
SoK: The Impact of Unlabelled Data in Cyberthreat Detection

Giovanni Apruzzese, Pavel Laskov, Aliya Tastemirova
Institute of Information Systems – University of Liechtenstein

{name.surname}@uni.li

Abstract—Machine learning (ML) has become an important
paradigm for cyberthreat detection (CTD) in the recent
years. A substantial research effort has been invested in the
development of specialized algorithms for CTD tasks. From
the operational perspective, however, the progress of ML-
based CTD is hindered by the difficulty in obtaining the
large sets of labelled data to train ML detectors. A potential
solution to this problem are semisupervised learning (SsL)
methods, which combine small labelled datasets with large
amounts of unlabelled data.

This paper is aimed at systematization of existing work
on SsL for CTD and, in particular, on understanding the
utility of unlabelled data in such systems. To this end, we an-
alyze the cost of labelling in various CTD tasks and develop
a formal cost model for SsL in this context. Building on this
foundation, we formalize a set of requirements for evaluation
of SsL methods, which elucidates the contribution of unla-
belled data. We review the state-of-the-art and observe that
no previous work meets such requirements. To address this
problem, we propose a framework for assessing the benefits
of unlabelled data in SsL. We showcase an application of this
framework by performing the first benchmark evaluation
that highlights the tradeoffs of 9 existing SsL methods on
9 public datasets. Our findings verify that, in some cases,
unlabelled data provides a small, but statistically significant,
performance gain. This paper highlights that SsL in CTD
has a lot of room for improvement, which should stimulate
future research in this field.
Index Terms—machine learning, semisupervised learning,
cybersecurity, labelling, threat detection

1. Introduction

Artificial intelligence and especially Machine Learn-
ing (ML) are one of the most important drivers of modern
IT industry [1]. Specifically, in cybersecurity they can
play a crucial role in several tasks, such as vulnerabil-
ity analysis [2], security intelligence [3], and cyberthreat
detection (CTD) [4].

As pointed out by Sommer and Paxson [5], the key
to the tremendous success of the so-called supervised ML
methods is their ability to build models connecting the
training input data with the known ground truth infor-
mation, often referred to as “labels”. It is well known,
however, that obtaining the ground truth information in
cybersecurity is a tough challenge [6]. In computer vision,
even a child can say whether a picture shows a cat or a
dog. In natural language processing, a linguist – albeit
not always a layman – can easily assign linguistic tags
to (parts of) the text or assess the quality of its transla-
tion. Precise characterization of security events is orders

of magnitude more difficult and brings supervised ML
methods to a dilemma: they work best when a model is
built using an extensive dataset, but the price of labelling
such a dataset may be outrageously high. According to
Miller et al. [6], an entire company can only afford to
label 80 malware samples per day.

On the other hand, unlabelled data is abundant in
cybersecurity. Petabytes of network traffic at many levels,
monitoring and endpoints logs, as well as many other
information sources (e.g., threat intelligence feeds [7]) can
be utilized for CTD tasks. Unlabelled data can be used in
unsupervised ML methods. For instance, clustering proved
to be successful for some cybersecurity applications, e.g.,
analysis of malware families [8]. However, such tech-
niques can only address ancillary tasks, and cannot auto-
mate any detection (i.e., classification) mechanism without
large amounts of labels that clearly distinguish benign
from malicious samples (e.g., [9]).

Semisupervised learning (SsL) [10] has a promise to
deliver efficient ML classifiers that require small amounts
of labelled data by exploiting the information gained from
large sets of unlabelled data. For instance, in self learning
(e.g., [11]), labelled data is mixed with unlabelled data to
improve performance; similarly, in active learning [12] an
initial classifier trained on a small labelled dataset can be
used to analyze a large set of raw data, and then ‘suggest’
the most cost-effective samples to label. The SsL setup
resembles typical cybersecurity scenarios and, as a result,
many works (e.g., [13]–[15]) proposed SsL solutions for
diverse CTD tasks.

In a recent study from computer vision, Oliver et
al. [16] state, however, that “the gap in performance
between SsL and using only labelled data is smaller
than reported”, and that “a classifier trained on a small
labeled dataset with no unlabeled data can reach very
good accuracy”. These observations raise the question: is
unlabelled data indeed beneficial to SsL and, if so, is it
worth the effort? Unlabelled data is cheaper than labelling,
but it is not completely ‘free’; e.g., its processing and
storing costs are not negligible [17], [18].

We researched previous works utilizing the combina-
tion of labelled and unlabelled data for CTD and found—
surprisingly—that none of such works addressed the ben-
efits of unlabelled data in SsL. Identifying such benefits
is not simple, because it requires the analysis of the key
components that contribute to the development of SsL
solutions. Therefore, to the best of our knowledge, it is
still unclear whether SsL is advantageous for CTD. This is
because prior works adopt evaluation protocols that are not
standardized and do not allow to assess whether unlabelled
data is cost-effective. Such immaturity serves as the main
motivation for our SoK, and our specific goal is to promote

ar
X

iv
:2

20
5.

08
94

4v
1

 [
cs

.C
R

]
 1

8
M

ay
 2

02
2

deployment of SsL methods.
To this end, we formalize a set of requirements derived

by a systematic analysis of a realistic deployment of SsL
methods in CTD. By following our requirements, it is
possible to assess the impact of unlabelled data on the
quality of SsL models. Moreover, we propose a novel
evaluation framework that can be used to assess existing
and future SsL methods in a research environment. Finally,
we showcase an application of our framework to perform
the first ‘benchmark’ where we statistically verify the ben-
efits of well-known SsL methods on 9 publicly available
datasets for diverse CTD tasks.

Since the scope of this work is well beyond the
traditional systematization of previous work, let us outline
the structure and the contributions of this paper.

We begin with the presentation of the background
and related research fields in §2. The main focus of this
presentation is to illustrate the challenges of labelling data
in CTD, which is significantly more difficult than in other
domains and, hence, motivates the search for solutions
that can work with only a small amount of ground truth..

In §3, we formally present the general goal of SsL
and analyze its cost structure. The main contributions of
this section are an original cost model for SsL in CTD,
the definition of the benefit of unlabelled data in SsL,
and the set of requirements that must be met by research
evaluations to ensure that such benefit can be claimed.

In §4, we review the state-of-the-art on SsL for
CTD, and analyze to what extent each paper meets the
requirements identified in §3. The main conclusion of
this analysis is that no prior work can satisfy all the
requirements, and hence demonstrate the benefits of using
unlabelled data. This finding must not be interpreted as
a deficiency of prior work; it merely highlights that no
one ever questioned the utility of unlabelled data in the
deployment of SsL for CTD.

As a first step towards such deployment, we present a
new evaluation framework for SsL in §5 and demonstrate
its application by assessing 9 well-known SsL methods
using 9 datasets in §6. All these contributions provide
a constructive approach for assessing the utility of unla-
belled data and promote the rollout of SsL for CTD.

Finally, we discuss our findings (§7) and outline the
conclusions of our study (§8).

2. Background and Related Work

Obtaining ground truth labels for training ML models
is a well-known problem which motivates the investigation
of SsL methods (e.g., [19], [20]). However, with respect to
other application domains of ML, the process of labelling
in CTD is fundamentally harder, making SsL methods
particularly attractive here. We elucidate all these labelling
difficulties, representing the main motivation of our paper.

