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Abstract. Recent times have witnessed the rise of anti-phishing schemes
powered by deep learning (DL). In particular, logo-based phishing de-
tectors rely on DL models from Computer Vision to identify logos of
well-known brands on webpages, to detect malicious webpages that im-
itate a given brand. For instance, Siamese networks have demonstrated
notable performance for these tasks, enabling the corresponding anti-
phishing solutions to detect even “zero-day” phishing webpages. In this
work, we take the next step of studying the robustness of logo-based
phishing detectors against adversarial ML attacks. We propose a novel
attack leveraging generative adversarial perturbations to craft “adver-
sarial logos” that, with no knowledge of phishing detection models, can
successfully evade the detectors. We evaluate our attacks through: (i) ex-
periments on datasets containing real logos, to evaluate the robustness of
state-of-the-art phishing detectors; and (ii) user studies to gauge whether
our adversarial logos can deceive human eyes. The results show that our
proposed attack is capable of crafting perturbed logos subtle enough to
evade various DL models—achieving an evasion rate of up to 95%. More-
over, users are not able to spot significant differences between generated
adversarial logos and original ones.
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1 Introduction

Phishing attacks are on the rise [2], and they represent a serious threat to both
organizations and individuals alike. While there have been numerous research
efforts to counter this long-running security problem [25,56,30,31], a universal
solution against phishing has yet to be found, as new ways to lure unaware vic-
tims keep emerging [3]. We focus on the problem of detecting phishing websites,
which has witnessed 61% increase in 2022 [6].

The first line of defense against phishing websites is represented by block-
lists, which are nowadays leveraged at scale [29]. Unfortunately, such rule-based
countermeasures only work against the phishing entries in the blocklist, and at-
tackers are well-aware of this (for a recent report, see [4]). To protect users against
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evolving phishing websites, current anti-phishing schemes are now equipped with
data-driven methods that detect malicious webpages by leveraging some heuris-
tics [5]. In particular, the constant progress and successes of machine learning
(ML) algorithms in research [51,57] led to the integration of ML-based phishing
detectors also in popular browsers [33].

There are various ways in which ML is used to identify phishing websites, de-
pending on the input analyzed by the ML model [22]: URL (e.g., [53,30]), HTML
contents (e.g., [56,57,32]), or visual representations (e.g., [20,7]) of a webpage.
Detection methods based on visual analytics are now receiving much attention
(e.g., [20,19,7,34,28,35]), likely due to the tremendous advancements in deep
learning (DL). In this work, we delve into the application of DL for logo-based
phishing website detection—a state-of-the-art approach5 that is (i) considered
in recent researches (e.g., [19,28,34,35]), and (ii) deployed in practice [11].

In logo-based detection, the first task is to extract the logo(s) from a webpage
(typically from its screenshot); the subsequent task is to identify the brand of
the logo. The latter task can be accomplished by means of DL today, as demon-
strated by recent works, e.g., by employing Siamese neural networks [34,35].
Given the relevance of these solutions in anti-phishing schemes, we scrutinize
the robustness of DL models for logo identification against subtle adversarial
perturbations. Even though many efforts in the DL community reveal the vul-
nerability of image classification models to adversarial examples [50,26,43,38],
to the best of our knowledge, there exists no work that studies the vulnerability
of logo-based phishing detectors against such sophisticated attacks. Therefore,
besides the Siamese models proposed by prior work, we also develop two new
logo-identification solutions based on state-of-the-art transformer models from
Computer Vision—namely, Vision Transformer ViT [23] and Swin [36].

Subsequently, we propose a novel attack using generative adversarial per-
turbations (GAP) [43], to craft adversarial logos that simultaneously deceive
(i) DL models for logo identification, and (ii) human users, i.e., potential vic-
tims. Through a comprehensive experimental study based on datasets of real
logos, we demonstrate the quality of our proposed DL models for logo identifi-
cation and the efficacy of the adversarial logos generated by our GAP attack to
evade all three powerful models for logo identification (Siamese, ViT and Swin).

Finally, we carry out two user studies to assess the impact of our attack on
real humans. We summarise our three major contributions:
1. We propose a novel attack, based on generative adversarial perturbations

(GAP), against logo-based anti-phishing schemes (Section 4). Our proposed
attack treats a phishing detection (specifically, logo-identification) model as
a black-box and does not require any model-specific information.

5 Background: in simple terms, logo-based phishing detection seeks to identify those
(malicious) webpages that attempt to imitate a well-known brand. Intuitively, if a
given webpage has the logo of a well-known brand (e.g., PayPal), but the domain
does not correspond to the same brand (e.g., www.p4y-p4l.com), the webpage is
classified as phishing. Though these approaches require maintenance of a database
of logos for brands, such a task is not impractical given that the number of brands
targeted by attackers is typically small (≈ 200) [7,18,34].
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2. We propose two new logo-identification solutions leveraging transformer-
based DL models: ViT and Swin (Section 3). We empirically demonstrate
that both ViT and Swin achieve performance comparable to the state-of-
the-art solutions relying on Siamese models [34,35] (Section 5.3).

