPR can be either an almost negligible or an extremely significant performance boost.
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Future Challenges of Machine Learning in Cybersecurity
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Fig. 11. Future Challenges of Machine Learning in Cybersecurity. Addressing all such challenges requires the cooperation of
four players: regulatory bodies, corporate executives, engineers, and researchers.

6.1 Certification (Sovereign entities)
The 2020 EU White Paper on Artificial Intelligence [1]—also followed by a 2021 US DHS report [4]—indicates

trustworthiness as one of the key requirements for future ML applications. Especially, emphasis is put on ‘high-risk’

scenarios, where deployment of ML should conform with pertinent legal requirements. Cybersecurity applications

naturally qualify as high-risk, hence procedures that certify the performance and robustness of ML systems should

be developed and enforced by regulatory bodies. Let us elaborate.

Performance Certification. Comprehensive testing represents the only instrument for performance verification

of a ML system. However, despite hundreds of works, there is a lack of standardized evaluation protocols. This
is a problem especially for COTS products, as performance assessments may be carried out in biased environments,

or may consider unfair comparisons that inflate the results to favor a given ML solution. Meaningful assessments

must consider the realistic distribution of data and take into account the (likely) temporal shift. Traditional cross-

validation techniques, typical for ML in the computer vision domain, should be used only for tuning: specifically,

the performance should be validated via statistical tests. Establishing standardized evaluation protocols would

foster pragmatic and fair comparisons, promoting overall ML deployment in practice. Nevertheless, the full details

of such operations (e.g., the data used, the evaluation methodology, and the final results) should be transparent to

the customers of COTS ML systems.

Robustness Certification. The increased interest towards ML led to (scientific) investigations of its robustness in

adversarial scenarios, bringing to light the vulnerability to adversarial examples (§5.1). Yet, no universal solution

has been found so far, with some defenses being broken in the time span between their appearance as a preprint

and their publication as a peer-reviewed article
19
. The first step to solve this problem is to acknowledge that

no ML solution is flawless. Indeed, to quote a recent survey on the cybersecurity perspective of European

stakeholders [69]: “security of ML and adversarial attacks was not mentioned as one of the key challenges by the
interviewees.”, which epitomizes that such threat is not perceived by the end-users of ML solutions. To address

these issues, assessments of adversarial robustness must become mandatory in evaluations of any ML-based

solution for cybersecurity. The most likely security risks, and their potential consequences, should be known

before real ML deployments. Moreover, all the details of such assessments should be transparently provided.

Recommendation: To ensure better transparency and reliability, regulatory bodies must enforce the development

and adoption of standardized procedures that certify the performance and robustness of ML systems.

6.2 Data Availability (executives and legislation authorities)
The effectiveness of any ML-solution depends on the data used to train the corresponding ML model. However,

among the toughest challenges faced by ML in cybersecurity is finding appropriate data. Despite the recent

19
For instance, defensive distillation was proposed in 2016 [128] and broken few months later [48].
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interest in ML led to the release of more open datasets (e.g., [10, 31, 142]), such datasets exhibit limitations [163].

For instance, inaccurate labels, fast obsolescence, small and synthetic environments (e.g., [115]), or even flawed

generation process—as shown in [66]. All these problems can only be mitigated to some degree (e.g. [37]), and

cannot be solved by the scientific community. The lack of adequate data (i.e., real and labelled) makes evaluations

of ML conducted in research environments to be of questionable value, preventing sound assessments of ML

capabilities, and ultimately hindering its deployment. Addressing the shortage of data is possible, but it requires

the joint intervention of industrial stakeholders and regulation authorities: the former should promote data
sharing, the latter should devise more actionable data regulation policies.

Data Sharing. A solution to the lack of adequate data is the promotion of data sharing practices. In cybersecurity,

some portions of data can be easily shared: for instance, Sophos has recently released over 20M (labelled) malware

samples [78]; similarly, the recent CrimeBB dataset [129] contains 1 million accounts crawled from darkweb

forums for 10 years. In contrast, other pieces of data (especially benign data) are more confidential and hence

their disclosure requires explicit permission from corporate executives. Acquiring such permission is a

tough barrier, especially due to privacy and secrecy issues. However, we observe that sensitive information can

be anonymised (e.g., [136]), and recent advances in federated learning overcame such problems [57].