2.1. Uniqueness of CTD with Respect to Labelling

In some application domains of ML, there exist nat-
ural factors that facilitate acquiring labelled data for
training ML models. Such factors can be data sharing
(e.g., [21]), inherent low cost of labelling (e.g., the popular
CAPTCHAs [22]), or long-term usage of labelled data

(e.g., ImageNet was collected in 2009 and is still widely
used today [23]).

All of these factors are not applicable to cybersecurity
due to two intrinsic characteristics. First, the intrinsic
confidentiality which strongly discourages data sharing.
Second, the constant adaptation of attackers as well as
the growth and the evolution of the environments be-
ing protected lead to the phenomenon known as concept
drift [24], i.e., a fundamental change (gradual or abrupt) of
the respective data generation processes. This latter issue
is crucial, as it conflicts with the underlying ‘iid’ assump-
tion1 of ML and hence adversely affects its reliability in
production environments [5].

The peculiarities of CTD are especially clear in com-
parison to computer vision. In image recognition prob-
lems, the underlying ground truth is clear and stable. “A
cat will always be a cat, whereas a dog will always be
a dog” [25], and a person can usually distinguish be-
tween two image classes very well [26], although specific
applications may demand more informed opinions (e.g.,
physicians for cancer diagnoses [27]). Moreover, after
acquiring such labelled data, it is possible to apply data
augmentation [28] strategies to increase its effectiveness.
For instance, adding some noisy pixels or mirroring the
image allows one to create a new image that is different
from the original but still has the same ground truth.

In contrast, all of the following can occur in CTD:
• a malicious sample is benign elsewhere [5];
• a malicious sample can be purposedly crafted to

represent a benign sample [29];
• a benign sample today becomes a malicious sample

tomorrow (the so-called ‘label shift’ [30]).
To aggravate the problem, verifying the ground truth of a
sample is hard even for security experts, requiring further
verifications [31]. Finally, data augmentation is difficult
to apply in CTD: for instance, changing a single byte can
turn many malicious samples into benign samples [32].

Without loss of generality, we can state that a dataset
that is usable for realistic CTD applications of ML must
meet the following criteria [33]–[35]:
• It must be large enough to capture all the underlying

characteristics of the environment to protect, and of
the threats to defend against [5].

• The ratio of benign/malicious samples must be bal-
anced enough to allow efficient detection without
generating excessive false alarms [36].

• It must have accurate ground truth [31].
• It must be continuously updated [24].
These peculiarities make obtaining labelled datasets

for CTD a tougher challenge than in other domains.

2.2. Specific Labelling Issues in CTD

We analyze the common procedures (and respective
issues) for labelling data in CTD, split in three broad ar-
eas [4], [37]: Network Intrusion Detection (NID), Phishing
Website Detection (PWD), Malware Detection (MD).

Network Intrusion Detection. The detection of in-
trusions within a network perimeter can greatly benefit
from ML [4], [38] when labelled datasets are available.

1. iid=independent and identically distributed random variables.

2

In the case of NID, such datasets contain samples pro-
viding network-related data. Well-known formats include
full Packet Captures (PCAP) or Network Flows (Net-
Flows) [39]. PCAP provides low-level information but
it is not usable if the traffic is encrypted2; moreover,
storing and analyzing PCAP is computationally expensive.
In contrast, the NetFlow format mitigates these issues
by providing a high-level overview of network commu-
nications between two endpoints while still enabling an
appreciable detection performance [39], [40]. Other com-
mon data formats are DNS records for investigation of
malicious domains [41], and SNMP for monitoring of
specific hosts [42]. Regardless of the data-type, a common
problem in NID is that every network is unique [5], [36].
An anomalous behavior in one network may be normal
in another network, hence preventing a reliable ‘transfer’
of ML models. Moreover, obtaining accurate ground truth
is tough for both benign and malicious samples. Most
existing NID datasets used in research are created by
infecting some machines in a controlled network envi-
ronment with known malware, and capturing the traffic of
the simulated network (e.g., [43]–[45]). Such approach is
difficult to apply in reality. Verifying that a sample is truly
legitimate requires ensuring that both hosts (the source
and destination) ‘connected’ by the specific traffic sample
are not malicious. If one of these hosts is compromised
via an unknown vulnerability then labelling all the traffic
generated by such host as benign can lead to poisoning
attacks [29]. Acquiring malicious samples is also difficult,
because it requires compromising real machines with
malware, hence exposing the network to external threats.
Another problem is to consider all traffic originating from
an infected machine is malicious, as some of its data may
be generated by legitimate network activities (e.g., ARP
messages). All such challenges increase the difficulty of
obtaining representative datasets for NID [46].

Phishing Website Detection. Phishing attacks can
be launched in various ways, e.g., via email or social
networks [47]. In this paper, we focus on the detection
of phishing websites because phishing usually involves
luring the victim to enter some information on a (phishing)
website. Attackers can easily create ‘squatting’ websites
that are difficult to detect [48], making them a rampant
threat [49]. Datasets for PWD may include diverse data
derived from, e.g., the URL (its length or the usage of
some characters), the DNS record (a recent website is
more likely to be a phishing hook), the HTML code
(phishing websites have many pointers to external do-
mains), and even the image of the landing page (most
phishing hooks are similar to legitimate websites) [50]–
[53], each having its pros and cons [54]. The most com-
mon way to create labelled datasets for PWD is to use pub-
lic lists of benign or malicious pages (e.g., AlexaTop or
PhishTank). The webpage can be visited and the relevant
information extracted to compose a given dataset [55].
In general, this process makes labelling for PWD easier
than in NID, because verification is simple through expert
knowledge [56]. Moreover, the ground truth of a website
is independent on the target system (phishing page will
‘always’ be malicious), enabling model transfer. However,

2. Encrypted payloads also make labelling activities more difficult due
to the impossibility of verifying the ground truth of a network packet.

such advantage presents some risks. For instance, the
PWD embedded in the Google’s Chrome web-browser
was reverse engineered, allowing to craft phishing web-
pages that bypass detection [57]. Therefore, transferring
ML models without any influx of new labelled data can
result in unreliable PWD.

Malware Detection. The advent of data-driven solu-
tions, such as ML, allowed the identification of malware
variants which bypass traditional rule-based systems [9].
Even commercial products leverage ML [58], which can
be used for both static and dynamic MD [59], [60]. The
complexity of labelling data for MD falls in between PWD
and NID. Obtaining a large corpus of files (benign or
malicious) for MD is not difficult per-se, as it can be done
via public repositories. However, relying on such data
without verifying the ground truth is risky. For instance,
well-known marketplaces were recently found to contain
malicious applications [61]. Treating such applications as
benign exposes to poisoning attacks, and hence further
verifications are required. Such verifications are, however,
challenging: some web-services can automatically analyze
an input (e.g., VirusTotal), but such services can dis-
agree [37], leading to unreliable results that require costly
validation by experts [62]. A possible workaround is us-
ing ‘collective wisdom’ techniques that consider diverse
antimalware engines [63]; recent works also propose to
sanitize ‘noisy’ labels in the training data [64].