3. Through a reproducible evaluation on real data, we evaluate the robustness
of three DL models for logo-identification (ViT, Swin, Siamese) against our
GAP-based attack (Section 5.4). We further validate the impact of our attack
on real humans through a user study entailing ∼250 people (Section 6).

We suggest potential countermeasures against our attack, and also discuss ways
that attackers can use to circumvent such countermeasures (Section 7). Finally,
we publicly release our resources to the scientific community [1].

2 Threat model

We describe the threat model by first summarizing the functionality of the target
system, and then presenting the characteristic of our envisioned attacker.

2.1 Target system: Logo-based phishing website detectors

Fig. 1 presents the general workflow of logo-based phishing detection systems.
From a given webpage, the detection system first extracts the logo as an image;
then, it identifies the brand the logo belongs to by using a discriminator. Such a
discriminator can be implemented in various ways, e.g., earlier works employed
methods based on SIFT (scale-invariant feature transformation) [9,54]; however,
current state-of-the-art methods use DL models [34,16,35], and we focus on these.
Upon identifying the brand of a logo, the system determines if the webpage is
legitimate or not by comparing the webpage’s domain with the domain of the
brand associated with the logo.

Logo 
Extraction

Webpage Logo discriminator

In Protected
Brands

Unknown
webpage

Phishing
webpage

Genuine
webpage

Logo Image

Domain name
/ Contents comparison

Yes

No

Fig. 1: Detection process of logo-based phishing detection systems

Since logo-identification is a multi-class classification problem, the DL model
is trained on a static set of classes, i.e., the brands of the logos. Such a set of
protected brands determines the size of the prediction classes; one brand may
have multiple logos. Previous research has shown that 99% of the attacks target
less than 200 brands [7,34,35].

In practice, phishing detectors must exhibit low false-positive rates (FPR),
typically below 10−3 [31,44]. To successfully detect phishing webpages while
maintaining low FPR, logo-based detectors follow two principles [34]: (a) the
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highest predicted class is decided as the target brand if and only if the predic-
tion probability is greater than a predefined decision threshold (say, θ); (b) if the
identified logo does not belong to any brand in the protected set, the webpage
is considered benign to avoid triggering false positives (see Fig. 1). Unfortu-
nately, these principles can be maliciously exploited: by lowering the prediction
probability, it is possible to evade logo-based phishing detectors.

2.2 Attack: Adversarial logos

The basic intuition behind our attack is to create an adversarial logo that is
(i) minimally altered w.r.t. its original variant (to deceive the human eye); and
that (ii) misleads the phishing detector. Let us describe our attacker by using
the well-known notion of adversarial ML attacks [17,11].

– Goal: The attacker wants to craft an adversarial logo related to brand b which
evades the phishing detector (at inference) while deceiving human eyes.

– Knowledge and Capabilities: To train a model for evasion, an attacker can
collect authentic logos of any brand (e.g., of PayPal), via crawling or from
public datasets (e.g., Logo2K+ [55]). The attacker knows that their victims
are protected by a logo-based phishing detector powered by ML. The attacker
has a way to infer the decision result of the phishing detector (this is doable
even if the detector is “invisible” [11], e.g., by inspecting visits to the hosted
phishing webpage). The attacker does not i) require knowledge of the logo-
identification model employed by the phishing detector, ii) manipulate the
data used to train the ML model. In other words, it’s neither a white-box
attack nor performs data poisoning.

Note, the attacker targets a set of brands for phishing; if the targeted brand is
not within the protected set, then that is already favorable for an attacker—
there is no perturbation required! Finally, the attacker naturally has control
on their phishing webpages.

– Strategy: The attacker manipulates the logo(s) of brand b in their phishing
webpages by introducing perturbations so that the logo-identification model
predicts with lower confidence, i.e., the probability of the logo being of any
brand is lower than the decision threshold (θ). This way, the phishing detec-
tor decides the logo not to be one of the protected brands, which makes way
for successful evasion.