There indeed exist some success stories of data sharing platforms focused on security information, such as the

EU-OF2CEN project [151]. Similar platforms represent a great opportunity for some companies, as they open the

doors to a newmarket entirely dedicated to ML datasets, potentially with (updated) ground truth (e.g., [150]). From

this perspective, a promising initiative is STIX CyBox [143]: its goal is creating a threat intelligence platform shared

by multiple parties, facilitating the entire process of incident detection and response. Nonetheless, such platforms

must (i) contain unbiased data—otherwise there a the risk of manipulating future developments [109]—and

(ii) comply with the existing regulation, hence requiring the involvement of the respective authorities.

Actionable Data Regulations. The strategical importance of data gave birth to multiple regulations that ‘protect’

data owners and limit abuse of sensitive information. Despite ensuring more privacy rights, such regulations

introduced additional constraints on data gathering and processing, resulting in yet another barrier to ML

developments—both for research and practice. Specifically, the (already costly) data-labelling procedures are
crucially affected by such regulations (§5.1). Even if action is taken by executives to disclose their corporate

data, existing regulation policies are difficult to interpret and likely to change in the future [124]: for instance,

information that can be shared ‘today’ may not be shareable ‘tomorrow’, hindering long-term projects. However,

we observe that some GDPR compliant data-sharing platforms exist (e.g., [79]). Hence, the regulatory authorities

should promote such efforts even in the cybersecurity context, for instance by providing actionable policies that

ensure the compliance of (open) data in the long-term.

Recommendation: To address the shortage of adequate data, companies should be more willing to share data

originating in their environments (e.g., [151]), whereas regulation authorities should promote such disclosure by

defining proper policies and incentives [124].

6.3 Usable Security Research (scientific community)
The combination of ML and cybersecurity is a fertile opportunity for research, and recently inspired many related

papers. Such trend, however, is a double-edged sword. On the good side, the rising scientific interest demonstrates

the high potential of ML for cybersecurity. On the bad side, such abundance can be detrimental for real ML

deployments, as it may raise more questions rather than provide answers. Specifically, we identify two problems

of existing research: the lack of pragmatic results, and the limited consideration of realistic scenarios.
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Pragmatic Results. One of the primary goals of research is to “outperform the state-of-the-art”. In the context

of ML, such goal requires proposing a novel ML method, and then show that such method achieves a better

performance than prior works—an objective that can be achieved without providing any ‘true’ contribution to the

state-of-the-art. For example, by slightly changing the training data it is possible to achieve a superior performance;

similarly, an existing solution may be sub-optimally reproduced (by using, e.g., a different dataset, or different tun-

ing parameters). Note that all such ‘flaws’ can be unconsciously introduced by researchers20. This phenomenon, also

referred to as benchmark lottery [58], results in an overall confusion on what really works best and impairs real ML

deployments. Among themain culprits of such phenomenon is thepoor reproducibility of researches, as very few
works disclose the entire information required to replicate their experiments. Therefore, novel researches cannot

properly reproduce previous works; and the peer-review process cannot assess whether the experimental protocol

is correct and unbiased. At the same time, however, we point out that most scientific venues do not allow (or re-

quire) inclusion of any supplementary and technical resource. Hence, even researchersmust face a difficult decision

about what low-level information should be included in the actual submission—which is subject to page limitations.

Recommendation: The peer-review process should facilitate and enforce the inclusion of the material for

replicating ML experiments. At the same time, such material should be evaluated to ensure its correctness—

potentially by a separate set of reviewers with more technical expertise.