Takeaway: Acquiring labelled data for CTD is challeng-
ing. To facilitate the development of ML-solutions, it is
necessary to investigate approaches that can work when
most of the data is not provided with the ground truth,
such as SsL methods.

2.3. Focus of the Paper

Combining labelled and unlabelled data to improve
the proficiency of ML methods can be done in many
ways. This SoK paper focuses on development of ML-
systems for CTD, devised by using (i) small sets of
labelled data (ii) together with large sets of unlabelelled
data. Such settings align with the definition of ‘Semisu-
pervised Learning’ by Oliver et al. [16]. To clarify our
focus, we describe two exemplary techniques, illustrated
in Fig. 1: self learning via pseudo-labelling (e.g., [65])
and active learning via uncertainty-sampling (e.g., [66]),
both associated with SsL [67]–[69].

Figure 1: Active Learning and Pseudo Labelling.

In self learning, the task of a ML model is to auto-
matically learn from itself. In the specific case of pseudo
labelling, the intuition is to first train a ML model on a

3

(small) set of labelled data (L in Fig. 1), and then use such
model to predict the label of a (large) set of unlabelled
data (U in Fig. 1). Such ‘pseudo-labels’ are then used to
retrain the model on a mixed dataset, containing both the
correct labels of L and the pseudo-labels of U. To avoid
using potentially wrong labelled data, the retraining can
be done by using only the pseudo-labelled samples with
a high confidence estimated by the model.

In active learning, the ML model interacts with an
oracle (realistically, with a human) to improve its learning
phase. In the specific case of uncertainty sampling, the
idea is to first train a ML model on a (small) set of
labelled data, L, and then use such model to analyze a
(large) set of unlabelled data, U. The analysis is focused
on ‘suggesting’ to the oracle which samples in U should
be correctly labelled to improve the performance, and the
suggestion is based on the confidence of the model on
the samples in U. Intuitively, the model can learn ‘more’
from samples with a low confidence [70]. The oracle then
assigns the correct ground truth to such samples, which
are inserted into L and used to retrain the model—using
a correctly labelled dataset.

2.4. Related Work

Many learning paradigms focus on providing reliable
models under the assumptions of scarce label availabil-
ity; often, the term ‘Semisupervised Learning’ is used to
describe techniques that deviate from our definition. We
summarize a few orthogonal areas to our work.

Federated learning [71] aims to develop a ‘global’
model by combining ‘local’ models trained on small
datasets. Despite some risks (e.g., poisoning [72]) recent
efforts applied it successfully even in privacy-sensitive
settings [73]. However, federated learning makes no use
of unlabelled data, and the final labelled dataset is huge.

Few-shot learning has the goal of identifying unknown
classes when only very few (or even zero [74]) labels
are available. For example, by finding the most relevant
parameters of a baseline feature extractor, it is possible
to generalize on unseen classes [75]. These approaches—
conceptually similar to ‘anomaly detection’—are thus tai-
lored for detecting novel attacks, and showed promising
achievements even in CTD (e.g., [76]). However, they
assume a large amount of initial labelled samples for the
‘known’ classes. As an example, the authors of [77] train
their one-class classifiers on 80% of the available samples
for the ‘normal’ class. Similarly, the ML-NIDS in [74] can
detect 14 ‘unseen’ attacks, but is trained on over 200k
samples spanning over 12 ‘known’ classes.

Representation learning focuses on finding the fea-
tures that maximize the performance of a ML classi-
fier [78]. It is possible to use unlabelled data to fine-
tune such selection (e.g., [79]–[83]). Such procedures are
ancillary to detection tasks, and hence outside our scope.
As an example, the anomaly detector in [78] mixes a
large set of unlabelled data with a small set of labels to
identify the most representative features: however, once
such features are identified, the experiments for the actual
‘detection’ are performed by using 60% of the (fully
labelled) available data to train the classifier.

Finally, lifelong learning aims to update ML models
over-time [84], [85], which can be done by exploiting

future (unlabelled) data streams; an assumption shared
by active learning. However, sometimes the initial cost
of labelling is neglected (this is the same problem as
few-shot learning). An exemplary case is Tesseract [86],
focusing on time-aware MD. The idea of Tesseract is
using, among others, active learning strategies to improve
over time: despite increasing performance by 20% with
700 additional labels, the initial deployment of Tesseract
requires huge amounts of correct labels (i.e., more than
50K). Hence, some applications of active learning may
have assumptions that deviate from ours.

We stress that our paper focuses on CTD. As such,
any proposal that uses SsL for a different security-related
task (e.g., fingerprinting [87]) is orthogonal to this paper.

3. Semisupervised Learning for CTD

In contrast to obtaining verified labels, acquiring un-
labelled data for CTD is relatively straightforward.

Semisupervised Learning (SsL) aims to combine un-
labelled with labelled data to devise ML models, which
leads to the following question: “what is the benefit of
unlabelled data?”. Only by answering this question it is
possible to understand the role that SsL can play in CTD.

Let us begin our research by introducing SsL and its
relationship with traditional supervised learning (SL).

3.1. Introduction to Semisupervised Learning

Any ML model requires to learn from data so that,
after its deployment, it can efficiently analyze future and
unseen data, which we denote as F. For those ML methods
that require supervision (such as SL and SsL), the learning
is done by means of labelled data. To achieve the best
performance, supervised models should be trained on a
huge and fully labelled dataset, L. Creating such L may,
however, be prohibitive. In contrast, under the constraint
of a limited labelling budget, L, the amount of labelled
data will be smaller, L, and the resulting model may be
inferior to the model that could have been built using L.

SsL aims at bridging the gap between labelling effort
and the model quality, by using L alongside a large
unlabelled dataset, U, which is cheap to acquire. The
resulting model should attain a better performance on F
than a model built with same L but without using U.

For instance, consider the two methods described in
§2.3. In self-learning, the model should achieve a better
performance after retraining on the ‘pseudo-labels’ from
U than the initial learner. In active learning, the model
trained on the L with the ‘suggested’ samples from U
should outperform a model trained on a L derived from
the same labelling budget L, but without any ‘suggestions’
derived by U.

We now formally define the abovementioned scenar-
ios. Without loss of generality, any CTD task can be
seen as 1+N classification ML problem, where samples
are either benign, or belong to one among N malicious
classes. For simplicity, in the remainder we will consider
a binary-classification setting; all our considerations can
be extended to cover also multi-classification settings.

Let L be a given labelling budget. Let L be any
labelled dataset containing sample-label pairs, obtained

4

by using L. The composition of any labelled dataset is
determined by its size, | · |, and its class balance ratio,
ρ(·), which is a 1+N dimensional vector defining the
distribution of its samples in percentages. Let |L| and ρ(L)
denote the size and class balance ratio3 of L. Let L, with
ρ(L), be a superset of L.

Let U be an unlabelled dataset containing samples of
which the ground truth is not known, with |L|�|U|.

Finally, let F be another labelled dataset whose |F| and
ρ(F) should enable meaningful performance assessments.
Because F represents future data, F ∩ (L ∪ U) =∅. Let
µ be any performance metric, e.g., accuracy or F1-score.

An illustration of the upcoming definitions is in Fig. 2.

Figure 2: Semisupervised Learning w.r.t. Supervised Learning.