Scope of attack. In our threat model, the attacker exploits the vulnerabil-
ity of logo-identification methods integrated into phishing detectors. We focus
on logo-identification DL models because they are i) state-of-the-art research
with phishing detecting capability in the wild (‘zero-day’ phishing) [34,35], and
ii) used in commercial phishing detectors [11]. Threats against logo extraction
from a webpage, however interesting, are not within the scope of our current
work. Lastly, we do not consider attacks to make an unknown logo be identified
as one of the protected logos, as that is not beneficial for the attacker.
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3 Deep Learning for Logo-based Phishing Detection

Development of the transformer architecture [52] paved the way for various state-
of-the-art language models, such as BERT, ChatGPT, and PaLM. Dosovitskiy
et al. [23] applied transformer to Computer Vision tasks with the introduc-
tion of Vision Transformer (ViT), demonstrating state-of-the-art performance
on benchmark datasets [23]. The attention mechanism in transformers allows
them to capture local and global contextual information effectively, resulting in
superior performance on large-scale image classification tasks. This capability is
also beneficial for logo identification, since logos of the same brand, while being
visually distinct, share the same inherent design structure. Therefore, in this
work, we propose, develop and evaluate two transformer-based models, ViT and
Swin, for logo identification. To the best of our knowledge, we are the first to
leverage transformers for logo-based phishing detection.

We now describe our proposed ViT (Section 3.1) and Swin (Section 3.2), for
which we provide an overview in Figs 2 and 3. Then, we present our own im-
plementation of Siamese (Section 3.3) neural networks. Altogether, these three
DL models will represent the target of our attacks (Section 5).
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Fig. 2: ViT-based Model Architecture
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Fig. 3: Swin-based Model Architecture

3.1 ViT for logo identification

As illustrated in Fig. 2, we develop a logo-identification model by fine-tuning a
pre-trained ViT-base model [23] on our dataset (which we discuss in Section 5.1).
The model takes as input an image of size 3× 224× 224. The image is then split
into patches, each of size 16 × 16, for further processing. Each patch is then
linearly embedded into a vector of size 1 × 768. An additional classification
token is then added to the linear embedding to form an embedded vector of size
197 × 768. The embeddings are positionally encoded before being fed into the
transformer encoder. Finally, a fully connected layer takes the output from the
encoder and maps it to a 2-dimensional space. The resulting logits are passed
through a softmax layer to produce the final prediction probabilities for each
class (logo). We denote this new logo-identification model as DViT.

3.2 Swin for logo identification

Next, we propose Swin-based logo-identification model that utilizes the Swin

transformer, a hierarchical transformer architecture introduced by Liu et al. [36].
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Unlike ViT, Swin uses shifted windows to efficiently compute local self-attentions
and build hierarchical feature maps through patch merging techniques. As illus-
trated in Fig. 3, each window contains multiple non-overlapping patches, and
each transformer block in the Swin architecture contains two attention layers:
a window-based multi-head self-attention (W-MSA) layer that calculates local
attention within a specific window, and a shifted window-based multi-head self-
attention (SW-MSA) layer that introduces cross-window connections. This ap-
proach allows for more efficient computation while still extracting both local and
global contextual information.

In our implementation, we use the Swin-Transformer-Small architecture
proposed by Liu et al. [36]. The model takes an input image of size 3×224×224,
which is split into patches of size 4× 4. As depicted in Figure 3, the patches are
fed sequentially into four encoding stages consisting of 2, 2, 18, and 2 encoder
blocks. Each encoding stage merges and downsamples the size of the feature
maps by a factor of two, while doubling the number of channels.

The final feature map of size is 7× 7 is transformed by a fully connected and
softmax layer to obtain the output logits. We denote this model as DSwin.

3.3 Siamese and Siamese++ for logo identification

The Siamese neural network is a state-of-the-art for image-based phishing detec-
tion, both for comparing screenshots [7] and logos [34,16,35]. In logo-based phish-
ing detectors, Siamese models measure the similarity of a given logo to those
in the protected set. We train a Siamese model as proposed in Phishpedia [34]
and PhishIntention [35], utilizing a transfer learning approach. Specifically, we
train a logo classification model with the ResNetV2 network as the backbone,
which effectively extracts different features from various logo variants. We then
connect the trained ResNetV2 network to a Global Average Pooling layer to out-
put a vector for any given logo. The learned vector representation is compared
to those of the logos of protected brands using cosine similarity; the target with
the highest similarity is identified as the brand the logo is trying to imitate.

We refer to our implementation of the Siamese model as DSiamese. Addi-
tionally, Phishpedia [34] proposed an adversary-aware detector by replacing the
ReLU activation function with a variant called step-ReLU (Appendix A). We
also consider this robust version of Siamese, which we refer to as DSiamese++ .

4 Our Attack: Adversarial Logos

While recent logo-based phishing detection systems [34,35] have demonstrated
robustness against generic gradient-based attacks such as FGSM [26] and Deep-
Fool [39],6 their resilience against more sophisticated adversarial attacks pro-
posed in the literature [43,38] remains unexplored. To this end, we propose a

6 FGSM and DeepFool assume an adversary with complete knowledge of the target
classifier, which is much stronger (and less realistic [11]) than the attacker envisioned
in our threat model.
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Fig. 4: Generative adversarial perturbation workflow

DL-based generative framework inspired by Generative Adversarial Perturba-
tions (GAP) [43], that specifically trains against logo identification models. This
framework generates perturbation vectors that can be added to a target logo
image, allowing the perturbed logo to evade phishing detection while remaining
imperceptible to the human eye. We now describe our framework at a high-level
(Section 4.1), for which we provide an overview in Fig. 4; and then provide
low-level details on how to practically implement our attacks (Section 4.2).