Realistic Security Scenarios. As a direct consequence of the benchmark lottery phenomenon, many research

papers simply focus on providing ‘better numbers’ than past work, overlooking the assumptions made by such

past work. In the context of cybersecurity, this is a problem because realistic circumstances must be considered,

and any result that stems from unrealistic scenarios is of questionable value. For instance, there is a superficial
treatment of training data: only few papers (e.g., [18, 130]) consider the concept drift, which is intrinsic in

cybersecurity; moreover, many recent papers (e.g., [156]) still use outdated datasets, such as the NSL-KDD which is

over 20 years old and does not reflect any current environment. The result is that all papers propose ML methods

that achieve near-perfect performance—but what is the practical impact of all such researches? We acknowledge

that public (labelled) data is difficult to acquire, but in the last years several datasets have been openly released

(e.g., [115, 147]). The impression is that the cybersecurity setting is turning into a yet-another research playground

where new ML methods are evaluated on some ‘security-related’ data, but realistic security considerations are

only made in the introduction to provide some justification for a given publication venue. Specifically, there

is a lack of realistic threat models. Such lack is epitomized in the emerging field of adversarial ML (§5.1),

where most attacks against security systems assume extremely powerful opponents. For instance, the authors

of [20] show that the majority of attacks against ML-NIDS require adversaries with direct access to the ML-NIDS

itself, which is an assumption that violates the basic security principles. Similarly, [133] show that adversarial

attacks have a different effectiveness when the opponent cannot manipulate the data-processing pipeline (which

is usually not accessible). Hence, it is not surprising that the industrial stakeholders are either confused or do

not care about adversarial examples—as evidenced by two recent surveys [69, 95] and the detailed case study in [42].

Recommendation: Future researches on ML applications for cybersecurity should have a closer connection

with the real world. The assumed threat model should be realistic, the dataset should resemble recent trends, and

the concept drift should be taken into account.

20
A recent paper describing the pitfalls of ML in cybersecurity is [30]
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6.4 Orchestration of Machine Learning (engineers)
ML is not meant to fully replace existing systems or human experts. Rather, it should provide an additional

‘perspective’ that can be used to identify otherwise overlooked phenomena. However, ML methods exhibit

huge variance (e.g., different performance [134, 162], or adversarial robustness [25]), and a single ML solution

cannot protect against all threats that can target modern organizations.
21
Addressing all such issues is possible

by orchestrating diverse ML solutions. Indeed, any ML model (irrespective of its goal) ultimately represents

just a single component of a cybersecurity system—which can be a ‘hybrid’ system that leverages also non-ML

techniques. However, such orchestration requires the expertise of ML engineers, who must coordinate different

outputs to extract actionable information. Specifically, ML (and non-ML) models can be combined either in an

ensemble or in a pipeline architecture, depending on the final goal of the system.

Ensemble architecture. One of the most proficient ways to combine different ML models is the so-called

ensemble [38]. The idea is leveraging many simplified learners with a common goal: each ML model of the

ensemble analyzes the same data, but by focusing on a specific problem. For instance, it is possible to create

ML-NIDS using ensembles of ML models, in which each model has the same goal (i.e., intrusion detection), but

focuses on a specific threat (e.g., botnet or DoS attacks [113]). Despite the proven performance benefits of such

architectures, a tough challenge faced by engineers is the lack of standardized feature sets that can be used to

devise all such systems. Each model of the ensemble must ultimately analyze the same data, and depending on

the features provided as input the performance can greatly differ (as shown in [41]). Our industrial case studies

in §7 consider a similar architecture.

Pipeline architecture. When the system envisions ML models having systematically different inputs and outputs,
they must be organized in a pipeline architecture. For example, it is possible to create an ensemble of ML models

for threat detection (§3), and then use their outputs for threat intelligence (§4). Similar systems already exist,

either as COTS products (e.g., SIEM
22
or SOARS

23
) or as scientific proposals: for instance, ARCUS [175] is a

security-focused orchestration platform that could benefit from the integration of many of the ML solutions

discussed in this paper. However, such architectures are challenging to implement by engineers: each individual
component is affected by all the issues presented in §5, therefore multiplying their impact.

Recommendation: Orchestrating complex systems that use (combinations of) ML and non-ML solutions is

beneficial for cybersecurity. Hence, ML engineers and practitioners should clearly highlight how to combine all

such components in order to maximize their practical effectiveness.