A Supervised Learning (SL) method uses a labelled
dataset to train a model that, after deployment, can predict
the ground truth of unseen samples (i.e., in F) obtaining a
certain performance µ(·). To achieve optimal performance,
the dataset used to train a model via SL should be
comprehensive, that is, it should be adequately large and
balanced. As a direct consequence, a model trained on a
very small dataset will have a subpar performance. Let
SL be a model trained on L, and SL be a model trained
on L: if |L| � |L| then µ(SL) < µ(SL), irrespective of
ρ(L). In the remainder, we assume4 that training SL on
L results in optimal µ(SL), and that |L|�|L|.

We can now provide the following definition:

Definition 1. The goal of a Semisupervised Learning
(SsL) method is using U alongside any L obtained with
L to devise a model SsL. After deployment, SsL should
predict the ground truth of the samples in F by achieving
a performance µ(SsL) s.t.: µ(SL)<µ(SsL)≤µ(SL).

From Def. 1, we derive that assessing the benefits of
SsL is linked with SL, because only by comparing5 SsL
with SL (and SL) the impact of U can be determined.

3.2. Cost model of SsL for CTD

Let us interpret the abstract descriptions in §3.1 from
the perspective of a real organization willing to deploy a
SsL solution for CTD. We provide an illustration in Fig. 3.

3. If N=1, an example is: ρ(L)=(60,40), i.e., 60% of samples in L
are benign, and 40% are malicious.

4. Finding the exact size and balance of a dataset that yield the best
performance is a NP-hard problem.

5. Doing this, however, requires that L is a strict subset of L: otherwise
(i.e., if L∪L 6= L) it would not be fair to compare µ(SL) with µ(SL) and,
consequently, with µ(SsL). This is because the performance difference
may be due to the samples in L not included in L.

Figure 3: Propossed cost model for deployment of SsL methods.

In the real world, a resource investment is required for
integrating any new solution, and the decision to deploy
such a solution depends on its estimated return on invest-
ment (ROI). Assessing the ROI demands the definition of
a cost model that allows practical comparisons to support
operational decision making [88].

Huge amounts of data, U, can be easily obtainable.
An organization can have a rough idea about the nature of
such data, but the impossibility of determining the ground
truth without costly manual inspection makes it necessary
to treat all its samples as unlabelled.

However, any SsL model necessitates at least a small
amount of labelled data, L. Such L can be acquired either
before and independently from U, or by using U. For
instance, L can be obtained by verifying uncertain labels,
manually labelling existing data, or even by creating new
labelled data via controlled simulations (§2). In addition,
like all ML-solutions, SsL models require ancillary oper-
ations (e.g., feature engineering, training and tuning [4]).

We can hence define the cost model for developing
SsL solutions6. Deployment of a semisupervised model
SsL requires to invest some budget, B. Such budget can be
seen as the sum of three elements U , L and ε. Specifically:
• U represents the investment for obtaining (and, if

necessary, maintaining) the unlabelled data U;
• L is the investment for generating L. Specifically,
L is used to ensure that any sample x ∈ L has the
correct label. Such L can be used all at once or at
different times: for instance, it is possible to reserve
a portion for subsequent labelling rounds that depend
on U (e.g., active learning).

• ε(SsL) is used for any extra operation for developing
SsL that is not related to labelling the samples in L.
For instance, ε can be used to (i) conduct preliminary
analyses on U, (ii) tune SsL, (iii) process data, as
well as for any (iv) computational costs.

By using L, the organization eventually obtains a labelled
dataset L, whose composition (i.e., ρ(L) and |L|) depends
on the cost of labelling each individual sample x in L; let
Cx denote such cost. We can express our cost model by
formally defining B(SsL) with the following Equation:

B(SsL) = U +L+ ε(SsL), where L =
∑
x∈L
Cx (Eq. 1)

6. TtBooK, we are the first to propose a SsL-specific cost model.

5

Such budget B represents an investment whose return is
based on the performance achieved by SsL after deploy-
ment, that is, µ(SsL). The ROI of any solution can be
expressed as the ratio between its expected performance
and its development budget [89]; in the case of SsL:
ROI(SsL)=µ(SsL)/B(SsL).

We note, however, that µ(SsL) depends on ‘future’
data which is, by definition, not available to the organi-
zation. It is hence necessary to conduct thorough experi-
mental evaluations in advance which can certify that: (i)
a given SsL (or its generative SsL method) will yield ap-
preciable µ(SsL) when deployed in practice; and that (ii)
allow comparisons of similar techniques by assessing their
costs and benefits. If such evaluations are conducted on
a dataset with a similar distribution of ‘future’ data, then
the resulting µ(SsL) will approximate the real deployment
performance. In this case, it is possible to estimate the
potential ROI of a SsL solution and facilitate informed
decisions for their deployment. Nevertheless, after de-
ployment, real organizations must regularly perform new
evaluations to mitigate the likely concept drift (cf. §2.1).

Takeaway: by investing B, an organization can cheaply
obtain U and compose a small L which are used to develop
a model SsL. Such model will only be developed (and
deployed) if its estimated ROI is more beneficial than
other solutions, i.e., if evaluations conducted in advance
show that SsL outperforms solutions that require a lower
or similar budget.

3.3. Requirements for Evaluation of SsL Methods

Let us explain how to conduct evaluations that allow
to estimate the ROI and, hence, gauge the benefits of SsL.

In research, evaluations of ML are done by means
of fully labelled datasets, which should represent realistic
scenarios and hence must be unbiased. Let D be one
of such datasets7. From Def. 1, a SsL model aims at
µ(SL) < µ(SsL) ≤ µ(SL). Therefore, the source dataset
D must be used to to derive the four sets F, U, L, and
L necessary to compute such performance. To align the
evaluation with real deployment use-cases, the creation
of these sets must be done by taking B and, hence,
L into account. Note that F is only used to assess the
performance on simulated ‘unknown’ data, which is not
available in advance. Therefore, using F to ‘cherry pick’
the samples to put in L is prohibited [90].

We can now define the 7 requirements, applicable to
any CTD task, that must be upheld to ensure unambiguous
assessment of the benefits of SsL methods.

Req. 1 (Lower Bound). It is necessary to evaluate a lower
bound model that only uses L and makes no use of U.
In other words, train a model SL on L and evaluate
its performance on F as µ(SL). To avoid bias8, such
L must be chosen by random sampling from D subject
to L. Motivation: The SL represents the true baseline9,

7. D can be subject to some preliminary preprocessing.
8. Labelling is not deterministic, and in realistic scenarios it is not

possible to know in advance the effectiveness of labelling.
9. Such SL should aim at maximizing the gain from L (and hence L),

but it should not be overtuned (leading to overfitting and astronomical
ε), nor it should be ‘misconfigured’ to inflate results.

allowing to assess the benefit (and, hence, compare the
ROI) of any model SsL that uses L+U. For instance,
if µ(SsL) ≈ µ(SL) then there is no practical benefit
in using the unlabelled data in U; it may also be that
µ(SsL)<µ(SL), meaning that using U is detrimental.