4.1 Framework: generative adversarial perturbations for logos

As illustrated in Fig. 4, our framework involves training a Generator that learns
to generate perturbations. When added to a logo image, these perturbations can
mislead a logo-identification model, which acts as the Discriminator, into low-
ering its prediction probability below the decision threshold. During the training
process, the weights of the Discriminator are frozen, treating it as a black box
to guide the training of the Generator.

Generator. We employ a Deep Residual Network with six residual blocks
(ResNet-6) [27] as the core architecture of our Generator. Given a legitimate
logo image as input, the Generator is trained to generate a perturbation vector.
The generated perturbations undergo a Scaling and Clipping stage. In this stage,
the perturbation vector is first scaled and normalized based on the L∞ norm to
control the magnitude of the perturbations, so that they remain imperceptible to
human viewers. Subsequently, the normalized perturbations are added pixel-wise
to the legitimate logo image, resulting in the adversarial logo.

Discriminator. The Discriminator is a pre-trained multi-class classifier
designed to process a logo image and estimate the probability that the image be-
longs to a target brand in the protected set. In our framework, we select one of the
logo-identification models described in Section 3 to serve as the Discriminator.

4.2 Implementation

We utilize the pre-trained Discriminator as a black box to assess the effective-
ness of the Generator in crafting adversarial logo images. The Discriminator

predicts the probability of a given logo belonging to each of the k protected
brands; Vtrue : [p1, p2, p3....pk], where

∑k
i=1 pi = 1. As mentioned in Section 2.1,

for a webpage to be classified as phishing, the logo-identification model must
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confidently identify the logo as one of the target brands i from the protected set,
with a probability pi greater than the phishing detector’s decision threshold θ.

Hence, to devise our Generator, we introduce a target probability padversarial,
such that padversarial < θ. The Generator is trained to craft adversarial logos that
are classified with probabilities lower than padversarial for all of the protected
brands, so as to evade phishing detection. Empirically, we observe that θ is very
high (above 0.8) for all discriminators, and for our attacks, padversarial can be
much lower (in our experiments, it is 0.5; see Table 3 in Appendix B).

To guide the training process, the Generator is trained with a target proba-
bility vector Vtarget : [p

′
1, p

′
2, p

′
3....p

′
k], where each element p′i is defined such that

p′i = min(pi, padversarial). This ensures that the generated adversarial logos are
classified with probabilities below the θ for all protected brands.

The loss function is defined as a decreasing function of the cross entropy
H(Vtrue, Vtarget) between the target probability vector Vtarget and Vtrue. The
specific form of the loss function can be expressed as follows:

loss = log (H (Vtrue,Vtarget)) (1)

Minimizing this loss, the Generator learns to craft adversarial logos that
evade phishing detection7; furthermore, perturbations preserve the visual sim-
ilarity with the original logo, thereby facilitating deception to the human eye.

5 Experimental evaluations

We now empirically assess the quality of our contributions. We begin by de-
scribing the datasets used for our experiments (Section 5.1), and introduce the
metrics used for our performance assessment (Section 5.2). Then, we first show
that our two DL models for logo-identification achieve state-of-the-art perfor-
mance (Section 5.3), and then demonstrate that our attacks can evade all our
considered logo-identification models (Section 5.4). Our code, dataset used, as
well as generated perturbed logos are available at [1].

5.1 Dataset

To evaluate the performance of logo-based phishing detectors and their robust-
ness against generative adversarial perturbations, we use two sets of logo images:

– L, Protected brands: The logo image set of protected brands, L, consists
of images of 181 brands which are identical to the brands used in Phish-
pedia [34]. According to the empirical observation in [34], 99% of phishing

7 Remark: Our attack relies on the logos generated by the Generator, which in turn
depend on a Discriminator, i.e., a DL model for identifying logos. However, the
Discriminator does not necessarily have to be the identical one used in the targeted
phishing detection system: as our experiments show, our adversarial logos evade even
DL models that have not been used to develop the Generator (by leveraging the
well-known transferability property of adversarial examples [21]).
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pages target one of these 181 brands. For these protected brands, we col-
lected 28 263 public logo images from search engines and Pawar’s logo image
dataset [42]. Each brand’s logo has 100–200 variants.

– L̄, Unprotected brands: Logo image set L̄ is the set of 2 045 images from
2 000 brands that do not belong to the brands in L. The image samples are
from the Logo2K+ dataset, which is publicly available [55].

The data was collected in the second half of January 2023.