7 CASE STUDIES: INDUSTRIAL APPLICATIONS OF ML FOR CYBERSECURITY
As a final contribution of this paper, we present two case studies that showcase real and successful industrial

applications of ML in cybersecurity. Many commercial products are advertised as leveraging ML. Yet, most of

these products are provided as black-boxes, preventing any understanding of how ML is actually applied in
practice. Specifically, our case studies involve the two following scenarios:

• using ML for detecting Cache Poisoning Attacks against Named Data Networks. The approach is integrated

in a NIDS developed by Montimage (§7.1);

• combining sequential deep learning with non-ML methods for protecting Industrial Control Systems. The

approach is integrated in a cybersecurity device developed by S2Grupo (§7.2).

21
The most exemplary use-case are zero-day attacks, which can easily evade supervised ML methods: zero-day samples cannot—by definition—

be included in the training data. Anomaly detection through unsupervised ML is more feasible, but at the cost of many false positives.

22
System Information and Event Managers: https://www.forcepoint.com/cyber-edu/siem

23
Security Orchestration Automation and Response Systems: https://www.rapid7.com/solutions/security-orchestration-and-automation/
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Both of these solutions use ML for anomaly detection with limited supervision. Our goal is to provide a high-level

overview on such ‘black-box’ ML systems by elucidating their internal functionalities.
24
.

7.1 Detection of Cache Poisoning Attacks in Named Data Networks
Information Centric Networking (ICN) is a revolutionary paradigm in the context of communications: while most

of the Internet follows a host-to-host perspective, ICN adopts a host-to-content vision [6]. The ICN architecture

is more suitable for massive content diffusion (e.g., video streaming), representing the major use cases of modern

networks. Despite providing multiple benefits in terms of bandwidth efficiency and scalability, ICN can fall victim

to Denial of Service (DoS) attacks and, in particular, to poisoning attacks [5, 174]. In this case study, we analyze a

real ML detection system that protects against such attacks targeting ICN architectures. The specific techniques

are integrated into the Montimage Monitoring Tool
25
(MMT), which is a module of the IDS framework developed

by Montimage [118, 169].

Scenario and Challenges. This case study focuses on the well-known ICN approach of Named Data Networking

(NDN) [181]. Such NDN approach leverages a pull-based mechanism using two kinds of packets: Interest (a
request for a content) and Data (the response with the content). When a given user wants to retrieve some

content, the user (i) specifies the desired content’s name (e.g. “/data/video.mp4”) in an Interest, (ii) sends such

Interest through the NDN network, and (iii) receives the corresponding Data—which can be provided either by

the content producer, or by any intermediate NDN node storing a copy of such Data. The practical implementation

of NDN exposes to the risk of new security attacks, such as the Content Poisoning Attack (CPA) [174]. In CPA,

a malicious producer (content creator) colludes with a malicious consumer (a user requesting content) to force

any NDN node on their path to insert malicious content in their content storage (CS), hence causing poisoning

attacks. This results in nodes answering some requests with such malicious content: for example, a victim may

ask for a specific webpage and instead be redirected to a malicious phishing website. CPA are a dangerous threat

to NDN, as shown in [119]: analyses on real system highlighted that identifying CPA is impossible via static
and human-based approaches. This is due to the intrinsic characteristics of NDN, as each node in the network

topology reacts differently. Moreover, NDN are also susceptible to Interest Flooding Attacks (IFA), which represent

a variant of DoS in which the NDN is ‘flooded’ with interest requests [148] for existing or even non-existing

content that can disrupt the distribution of content. Although IFA are easier to identify than CPA, countering

both IFA and CPA is challenging and requires the usage of more dynamic analytical techniques—such as ML.

Montimage ML-Solution. The ML-solution developed by Montimage leverages ensembles of ML models orga-

nized in a Bayesian Network Classifier (BNC) [120]. The intuition is that detection of CPA is only possible by

monitoring the behaviour of each node in a NDN network—and, specifically, by analyzing and cross-correlating

the evolution of different metrics for each node.

Such goal is achieved by means of specific probes deployed on each node and monitoring its complete activity.

In particular, each probe collect metrics related to the Data plane of NDN: Content Store (CS), Pending Interest

Table (PIT), Faces. The latter, in particular, are an abstraction of a communication channel that NDN uses for

packet forwarding. Such abstraction represents data coming from diverse ‘faces’, i.e.,: overlay tunnels over

TCP and UDP; delivery of NDN network layer packets (e.g., Interest, Data packets); inter-node communication

channels that send packets to other nodes; and intra-node communication channels that send packets to another

process on the same node.