Req. 2 (Ablation Study). It is necessary to always consider
a ‘vanilla’ model SsL that uses U in a trivial way together
with an L randomly sampled from D. The aim is minimiz-
ing the degree of supervision10 involved by using U. Moti-
vation: The ‘vanilla’ SsL allows to gauge (i) the smallest
improvement provided by U via comparisons with SL;
and also (ii) the smallest cost induced by using U, because
the randomness of L and the lack of supervision makes
the corresponding ε minimal. Moreover, SsL serves as
a baseline for an ablation study [20], to simulate worst
case scenarios in which any operation that relies on U to
refinely compose L is not functional in practice.

Req. 3 (Upper Bound). It is necessary to train an upper
bound model SL on L and evaluate its performance on
F as µ(SL). Motivation: The SL serves to assess the
performance achievable by augmenting L until it reaches
L. Moreover, if µ(SL) ≈ µ(SL), then investing in U to
develop any SsL may not be worth it in the first place.

Req. 4 (Statistical Significance). It is necessary to verify
the statistical significance of any evaluation result. Moti-
vation: Evaluations of SsL involve a lot of randomness
and uncertainties. The huge search space for composing
L from D may lead to erratic results: in some cases
µ(SsL)>µ(SL), but the opposite can also be true. More-
over, sometimes µ(SsL)≈µ(SL) meaning that further tests
are required to determine if SsL is superior to SL. Hence,
different draws of L (and, preferably, also of L and F)
must be assessed and conclusions must be drawn after
statistically significant comparisons11.

Req. 5 (Transparency). It is necessary to ensure full trans-
parency on the composition of L, L, U and F. This
implies: specifying size of each dataset (both in absolute
numbers, and with respect to D); and the balance ratios in
terms of class composition. Motivation: Claiming that a
given SsL method is effective when using only “1% of the
data” is not as enticing if D has 1M samples. Moreover,
the balance ratio can significantly alter the results when
small datasets are considered. This requirement also serves
to estimate L and U .

Req. 6 (Reproducibility). Any evaluation must be supported
with information that allow its reproducibility [91], [92].
Motivation: aside from obvious reasons, it serves to
approximate ε.

Req. 7 (Multiple Settings). It is necessary to evaluate any
model by considering multiple deployment settings, e.g.,
diverse datasets. Motivation: for practical deployments,
the samples in D must resemble the true distribution at
inference, and CTD scenarios can vary (cf. §2).

10. Depending on the context, there can be many ways of devising
SsL. As an example, in pseudo-labelling, a ‘trivial’ way is using all
pseudo-labels regardless of their confidence; whereas, in active learning,
a ‘trivial’ way is labelling randomly chosen samples (instead of those
with least confidence).

11. Such efforts go beyond traditional ‘cross-validations’ [86].

6

The intuition behind our requirements is that any
model SsL developed with a given SsL method must be
compared against the three baselines of Regs. 1–3. By
doing so, it is possible to measure the added value of
SsL, building on U, potentially creating a better L, but
with a specific extra cost ε. It is implicit that any model-
to-model comparison must be done under the assumptions
of identical L.

We can now formally define the benefit of U in SsL.

Definition 2. Unlabelled data U used to develop any SsL
is beneficial if it is shown that: (i) µ(SL)� µ(SL), and
(ii) ROI(SsL) is better than both ROI(SL) and ROI(SsL).

Since SL does not use U , and SsL should minimize
ε (w.r.t. SsL), it follows that µ(SsL) must be greater than
µ(SL) and also greater or equal than µ(SsL). To justify
deployment of a new SsL method, its evaluation must
show that Def. 2 holds in different settings.

Takeaway: Evaluating SsL in research requires to train
and test (i) multiple models (ii) many times and in (iii)
different scenarios, while reporting all details of the exper-
imental setup. By meeting these requirements it is possible
to assess the deployment benefits of a SsL method.

4. State-of-the-Art

We analyze the state-of-the-art w.r.t. the proposed
requirements (§3.3), and provide a summary in Table 1.
Let us describe our methodology, and then discuss the
main findings.

4.1. Methodology

To assess the extent to which existing works meet our
requirements, we perform a systematic literature survey.
Such process is organized in three phases: search, screen-
ing, investigation. To reduce bias, all phases involved two
researchers who worked independently, and who discussed
their individual findings in weekly meetings.

4.1.1. Search. We first searched for all literature linking
(even remotely) SsL with CTD in well-known scien-
tific repositories. Such repositories include IEEE Xplore,
Google Scholar, and ACM Digital Library; but we also
considered the proceedings of top security conferences.
In particular, we searched for the following keywords:

(semi-supervised ∨ semisupervised ∨ semi supervised ∨ active)
∧

(network ∨malware ∨ phishing ∨ intrusion)

which had to be included either in the title or in the
abstract. Any work that was not peer-reviewed was ex-
cluded, and we looked for papers published after 2007.
The results of such search formed an initial corpus of
papers, which was further extended with all papers that
either cited, or were cited by, a given work (and that
included same or similar keywords); as well as with papers
that the authors autonomously found during their daily
duties (e.g., reviewing).

4.1.2. Screening. After obtaining the corpus of candidate
papers, we studied them with the intent of determining
which papers fall within our scope. By referring to §2.3,
a paper had to meet three criteria: (i) focus on CTD, (ii)
using unlabeled data, (iii) in combination with small sets
of labelled data12. After several discussions between the
two researchers, this phase resulted in the set of 48 papers
reported in Table 1. To the best of our knowledge, Table 1
represents the current state-of-the-art of SsL for CTD.

4.1.3. Investigation. Those papers that met all the inclu-
sion criteria were then further analyzed, with the goal of
assessing their compliance with the proposed set of re-
quirements. The results are in Table 1, which is organized
as follows. We distinguish the papers on the basis of the
three main CTD areas of interest (NID, PWD, MD); cells
with a gray background denote papers that specifically
consider ‘active learning’ approaches. For each paper we
compare it with our requirements: a 3 (resp. 7) denotes
that a requirement is met (or not).
• For Req. 1, we use if it is not explicitly mentioned

that L was randomly drawn, and 7 when either the
SL is missing, or when such SL uses a different L.

• For Req. 2, we use 3 if the paper considers a SsL
model that is completely unbiased and can serve as
an ablation study; if the SsL models are trained on
a unbiased random L, but cannot serve as an ablation
study due to ‘overuse’ of U; and 7 if the provided
information is insufficient to determine the absence
of bias in L.

• Req. 3 is binary, but we also consider as 3 when
SsL is trained on a very large set of correct labels.

• Req. 4 we use if only some ‘cross-validation’ is
performed, 3 if statistical comparisons are made or
mentioned, and 7 otherwise.

• For Req. 5, we report two columns: ‘Labels’ denotes
whether the provided information allows to determine
the actual number of labelled samples used to train
and test all the considered models; ‘Balance’ denotes
whether the balancing ratios are clearly specified.

• For Req. 6, 7 denotes if the provided information
is insufficient for reproduction; 3 if the source code
is open; and if only intermediate information is
provided.

In the last column we report the datasets used in each
paper: here, ‘Private’ means that the data was never made
available, whereas ‘Custom’ means that it was composed
in-house via public sources, but that the actual samples
cannot be recovered (i.e., it is not possible to retrieve the
public feeds of past years).