5.2 Performance Metrics

In what follows, we denote the logo-identification models as discriminators;
the attack generators also use the discriminators in their training phase.

Logo identification performance: We provide the definitions of metrics for
logo-based phishing webpage detection. Note that, for a discriminator used for
phishing detection, the positives are the logos in L, the protected brand list,
that need to be identified. If the highest prediction probability of a logo is below
a certain decision threshold, it is classified as an unknown brand.

– True positive (TP): A TP in our evaluation denotes the case of correct brand
identification of the given logo (of a protected brand) by the discriminator.

– False positive (FP): An FP denotes the case when the given logo image is
wrongly identified as one of the protected brands when in reality, the given
logo image does not belong to the protected brand set.

– True negative (TN): A TN occurs when the brand of the given logo is not in
the protected brand set and gets correctly classified as an unknown brand.

– False negative (FN): An FN denotes when the brand of the given logo be-
longing to the protected brand set is classified as any other brand.

Denoting the actual brand of a given logo l as lb, and the predicted brand by the
discriminator as lp, we define the True Positive Rate (TPR) and False Positive
Rate (FPR):

TPR =
|(lb = lp) ∧ (lp ∈ L)|

|lb ∈ L| ; FPR =
|(lp ∈ L) ∧ (lb ∈ L̄)|

|lb ∈ L̄| (2)

Impact of the attacks: Recall that our attacker aims to fool the discriminator
into classifying a protected brand logo as an unknown brand. Hence, we introduce
the Fooling ratio, which is the rate of adversarial logos classified as being of an
unknown brand (out of all the phishing logos). Formally:

Fooling ratio =
|lp /∈ L ∧ lb ∈ L|

|lb ∈ L| (3)

Intuitively, a higher fooling ratio denotes an attack with a higher impact.
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5.3 Baseline: Analysis of logo-identification models

We assess the performance of the four DL models for logo-identification presented
in Section 3. Specifically, we first measure the TPR and FPR of the state-of-the-
art discriminators (i.e., Siamese and its robust version Siamese++ [34]), and
compare them with the transformer-based discriminators that we proposed in
this work (i.e., ViT and Swin).

Setup. We use the datasets L and L̄ (see Section 5.1), with a train:test split
of 85:15. For ViT and Swin, we apply the common model head fine-tuning for 50
epochs and then transfer training on the entire networks for the next 150 epochs,
reducing computational time while improving performance. We provide hyper-
parameters configurations of our discriminators in Table 2 (in the appendix).

Results. Fig. 5a shows the ROC curves of the four discriminators (the x-axis
denoting FPR is in log-scale for visibility). Overall, Siamese and Siamese++

show the best performance in terms of logo identification. All four models show
comparable TPRs at FPR above 10−2. For practical purposes, however, we have
to evaluate the detection capability at low FPRs [44,22]. Observe that, the TPR
values of the discriminators ViT and Swin at FPR below 10−2 are worse than
the Siamese models. Fig. 5b shows the gap in TPR between the discriminators
at the more practical FPR value of 10−3; Siamese and Siamese++ show around
six and twelve percent-point higher TPR than the ViT and Swin, respectively.
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Fig. 5: Comparing discriminators for logo identification

Although Swin and ViT are not better than Siamese, they still achieve an
appreciable degree of performance, and hence are used to evaluate our attacks.

5.4 Attack: evasiveness of adversarial logos, and computational cost

We quantitatively analyze the effects of adversarial logos generated by our attack
against DL models for logo identification. We do this through a cross-evaluation
that captures both ‘white-box’ and ‘black-box’ adversarial settings. At the end
of this section, we also discuss the computational cost of our attacks.

Setup. Recall that our attack (Section 4) entails training a generator by using
a given discriminator (i.e., DL models for identifying logos). For our experiments,
we consider three discriminators: ViT, Swin and Siamese, thereby yielding three
corresponding generators: GViT, GSwin and GSiamese. After training each gener-
ator, we assess the adversarial logos against all our discriminators. Such an



Attacking logo-based phishing detectors with adversarial perturbations 11

evaluation protocol allows one to analyze the effects of our attacks when the
adversary does not know the DL model used for the defense.

For evaluations, we train our generators on the dataset L; we provide the
hyperparameters of our generators in Table 3 (Appendix B). Subsequently, we
test the discriminators with the adversarial logos crafted by each generator.