24
The commercial nature of such systems—which are built on the end-users data—makes some low-level details to be protected by NDA, but

explicit requests can be made by contacting the respective vendors.

25
https://montimage.com/products/MMT_DPI.html
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The information captured by these probes is then analyzed by ensembles of micro-anomaly-detectors, each
focusing on deviations from the normal behaviour of a single metric captured by each probe. It is true that

CPA can impact many metrics and in different ways, raising hundreds of (likely) false alarms by each micro-

detector. However, correlating all the alarms with a BNC allows to (i) increase the detection performance while

(ii) mitigating the high rate of false alarms generated by individual micro-detectors.

A schematic representation of the considered BNC is provided in Fig. 12: the ‘anomaly’ node (denoted in

red) represents the anomalies that can occur in the entire NDN, whereas the remaining nodes represent the

individual micro-detectors. Hence, each node focuses on a single metric, specifically: Faces, CS, or PIT (denoted

in green, purple and blue in Fig. 12). The (directed) edges in the BNC represent the causal relationships between

the Anomaly node and a metric (or pairs of metrics). An edge connects the ‘causing’ node to the ‘affected’ node.

The causal relationships are deduced based on the processing of each packet arriving to the NDN node.

Fig. 12. Architecture of the Bayesian Network Classifier adopted by Montimage to detect CPA in NDN. Each node represents
a micro detector that focuses on a single metric. The Anomaly node correlates the output of all other NDN nodes.

Fig. 13. Preliminary assessment of the BNC to
identify the optimal size of the training dataset.

Evaluation and Results. It is necessary to conduct a prelimi-

nary assessment of the learning efficency of the BNC before its

deployment. This is because NDN generate a lot of traffic, and

even though the BNC can ‘condense’ the raised alarms it is still

important that such alarms—and, specifically, false alarms—are

within acceptable levels. To this purpose, Montimage first collects

huge amounts of real data from the probes, and then uses such

data (assumed to be benign) to train (and test) a BNC. Specifically,

multiple BNC are assessed, each considering a different training

size: the goal is finding the optimal size that minimizes the rate of

false alarms. The results of such assessment are reported in Fig. 13,

showing the misclassification error (as measured via 5-fold cross-

validation) as a function of the training size. We observe that an

optimal value is achieved when the training set contains ∼ 280

samples
26
. For higher values, the error increases due to overfitting

(this phenomenon confirms the misconception outlined in §5.2).

26
We observe that such samples represent alarms corresponding to multiple signals, and not to raw events.
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Thus, for the considered deployment scenario, Montimage uses training sets of 280 samples—corresponding to 23

minutes of real reportings.
To evaluate the performance in production settings, Montimage reproduces the NDN topology in [182] and

creates two distinct environments, each adopting a specific NDN routing strategy: bestroute or multicast. Then,
each environment is monitored for 10 minutes, and the attack is simulated in the last 5 minutes. Specifically,

multiple CPA are launched, each considering increasing payloads, denoting the number of requests for content

(i.e., Interests) per second; in our case, we consider payloads of 5, 10, 20 and 50 Interests per second. In comparison,

legitimate clients produce 10 Interests per second (on average): hence, the malicious traffic ranges from half to

five times the legitimate traffic. The traffic generated during such simulations is collected and used to assess the

quality of the BNC: the goal is verifying whether the BNC is capable of identifying the CPA, which occurs in the

last 5 minutes.

To provide a twofold perspective of the performance (see §5.3), Montimage measures the True and False

Positive Rate (TPR and FPR—cf. Table 1 in §2.1). The results of such evaluation, performed on a testing set of

240 samples, are reported in Table 2. We observe that the TPR increases for greater payloads, because the CPA

become more conspicuous. Nonetheless, it is appreciable that even CPA with low payload can be effectively

detected. Finally, the low FPR is crucial for real deployments as they are annoying to human operators. All such

results are due to the advantages provided by the BNC, because BNC use a probabilistic approach allowing to

take into account the underlying random nature of the observed metrics. Such property makes BNC tailored

for multi-variate anomaly detection in real environments. In contrast, other ML algorithms present significant

drawbacks: for instance, ‘deep’ neural networks are excessively difficult to develop in such settings (also due to

their poor explainability); whereas other ‘shallow’ algorithms, such as SVM, simply do not allow to efficiently

represent and correlate all the metrics affected by CPA.