4.2. Findings

By observing Table 1, we derive the following.
1) No one fits all: no paper meets all requirements.
2) Few compare their SsL methods with a lower bound.
3) Worst case scenarios are rarely covered.
4) Lack of statistically significant comparisons, prevent-

ing any certification of the final results.
5) Poor reproducibility and limited datasets, which is a

known trend in ML research [128].

12. The term ‘Semisupervised Learning’ has many meanings (§2.4).

7

TABLE 1: State-of-the-Art of SsL for CTD w.r.t. our requirements. A ‘*’ indicates a resource not available as of Sept 2021. Gray cells denote active
learning. All these works had a different scope than our paper, hence not meeting our requirements does not invalidate their contribution.

Task Paper (1st Author) Year Lower
Bound

Ablation
Study

Upper
Bound

Stat.
Sign.

Transparency
Repr. DatasetLabels Balance

N
et

w
or

k
In

tr
us

io
n

D
et

ec
tio

n

Li [93] 2007 3 3 7 7 3 3 NSL-KDD
Long [94] 2008 3 3 7 3 7 NSL-KDD

Görnitz [95] 2009 3 3 7 3 3 7 Private
Seliya [96] 2010 3 3 7 7 3 3 NSL-KDD

Symons [97] 2012 7 3 3 3 7 7 Kyoto2006
Wagh [98] 2014 7 7 7 7 3 3 NSL-KDD

Noorbehbahani [35] 2015 7 3 7 3 3 NSL-KDD, Custom
Ashfaq [99] 2017 7 7 7 3 7 NSL-KDD

Qiu [67] 2017 7 3 7 3 3 7 Custom
McElwee [100] 2017 7 3 7 3 7 NSL-KDD

Kumari [68] 2017 3 7 7 3 7 NSL-KDD
Yang [101] 2018 3 3 7 3 7 7 NSL-KDD, AWID
Gao [102] 2018 3 7 7 3 7 7 NSL-KDD
Shi [103] 2018 7 7 3 7 7 NSL-KDD
Yao [36] 2019 3 7 3 3 NSL-KDD

Yuan [104] 2019 7 7 3 3 NSL-KDD
Zhang [65] 2020 7 3 3 7 NSL-KDD
Hara [105] 2020 7 3 7 7 7 7 NSL-KDD
Ravi [106] 2020 3 7 7 7 3 7 7 NSL-KDD
Gao [107] 2020 7 3 3 3 3 3 7 NSL-KDD
Li [108] 2020 7 3 3 3 7 NSL-KDD, Private

Zhang [70] 2021 7 7 3 CICIDS2017, CTU13
Liang [109] 2021 3 3 3 3 NSL-KDD

Ph
is

hi
ng

D
et

ec
tio

n

Gyawali [110] 2011 7 3 3 7 3 3 Private
Zhao [111] 2013 3 3 3 3 7 3 3* DetMalURL
Gabriel [15] 2017 7 7 7 7 Private
Yang [112] 2017 3 7 7 3 3 Private

Bhattacharjee [113] 2017 7 3 7 7 7 Private
Li [55] 2017 3 3 3 3 3 7 Custom

M
al

w
ar

e
D

et
ec

tio
n

Moskovitch [114] 2008 7 3 7 3 3 7 Custom
Santos [115] 2011 7 7 3 7 3 3 Custom
Nissim [116] 2012 7 3 7 7 7 Private
Zhao [117] 2012 7 7 7 7 3 3 Private

Nissim [118] 2014 3 3 7 3 3 7 Custom
Zhang[119] 2015 7 7 3 3 7 Private

Nissim [120] 2016 7 3 3 3 3 Custom
Ni [121] 2016 3 3 7 3 3 Private

Chen [122] 2017 3 3 7 7 7 Private
Rashidi [66] 2017 7 3 3 3 3 7 Drebin

Fu [123] 2019 3 3 7 7 3 7 Private
Irofti [124] 2019 7 7 7 3 DREBIN,EMBER

Pendlebury [86] 2019 7 7 3 3 3 3 AndroZoo
Sharmeen [125] 2020 3 7 3 3 Drebin, AndroZoo

Chen [126] 2020 3 7 3 3 MCC
Koza [11] 2020 3 3 3 7 3 Private

Noorbehbahani [13] 2020 3 7 7 3 3 7 AndMal17
Li [127] 2021 7 7 3 7 FalDroid,DREBIN,Genome

Liang [109] 2021 3 3 3 3 Custom

Although no paper meets all our requirements, there are
some good efforts. Remarkably, Zhao et al. [111] meet
almost all requirements (with the exception of a sin-
gle dataset, and their implementation not being available
today), and are the only ones to mention a statistical
comparison via a student t-test; however, we were not
able to infer how the starting dataset was split in training
and testing. We also praise the work in [11], but it lacks
a vanilla SsL for ablation studies (due to fine tuning of
confidence thresholds), and only a limited cross-validation
is performed. Noteworthy is also [109], whose authors
fairly evaluate different SsL techniques (although none of
these can be considered as an ablation study) for two CTD
tasks (NID and MD), but each on a single dataset.

The situation portrayed by Table 1 does not imply
that all past works are wrong or flawed: these papers are
published in high quality venues, and we acknowledge
their significance. On the contrary, the true message of
Table 1 is highlighting the immaturity of the state-of-
the-art with respect to realistic deployments of SsL. No
attention has been given to systematic assessments of the
benefits provided by unlabelled data in SsL.

The case of active learning. We observe that many
papers in Table 1 use active learning methods, most
of which in lifelong learning settings. In these cases,
considering a model trained via random draws from U
(instead of ‘active’ suggestions) can simultaneously meet
both Req. 1 and 2. This is notably done by Gornitz
et al. [95] (despite not meeting Req. 3). In contrast,
Pendlebury et al. [86] apply active learning by labelling
all samples with confidence below 1%, which results in

700 samples, and the improvement is shown against a
model that does not make use of any additional label,
leading to an unfair comparison. The evaluation protocol
of these and similar papers is, however, legitimate. They
operate under the assumption that the ML model is al-
ready trained and deployed, meaning that unlabelled data
will naturally occur. In such conditions, the focus is not
on “determining the benefits of unlabelled data for ML
deployment” (which is our focus), but rather on “how to
maximize the performance of an existing ML system with
additional unlabelled data streams”. Both [86] and [95]
achieve that. Nonetheless, to the best of our knowledge
(semi)supervised ML systems are not widely deployed
(yet) in CTD, demanding further investigations of their
potential benefits in advance.

Relationship with other domains. There are several
studies that expose evaluation issues of ML methods, and
Dehgani et al. [129] invite devising specific guidelines.
However, within the context of SsL, existing proposals
are not applicable to CTD. For instance, Oliver et al. [16]
suggest transferring models between different datasets:
this may not be feasible for CTD because datasets con-
tain divergent feature sets and model transferring can
be a recommendation at best, and not a requirement.
Similarly, [130] mention random sampling, but do not
emphasize the statistical significance which is crucial for
SsL in CTD due to the huge search space to extract a small
L from a huge D. This is less of a problem in, e.g., Com-
puter Vision, where most datasets (e.g., CIFAR) have been
used thousands of times and benchmarks results are well-
known; moreover, the corresponding community is more

8

open to source code disclosure. Because of these reasons,
it is crucial to establish a specific set of requirements for
CTD applications of SsL.