Results. The results are plotted in Fig. 6, where we compare the fooling
ratio of discriminators against the different attacker models for varying FPRs
(in log-scale). It stands out that each discriminator is much weaker against the
adversarial logos created by the ‘matching’ generator compared to those created
by generators trained on different discriminators. For instance, from Fig. 6a, we
observe that the adversarial logos generated by GViT are more effective against
ViT (blue line) than against Swin (green line). We observe from Fig. 6b and
Fig. 6c that, if the attacker’s generator model is not trained with ViT, the fooling
ratio drops significantly for the defender with the ViT discriminator.
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Fig. 6: Comparison of different generators against different discriminators

From the adversary’s perspective, ViT is the most effective generator against
all discriminators. Fig. 6d compares the fooling ratios of the four discriminators
at a fixed FPR of 10−3; note, fooling ratios against GViT are high, rang-
ing from 42% to 95%. In other words, with GViT, at least 42% of attacker
generated logos can evade phishing detectors, independent of the discriminator
deployed. Against such an attacker, the defender might prefer to use Siamese

(or Siamese++) as it achieves the lowest fooling ratio (of around 42% at 10−3

FPR). Interestingly, the most robust model for the defender against an arbitrary
generator model would be ViT, since, on average, ViT achieves a lower fooling
ratio against all generator models.

Computational cost. Two factors contribute to the computation time to real-
ize our adversarial logos: i) generator training and ii) perturbed logo generation.
We measure the generator training time with the three models, i.e., ViT, Swin,
and Siamese, for each training epoch and the required epochs till reaching a com-
pelling performance, i.e., 0.9 of fooling ratio against the discriminator with the
corresponding model. The experiments are performed on a system with NVIDIA
RTX3090 GPU, 2.8GHz 32-core AMD CPU, 80GB RAM with Python 3.8.10,
and PyTorch 1.2.0 on Ubuntu 20.04 OS. We report the results in Table 1.

From this table, we observe an apparent gap between the models in their
training time. While the ViT-based generator, GViT, takes only half the training
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Table 1: Training time for the perturbation generators

GViT GSwin GSiamese

Avg. training time per epoch (min.) 12 23 8
No. of epochs for 0.9 fooling ratio 62 12 1
Training time for 0.9 fooling ratio (min.) 744 277 8

time per epoch in comparison to GSwin, it requires five times more training
epochs to reach the same level of performance, (i.e., 0.9 fooling ratio). GSiamese

shows significantly less overhead than the other two, in both, training time per
epoch and the required epoch. GSiamese accomplishes a fooling ratio of 0.9 against
DSiamese after just one epoch of training which takes only eight minutes. Overall,
training GViT takes 744 minutes to have 0.9 fooling ratio, which is around 2.8
and 93 times longer training time than GSwin and GSiamese, respectively. Although
there are significant differences in training times, when it comes to generating
perturbed logos, all three generators take only around 0.7 seconds per image on
average; this negligible cost allows an attacker to generate a large number of
samples to test against a deployed phishing detector.

Takeaways. i) An attacker with knowledge of the discriminator used for de-
fense achieves more than 95% fooling ratio with our adversarial generator.
ii) In the absence of knowledge of the discriminator (i.e., independent of the
discriminator), an attacker choosing GViT as the generator achieves a fooling
ratio of at least 42% against the defender (see Fig. 6d).

6 User study: do adversarial logos trick humans?

We now provide a complementary evaluation of our proposed attack. Specifically,
we seek to investigate if our adversarial logos can be spotted by humans. Indeed,
even if a phishing detector can be evaded, this would be useless if the human, the
actual target of the phishing attack, can clearly see that something is “phishy”.
Hence, we carry out two user-studies, which we describe (Section 6.1) and
discuss (Section 6.2) in the remainder of this section.

6.1 Methodology

Our goal is to assess if the perturbations entailed in an adversarial logo can
be recognized by humans. There are many ways to perform such an assessment
through a user-study, each with its own pros and cons8.

We build our user-studies around a central research question (RQ): given a
pair of logos (i.e., an ‘original’ one, and an ‘adversarial’ one), can the human
spot any difference? Our idea is to design a questionnaire containing multiple
pairs of logos, and ask the participants to rate (through a 1–5 Linkert scale) the
similarity of the logos in each pair. Intuitively, if the results reveal that users

8 Designing bias-free user-studies in the phishing context is an open problem [48,10].
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perceive the logos to be “different”, then it would mean that our adversarial
logos are not effective against humans.

To account for the fact that the responses we would receive are entirely
subjective, we carry out (in April 2023) two quantitative user studies:

1. Vertical Study (VS), which entails a small population (N=30) of similar
users (students of a large university, aged 20–30). The questionnaire has
ten questions (each being a pair of logos to rate), wherein each participant
is shown a different set of questions. The purpose of VS is to capture the
responses of a specific group of humans across a large set of adversarial logos.

2. Horizontal Study (HS), which entails a large population (N=287) of users
with diverse backgrounds (Amazon Turk Workers with 95+% hit-rate, aged
18–70). The questionnaire includes 21 questions, which are always the same
for each participant. The purpose of HS is to capture the response of various
humans to a small set of adversarial logos.