Table 2. CPA detection performance for two different routing strategies and increasing attack payload.

Routing

Strategy

Attack payload

(# Interest/s)

5 10 20 50

Bestroute % True Positive 95.0% 95.3% 97.0% 98.3%

% False Positive 1.0% 1.0% 1.0% 1.0%

Multicast % True Positive 63.3% 72.8% 79.3% 96.3%

% False Positive 1.0% 1.0% 1.0% 1.0%

The major limitation of BNC is its intrinsic function as anomaly detector: indeed, an anomaly is not necessarily

malicious. For instance, in a NDN setting, a sudden demand for a video from legitimate users could lead to a

temporary increase in traffic, indicating an abnormal activity. To mitigate this problem, Montimage considers four

possible ‘states’: normal state, IFA attack state, CPA attack state, number of users increase. Each state is denoted by

different ‘anomalous’ combinations taking into account a total of 18 metrics: a similar solution allows to maintain

the FPR to acceptable levels (as shown in Table 2). We take this opportunity to make a crucial remark for real ML

deployments: one may believe that defining more ‘states’ and/or increasing the amount of considered metrics

leads to better results. However, according to Montimage a similar approach can yield proficient results only in a

lab environment because it induces overfitting, and the true deployment performance may suffer excessive FPR.

Finally, an intriguing future development of such ML solution involves the consideration of ‘stateful’ analyses

that take into account the time-axis (as done, e.g., in [56]) and allow to detect even anomalies occurring in the

temporal domain. The next case-study by S2Grupo will consider a similar application.
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7.2 Combining ML with non-ML methods to protect Industry 4.0 environments
With the rapid growth of the Industry 4.0 paradigm, industrial environments are even more exposed to Advanced

Persistent Threats (APT) [132]. Specifically, recent developments of Industrial Control Systems (ICS) represent an

attractive target for attackers [68]. In this case study, we share the experience in the design and operation of

CAIAC
27
, a non-intrusive device that leverages sequential ML to protect ICS against APT and other cyber-threats.

Scenario and Challenges. This case study highlights the advantages of ML applications for anomaly detection

in time-series data. The intuition is that APT leverage zero-day vulnerabilities, and hence cannot be detected via

misuse-based detection approaches—irrespective of being human- or data-driven. However, point-wise and static

anomaly detection approaches are not enough to detect advanced cyberattacks, and the additional perspective

provided by the temporal domain allows may facilitate the detection of refined offensive strategies [132].

In the specific ICS scenario, there are two crucial requirements that must be met by security systems. First,

they should operate in a non-intrusive way, avoiding additional overhead and ensuring the regular functionalities

of the ICS: this is a tough requirement because ICS include hundreds of devices and while excessive false alarms

are annoying, slow reaction times may imply a fallout of the entire ICS. Secondly, they must take into account

the complexity and variability of the data in ICS, which is difficult to manage to the intrinsic heterogeneity of

ICS. Such requirement cannot be met just with traditional approaches for time-series anomaly detection based

on heuristics: to address this problem, S2Grupo leverages the capabilities of deep learning.

S2Grupo ML-Solution. The ML solution developed by S2Grupo, CAIAC, is an intriguing example of ML or-
chestration (§6.4): CAIAC not only leverages the benefits provided by ‘small’ ML models (as done in §7.1), but

also exploits the potential of non-ML methods for time-series analyses. In particular, the idea is to combine

deep learning algorithms, epitomized by Long-Short Term Memory (LSTM) neural networks, with statistical

approaches for time-series forecasting, such as SARIMA (Seasonal Autoregressive Integrated Moving Average).

The result is an ensemble of ML and non-ML models, exploiting the benefits of both approaches and overcoming

their limitations: statistical models can be more manageable, but when the data has high complexity deep learning

is superior. Such design choice is particularly suited for real ICS deployments due to a threefold advantage with

respect to ‘one-size-fits-all’ ML architectures. Specifically:

• individual ML models are easier to train because they must deal only with a tiny portion of the data,

resulting in better performance and lower false alarms;

• it allows combining different algorithms, each addressed to a specific problem and data-type.