Regardless, some of our requirements are not met also
by relevant works. An exemplary case, which exploits data
augmentation in CIFAR, is MixMatch [20]. Here, no lower
bound SL is considered: as a matter of fact, they only
report the results of the upper bound SL trained on 50K
samples (i.e., most of CIFAR). We do acknowledge that
CIFAR is well-known and performance on small subsets
can be easily assessed, but a fair comparison requires to
evaluate such performance by using the same settings (i.e.,
same L and same classifier).

Takeaway: the state-of-the-art does not allow to assess
the benefits of SsL methods. Such immaturity is due to
the lack of a rigorous evaluation protocol for SsL in CTD.

5. Proposed Evaluation Framework

As a constructive step forward, we present CEF-SsL,
an original Cybersecurity Evaluation Framework for SsL,
which meets all the requirements in §3.3.

CEF-SsL aims to provide a practical assessment of
SsL methods by using any fully labelled dataset, while
simultaneously considering the deployment budget B and
ensuring the statistical significance of the results. Because
U can be easily obtained, CEF-SsL assumes that U is fixed
and, hence, plays no role in practical comparisons. CEF-
SsL has four inputs:
• D represents a large and fully labelled dataset. Such
D can be either: (i) openly accessible; or (ii) created
ad-hoc via simulations, well-known security feeds, or
by manually labelling real data. CEF-SsL assumes
that the labels in D are verified, i.e., all samples
have the correct ground truth, which is the typical
assumption in ML research. CEF-SsL uses D as
basis13 to compose the four datasets required for a
practical evaluation L, L, U, and F.

• L is the labelling budget which is used to to compose
L (cf Eq. 1). CEF-SsL assumes that L is fixed for
the entire simulation. Variations of L imply different
scenarios (hence, different L) which lead to unfair
comparisons among models. If necessary, CEF-SsL
can be applied again on different values of L.

•
−→
ML denotes an array of ML methods. Such array must
contain the specifics to devise all the baseline mod-
els (SL, SL, SsL) plus any additional model to be
included in the evaluation. All the resulting models
will be developed on the same labelling budget L.

• (n, k) is a pair of integers that regulate the ‘runs’ of
CEF-SsL to achieve statistically significant results.

The output are two (n·k)-dimensional arrays, whose ele-
ments include the results of all the models devised through
−→
ML on each run, i.e.: −→µ , containing the performance on
‘future’ data; and −→ε , containing any cost incurred during
the development (not related to labelling).

We provide an overview of CEF-SsL in Fig. 4. CEF-
SsL can be divided in three stages: Prepare, Run, Iterate.

13. D is assumed to be already preprocessed, and it can be a subset
of an existing dataset, but the selection must be unbiased.

Figure 4: CEF-SsL. L can also be provided as input for the second stage.

5.1. Stage one: Prepare

The first stage uses L to partition D into L, L, U, and
F. Fig. 5 shows a schematic of such a workflow.

Figure 5: D is first split into F and L. Then L is further split into L
according to L, and the leftout samples are considered as unlabelled U.

CEF-SsL begins by splitting D in F and L: the former,
F, is used exclusively to assess the performance on future
data14; the latter, L is used for all remaining ‘training’
operations, because L can serve as basis to generate
L, and then treat the remaining samples as unlabelled,
representing U.

Generating F from D depends on the considered CTD
task. The selection is done so as to achieve a representative
|F| and ρ(F), while ensuring that the left-out samples
(which will represent L) allow to create meaningful L and
U. Such selection can also take into account the temporal
relationships (if available) among the samples in D. For
example, F can be composed by selecting only the ‘most
recent’ samples in D, allowing assessment of potential
concept drift [24].

To generate L from L, we recall that L=
∑

x∈L Cx.
Therefore, CEF-SsL chooses samples from L and assigns
them to L, each time by decreasing the labelling budget
L according to the cost of each sample15. However, L
must include at least some benign and malicious samples.
To this purpose, CEF-SsL requires a minimum amount of
samples for each class. CEF-SsL will then populate L by
randomly sampling as many samples of that class from L
(while decreasing the labelling budget accordingly); then,
CEF-SsL will use the remaining budget to further populate
L randomly. We observe that by setting different labelling
costs Cx it is possible to simulate imbalanced data dis-
tributions: we will showcase such intriguing property of
CEF-SsL in our demonstration. At this point, CEF-SsL
will consider all the samples in L not included in L as
unlabelled, representing U. The case where one (or many)
SsL approaches in −→ML involve the usage of exploratory
techniques is covered in the following stage.

5.2. Stage two: Run

The second stage begins with Reqs. 1–3. Specifically:

14. F does on depend on the labelling budget L and F∩(U ∪ L)=∅.
15. Such cost can be fixed, or can vary depending on the desired level

of realistic fidelity by associating each sample x∈D with a custom Cx.

9

1) train SL on L and test it on F as µ(SL); account for
all operational costs as ε(SL);

2) train SL on L and test it on F as µ(SL); account for
all operational costs as ε(SL).

3) use L and U to devise SsL, and test it on F as µ(SsL);
account for all operational costs as ε(SsL).

Then, CEF-SsL focuses on each remaining method in −→ML:
• if the SsL method does not make any assumptions on
L, then CEF-SsL uses U and the previously drawn
L as input for the SsL method.

• if the SsL method requires L to be composed in a
more refined way, then CEF-SsL generates a new L
according to the specifics of the SsL method. The
cost of labelling is ‘charged’ to L and all other costs
are accounted as ε(SsL). The resulting L and (new)
U are then used as input to the SsL method.

• Finally, the respective SsL model is trained, and
tested on F resulting in µ(SsL); all the operational
costs are accounted in ε(SsL).

At the end of this stage, CEF-SsL populates the respective
−→µ and −→ε with the specific performance and (extra) costs
of all the considered models of this single ‘run’.

5.3. Stage three: Iterate

To obtain statistically significant results, CEF-SsL per-
forms multiple ‘runs’, according to the iteration parame-
ters (n, k) provided as input. Specifically:
• CEF-SsL repeats its entire workflow k times, each

time by choosing a new F, leading to different L
and, hence, different L and U.

• For each (new) F, CEF-SsL composes a different L
(and, hence, different U) for n times to account for
randomness.

Altogether, CEF-SsL will evaluate each method in −→ML
a total of n ·k times, resulting in as many µ and ε, all
of which will be inserted into −→µ and −→ε . Assessment of
different L requires CEF-SsL to be restarted by providing
a differen F while maintaining all other inputs.

Finally, the aggregated results of each method can be
validated via, e.g., a Student t-test [131] or a more refined
Wilcoxon Ranksum test [132]—provided that CEF-SsL is
run enough times to provide statistically significant results
(e.g., 50s or more [133]). Such comparisons can be made
by considering different initial conditions (e.g., different
L), because CEF-SsL ensures that all such conditions are
shared across all methods: hence, the only difference is
which ML method produced each single result.

6. Demonstration

As a final contribution of our paper, we demonstrate
the application of our CEF-SsL framework to assess the
benefits of SsL in CTD. We do so through a massive
experimental campaign using 9 well-known datasets, in
which we consider 9 existing SsL methods. We aim to:
• show how to apply our cost model and CEF-SsL;
• further motivate the importance of our requirements;
• provide the first statistically validated benchmark for

future studies.