For both VS and HS, participants were asked to provide a response within 5s
of seeing the pair of logos (because, realistically, users do not spend much time
looking at the logo on a website). We also included control questions (e.g., pairs
of identical logos, and pairs of clearly different logos) as a form of attention
mechanism9. Finally, we shuffled the questions to further reduce bias. For trans-
parency, we provide our questionnaire at [1].

For VS (resp. HS), we included 2 (resp. 3) “identical” pairs as baseline; and 5
(resp. 12) “original-adversarial” pairs to answer our RQ.

6.2 Results

We present the results of both of our user studies in Fig. 7. Specifically, Fig. 7a
shows the cumulative distribution of the scores for the three ‘identical’ pairs, and
the five ‘original-adversarial’ pairs in VS. Whereas the boxplots in Fig. 7b show
how the participants of HS rated the 12 “original-adversarial” pairs; the right-
most boxplot aggregates all results. In our rating definition, 5 means ‘similar’,
and 1 means ‘different’.

From Figure 7a, we observe that 95% of all responses (30 users × 10 ques-
tions) rated all ‘identical’ pairs (left bin) between 4 and 5 (only 5% answered
with a 3). That is to say; they correctly guessed that all identical pairs were in-
deed very similar, thereby also confirming that this population was very reliable.
For this reason, we find it noteworthy that our adversarial logos are able to
deceive them: in the right bin, 66% rated the ‘original-adversarial’ pairs with
either 4 or 5, and only 10% rated them with a 1 or 2.

Figure 7b shows the results for the ‘adversarial-original’ pairs (we already
removed some clearly noisy answers, as stated in Section 6.1). We observe that
the wide majority of HS population rated the pairs as similar (the average is
always below the middle point, 3). Hence, we can conclude: HS also reveals that
our adversarial logos are barely detected by humans as perturbed.
9 For HS, we received 322 responses, but we removed 35 because some users took too

little time to answer the entire questionnaire, or did not pass our attention checks.
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Fig. 7: Results of our two user-studies: vertical study and horizontal study

7 Countermeasures (and counter-countermeasures)

Given that our adversarial logos can simultaneously fool state-of-the-art DL
models for logo-identification and human eyes, we ask ourselves: how can ad-
versarial logos be countered? One potential mitigation is to leverage adversarial
learning by injecting evasive logos in the training set [12], thereby realizing an
adversarially robust discriminator. However, an expert attacker may anticipate
this and can hence attempt to circumvent such a robust discriminator by devel-
oping a new generator, thereby crafting more evasive adversarial logos (e.g., as
demonstrated in other domains [49,45]). We now investigate both of these scenar-
ios through additional proof-of-concept experiments, which involve the strongest
discriminator of our evaluation: ViT.

Countermeasure: building robust discriminator. Adversarial training is one
of the most well-known techniques to defend against adversarial examples [46,12].
The idea is to update a given ML model by training it on adversarial examples
that can mislead its predictions. We build our robust discriminators, D′0.3

ViT,

D′0.5
ViT, and D′0.7

ViT, by replacing 30%, 50%, and 70% of the logos in the train-
ing dataset L with their adversarial variants, respectively. In particular, we use
the adversarial logos generated with GViT, i.e., trained with the vanilla ViT dis-
criminator. Then, we compare these three robust discriminators with the vanilla
ViT discriminator DViT, against the same attack presented in Section 5.4. The
results are shown in Fig. 8a. We observe that the robust discriminators exhibit
much lower fooling ratios: while the vanilla ViT has a fooling ratio above 0.8, the
robust discriminators have fooling ratios below 0.2 even at a low FPR of 10−3.

Counter-countermeasure: evading robust discriminators. An attacker is also
capable of taking a sophisticated strategy to counter a robust logo-identification
discriminator built via adversarial training. To do this, the attacker must obtain
such a robust discriminator—this can be done through well-known black-box
strategies [41,15], or the attacker could even build one on their own. The attacker
must then use the robust discriminator to train an ‘adaptive’ generator that
can yield more evasive perturbations. For this experiment, we consider the case
wherein the attacker trains the adaptive generator by using D′0.3

ViT, D′0.5
ViT, and
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D′0.7
ViT, thereby realizing G′0.3

ViT, G′0.5
ViT, and G′0.7

ViT, respectively. The results are
shown in Fig. 8b, which plots the fooling ratio of the adaptive generator against
the corresponding robust discriminator.

Compared to the attacks from the ‘vanilla’ generator GV iT in Fig. 8a (which
achieves below 20% of fooling ratio at 10−3 FPR), the adaptive generators in
Fig. 8b are much more effective. Yet, we observe that discriminators trained with
more adversarial logos tend to be more robust: at 10−3 FPR, D′0.3

ViT has a fooling

ratio of 0.9, whereas D′0.5
ViT and D′0.7

ViT have 0.8 and 0.6, respectively.
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Fig. 8: Performance of discriminator and generator due to adversarial training

We find it enticing that this continuous game between attacker and defender,
reflected in the generator (attacker) and discriminator (defender), eventually
forms the concept of the Generative Adversarial Network (GAN). Indeed, a
question rises: “what happens if this process is repeated many times?” We plan
to address this intriguing research question in our future work.