• it makes the resulting system more ‘future-proof’, because it each ML model can be individually updated,

removed, or replaced.

Furthermore, CAIAC is based on passive monitoring in near real-time, hence preventing excessive information

overhead while still allowing timely responses.

Let us explain CAIAC in more detail. The intuition is to analyze the network traffic of the considered ICS from

different perspectives, each associated to a specific time-series. Such time-series can differ on the basis of two

criteria: the network metric (e.g., transmitted packets), and the granularity used to aggregate the corresponding

metric in time slots of fixed length. All such time-series are used to devise multiple ML and non-ML models: the

performance of each model can be assessed individually by forwarding its detected anomalies to a higher level

correlation layer (similar to [132]). The goal of this layer is determining the nature of such anomalies: they can

either be legitimate (i.e., a ‘normal’ malfunctioning of a component that must be investigated) or illegitimate (i.e.,

an attack is taking place). Such procedure allows to identify the most suitable models that will be integrated in

CAIAC, depending on the pros and cons of each model. Indeed, LSTM models may yield a superior performance

27
https://s2grupo.es/en/research-development-innovation/industrial-cybersecurity/caiac.html
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but require a training phase, whereas statistical models are easier to develop and only require some tuning. Hence,

such (non-ML) models are the preferred choice when they exhibit similar performance to LSTM.

Evaluation and Results. To develop CAIAC, it is necessary to first assess the characteristics of the specific

ICS: indeed, it is not possible to use models trained on different environments (as explained in §5.3). Hence,

S2Grupo monitors and collects the network traffic of the considered ICS, and creates multiple time series, each

considering a given metric and granularity. Some metrics are commonly adopted in NIDS (e.g., transmitted

packets or bytes, in-/out-degree [132]); others are specific of ICS and require dedicated industrial dissectors that

extract the relevant information (e.g., protocol, parameters, command density). Finally, each metric is aggregated

in time slots of varying length, from 1 minute to 1 hour.

After this data collection phase, which in the considered setting typically amounts to about 10GB of data per

day, S2Grupo performs the exploratory analysis focused on determining the most proficient (ML and non-ML)

algorithms for studying each time-series. Let us elucidate the differences between two specific applications of

SARIMA and LSTM, starting from the non-ML algorithm.

Specifically, SARIMA analyzes a time-series by adopting a sliding window approach: all data points within a

given time window are considered by SARIMA to predict a ‘future’ value, which is provided alongside a confidence
range. We provide an example of SARIMA in Fig. 14, showing the time series of the transmitted packets aggregated
in time slots of 5 minutes, over a period of 1 week; the sliding window considered by SARIMA is of 30 minutes.

The actual values are reported in dark-blue, whereas the values predicted via SARIMA are shown in orange; the

confidence window of each predicted value is shown in light-blue: therefore, actual values that fall outside of

such range are treated as anomalous. In particular, vertical gray lines denote the anomalies detected by SARIMA.

From 14, we observe that SARIMA accurately detects stationary deviations. However, SARIMA can only detect

non-stationary changes when they happen within its sliding window. Furthermore, non-stationary (but legitimate)

changes that occur after a long stationary interval are falsely detected as anomalies by SARIMA. Despite some

incorrect predictions, the considered application of SARIMA obtained a performance that was deemed appropriate

for the given task, and integrated in CAIAC.

Let us showcase an application of deep learning via LSTM. Since LSTM do not provide a confidence interval for

each prediction, S2Grupo developed a custom anomaly threshold that takes into account the deviation between

predicted and actual values, as well as the degree of accumulation of such deviation in the past history. An

example of such LSTM application is given in Fig. 15, showing the time-series of the transmitted packets (same

as Fig. 14), but with a time slot of 1 minute. The actual values are shown in blue, whereas the LSTM predictions

are in orange. Vertical grey lines denote the anomalies detected by the LSTM, i.e., when the actual values falls

outside the given anomalous threshold predicted with the LSTM.