8 Related works

Phishing Website Detection via ML. Many works leveraged statistical mod-
els, including ML, for phishing website detection (e.g., [8,56,57,37,51]). Typically,
these models are trained on labeled datasets to learn to discriminate between
phishing and benign webpages. There also exists an orthogonal family of counter-
measures, referred to as reference-based phishing detectors, that identify visually
similar webpages. This is based on the notion that phishing webpages are more
successful when they imitate a legitimate website. This characteristic has been
extensively scrutinized by prior literature [24,9,54,19,7,28,34,35]. For example,
VisualPhishNet trains a Siamese model to detect visually similar screenshots
between a given webpage and those in a set of well-known brands [7]. Other
works (e.g., [9,54,19,34,35]) focus on identifying visually invariant logos.

Attacks against ML-based Phishing Website Detectors. Expert attackers are
aware of the development of anti-phishing solutions and constantly refine their
techniques to avoid being taken down. For instance, phishers can use cloaking
to evade automated crawlers often used by security vendors [59]; alternatively,
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they can exploit ‘squatting’ to evade detectors analyzing the URL [51]. It is
also easy to change the HTML contents to evade HTML-based phishing detec-
tors [32,13]. Researchers have also examined the impact of adversarial pertur-
bations on image-based phishing detectors [7,34,35,20]. However, these attacks
assume that the attacker possesses complete knowledge of the deployed model
and can access the model gradients, enabling manipulations in the feature-space
(for further details, refer to [13]). We demonstrate a successful attack conducted
by an attacker lacking both knowledge of and access to the deployed model.
Furthermore, none of the prior works have conducted user studies to validate
the practicality of their attacks.

Adversarial Perturbations. Moving away from gradient-based perturbations,
Moosavi et al. introduced Universal Adversarial Perturbations [38], a framework
for learning perturbations that are image-agnostic and generalized across various
image classification models. This work sparked further proposals [47,40,58] aim-
ing to enhance universal perturbations. Subsequently, Poursaeed et al. proposed
Generative Adversarial Perturbations [43]. The generative model achieved state-
of-the-art performance, unifying the framework for image-agnostic and image-
dependent perturbations and considering both targeted and non-targeted at-
tacks. We draw inspiration from their framework to develop a generative net-
work specifically for crafting adversarial logos.

Summary. While prior works have investigated gradient-based attacks [34,35]

against image classifiers, to the best of our knowledge, we are the first to show the fea-

sibility of attacks using a generative neural network model trained to craft adversarial

logos, and comprehensively evaluate the impact of such attacks on state-of-the-art

methods for logo-identification.

9 Conclusions

Logo-based phishing detectors have shown significant capabilities with the em-
ployment of DL models. In this work, we developed and presented a novel attack
against logo-based phishing detection systems. Our experiments demonstrate the
capability of an attacker equipped with a generative adversarial model in de-
feating the detection systems as well as human users. We hope this will trigger
further research and development of phishing detection solutions that are robust
to adversarial ML attacks.

Ethical Statement. Our institutions do not require any formal IRB approval
to carry out the research discussed herein. We always followed the guidelines of
the Menlo report [14]. For our user-studies, we never asked for sensitive data
or PII. Finally, although we publicly release our code for the sake of science,
as mentioned on the GitHub page [1], such code should not be used for any
unethical or illegal purposes.
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Appendix

A Step-ReLu activation Function

The step-ReLU function utilised in training the robust SiamesemodelDSiamese++

(Section 3.3) is expressed as:

f(x) = max(0, α · ⌈x
α
⌉) (4)

B Discriminator and generator configurations

Table 2: Hyperparameter configurations for discriminators

Parameters DViT DSwin DSiamese

Backbone ViT Swin ResNetV2
Pre-trained Model ViT-b/16 Swin-S BiT-M-R50x1
No. of params 85.9M 49.0M 23.9M
Batch size 32 32 32
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight decay 0.0005 0.0005 -
Epochs (Steps) 200 200 10000 (Steps)
Learning rate 0.01 0.01 0.003 (Staircase decay)
λ (value clipping) 2.5 2.5 -

Table 3: Hyperparameter configurations for generators

Parameters GViT GSwin GSiamese

Batch size 32 16 32
Optimizer Adam Adam Adam
β1 & β2 for Adam 0.5 & 0.999 0.5 & 0.999 0.5 & 0.999
Magnitude of perturbations 10 10 10
Epochs 200 200 100
Learning rate 0.0002 0.0002 0.0002
Target probability, padversarial 0.5 0.5 0.5
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