From Fig. 15, we can observe that, by reducing the time slot from 5 to 1 minute, the resulting time-series is less

predictable, making statistical methods unfeasible and requiring the advanced capabilities of deep learning. Indeed,

the considered LSTM can detect anomalous values without being affected by non-stationary changes—even

after long stationary intervals. This example highlights the capabilities of (deep) ML to deal with data with high

dimensionality: the LSTM takes into account a long ‘past’ history, allowing to better infer the ‘normal’ behaviour.

In contrast, applying SARIMA on the same time-series resulted in very poor results due to the intrinsic variability

of the sequence, which forced us to aggregate data in 5 minute time slots.

However, it is important to take into account that the LSTM require a training step, whereas SARIMA only

requires some parameter adjustment. In this use-case, the LSTM in Fig. 15 was trained with data collected over

three weeks. Such characteristic implies that a similar LSTM model requires at least 3 weeks of data collection

since no previous network traffic data was available to train the model—alongside the additional computational

resources to store such data, and train the LSTM model (which were within acceptable levels). Hence, CAIAC
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Fig. 14. Anomaly detection with (non-ML) SARIMA, using a sliding window of 30 minutes. The time-series represents the
transmitted packets (y-axis) within 5 minute slots, over a period of 1 week (x-axis), corresponding to a total of 2K samples.
Dark blue correspond to actual values, orange denotes the values predicted with SARIMA, and light blue denotes the
confidence interval of SARIMA’s predictions. Vertical gray lines correspond to the anomalies detected by SARIMA.

Fig. 15. Anomaly detection with a deep LSTM neural network. The time-series represents the transmitted packets (y-axis)
within 1 minute slots, over the period of 1 week (x-axis), corresponding to a total of 10K samples. Actual values are shown in
blue, and the LSTM predictions are shown in orange. Vertical gray lines denote the anomalies detected by the LSTM.

would initially make use of SARIMA, and then replace it after enough data has been collected to develop a more

proficient LSTM model.

We can conclude that machine (and deep) learning are powerful instruments for protecting modern ICS, but

methods that do not leverage ML are equally important to compensate some of the limitations of ML. As such,
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future developments should not exclusively focus on ML and overlook the benefits provided by other data-driven

methods.

8 CONCLUSION
This paper elucidates the role of Machine Learning (ML) for Cybersecurity by providing a broad and high-level

overview of the benefits, problems, and future challenges of ML in this domain. Our paper is oriented at the

entire cybersecurity sphere, and to make our contribution understandable by a broad audience we limit technical

terms to a minimum. Moreover, we also clarify many misconceptions (summarized in Table 3) that are becoming

common due to the increasing abundance of works that link ML with cybersecurity applications.

After introducing the basic concepts of ML, we provide a concise summary of their applications to detect

three types of cyber threats: Malware, Phishing, and Network Intrusions. Then, we elucidate some additional

cybersecurity areas that can leverage the autonomous capabilities of ML, such as raw-data analysis, alert

management, cyber risk estimation, and threat intelligence. What follows is a description of the fundamental

problems affecting ML within the specific context of operational cybersecurity, which should be known to weigh

the pros-and-cons of the still emerging ML solutions. Some of these problems stem from the intrinsic conflicts

between the fundamental principles of ML and the cybersecurity domain, and can be addressed only by the joint

effort of different worlds: regulatory and authoritative bodies, corporate executives and engineers, as well as the

entire scientific community. To this end, we highlight the future challenges of ML in cybersecurity, which we

integrate by comprehensive recommendations addressed at each of these separate worlds. Finally, we present

two case studies of successful—and operational—industrial deployments of ML to counter cyber threats.

This paper will hopefully inspire meaningful developments of ML in the cybersecurity domain, laying the

foundations for an increased deployment of ML solutions to protect current and future systems.

Table 3. Summary of security ML misconceptions discussed in the paper.

# Misconception Ref.

1 Deep Learning vs Shallow Learning §2.1

2 Machine Learning and Anomaly Detection §3

3 Legitimacy of Adversarial Samples §5.1

4 Minimal Adversarial Perturbations §5.1

5 Size of training data §5.2

6 Updating ML models with new data §5.2
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