All our considered datasets are publicly available, and we
release the code of our CEF-SsL implementation16.

We first outline the chosen datasets (§6.1). Next, we
explain the considered SsL methods (§6.2) and their im-
plementation through CEF-SsL (§6.3). We then summa-
rize the results (§6.4) and showcase a statistically signifi-
cant comparison (§6.5). We report in the Appendix some
low-level details (§A) and the full benchmark results (§B).

6.1. Datasets

Our evaluation focuses on the three CTD areas con-
sidered in this paper (§2): NID, PWD, MD. For each area
we consider three publicly available datasets.

For NID, we use: CTU13, UNB15, IDS17. These datasets
are well-known in the NID community, and contain data
representing a mixture of synthetic and real network traffic
captured in large environments. CTU13 is provided as PCAP
traces and is focused on botnet; UNB15 and IDS17 are
provided as NetFlows and contain additional malicious
activities such as DoS, exploits, or illegitimate recon.

For PWD, we use: UCI, δPhish, Mendeley. These well-
known datasets contain webpage information, such as the
URL, the reputation of the website, and the contents of
the source HTML. Two (UCI and Mendeley) are provided
directly as features, while δPhish has raw webpages, from
which we extract the features by following established
practices [134].

For MD, we use: Drebin, Ember, AndMal20. These
datasets are widely employed for ML-related analyses on
malware targeting different OS: Ember for Windows, Drebin
and AndMal20 for Android. Although Drebin is becoming
outdated (it was collected in 2013), AndMal20 is very recent
and serves for a better representation of current trends.

After obtaining all these 9 datasets, we preprocess
them so that they are usable for our objectives. For in-
stance, we clean some redundant data, or derive their fea-
ture sets. Some datasets may contain samples of different
malicious classes. Because our focus is on detection, in
some cases (Drebin, AndMal20) we aggregate all of them
into a single malicious class. Datasets for PWD and Ember

only have one malicious class. Datasets for NID have a
huge variety: as done in previous work [40], we consider
one classifier per each specific attack. More details are
in the Appendix A.1. Regardless, all these operations are
fixed for all the ML models evaluated on each dataset,
meaning that their impact on ε is the same for each model
and, hence, negligible for comparisons.

We provide an overview of these datasets after all
preprocessing has taken place in Table 2. For each dataset
D, we report the overall amount of benign and malicious
samples (Db and Dm, respectively), the amount of ma-
licious classes (N), the reiterations (n, k) performed by
CEF-SsL, and reference to a past work that used such
dataset (SotA).

For each dataset, CEF-SsL performs all experiments
N times, totalling N∗(n∗k) runs.

6.2. Selected SsL Methods

Let us describe the SsL methods that are included
in −−→ML in out study, together with the two SL baselines.

16. Available at: https://github.com/hihey54/CEF-SsL

10

https://github.com/hihey54/CEF-SsL

TABLE 2: Considered Datasets

CTD Name Db Dm N (n, k) SotA

NID
CTU13 [44] 19.5M 444K 6 (11,3) [135]
UNB15 [45] 100K 2.22M 4 (23,4) [136]
IDS17 [43] 555K 2.21M 5 (15,3) [137]

PWD
UCI [138] 4898 6157 1 (20,5) [139]

Mendeley [140] 58K 31K 1 (20,5) [141]
δPhish [50] 5510 1013 1 (20,5) [50]

MD
Drebin [142] 123K 4022 1 (20,5) [143]
Ember [144] 400K 400K 1 (20,5) [145]

AndMal20 [146] 162K 195K 1 (20,5) [147]

Evaluation of all SsL methods proposed in the state-of-
the-art (cf. Table 1) is clearly infeasible and also inpossible
due to their limited reproducibility and different assump-
tions. To showcase all scenarios envisioned in our CEF-
SsL framework, we consider 9 SsL methods which are
variations of two established SsL methods: self learning
via pseudo-labelling (e.g., [65]) and active learning via
uncertainty sampling (e.g., [66]), summarized in §2.3.
Specifically, we consider 3 ‘pure’ pseudo-labelling meth-
ods, 3 ‘pure’ active learning methods, and 3 combinations
thereof (e.g., [70]), where we cascade pseudo-labelling
with active learning. The decision criterion is the confi-
dence threshold c.

Pseudo Labelling. One of the ‘pure’ pseudo labelling
models represents our SsL baseline. We devise:

• SsL, using all pseudo labels regardless of their con-
fidence; the process is entirely automated because L
is chosen randomly and no selection of c is required.

• π SsL, using only the pseudo labels with the highest
confidence c ≥ 99%;

• π̂ SsL, which repeats the previous operation another
time. We use π SsL to predict the remaining U,
and insert the corresponding pseudo-labelled samples
with c ≥ 99% in the ‘mixed’ L.

Active Learning. For these methods, we assume that
half of the labelling budget is used to develop the first
learner, and then the remaining half is used to assign
the correct label (specified in the source dataset) to those
samples that meet a specific confidence threshold, c. To
avoid bias, the ‘actively labelled’ samples are chosen
randomly among those that meet the criteria. Due to such
randomness, we repeat the draw 5 times for each active
learning method. Depending on c, we devise:

• αSsLl, using low confidence samples, c ≤ 1%;
• αSsLh using high confidence samples c≥99%;
• αSsLo using the other samples 1% < c < 99%;

We note that our implementation of active learning is
fundamentally different and more realistic than the one
adopted by Pendlebury et al. [86]: in Tesseract, the oracle
assigns the correct label to all samples within a certain
confidence; on the other hand, we simply use the learner to
provide a set of samples to the oracle, who can only label
as many samples as allowed by the remaining budget. This
ensures that the provided L is never exceeded, allowing
for fair comparisons.

Pseudo-Active Learning. We combine pseudo la-
belling with active learning by using π SsL as initial
learner (but developed with half of the initial L), which
produces three ‘pseudo-active’ methods (απSsLl, απSsLo,
απSsLh) in the same way as in the ‘pure’ active learning.

6.3. Implementation

In our implementation, CEF-SsL performs the same
operations for all considered D and −−→ML.

The first stage of CEF-SsL is the creation of F from
D. In our case, we do so by adopting the 80:20 split which
is common in CTD (e.g., [40], [148], [149]). Specifically,
CEF-SsL randomly chooses 20% of the malicious samples
in D and 20% of the benign samples in D, and puts them
into F. The resulting samples are then considered as L.

To allow a comprehensive benchmark, we consider
three scenarios where the cost of labelling each sample
varies depending on their class—which serves to investi-
gate different balance ratios ρ(L). Specifically:
• (balanced) Cm = Cb: the number of benign samples

matches that of malicious, ρ(L)=(50, 50);
• (unbalanced) Cm=2Cb: the number of benign samples

is twice that of malicious, ρ(L)=(66, 33);
• (very unbalanced) Cm = 5Cb: the number of benign

samples is five times that of malicious, ρ(L)=(84, 16).
Where b and m denote a benign and malicious sample,
respectively. For each cost scenario, we vary the allocated
labelling budget L four times. We do so by regulating the
minimal amount of benign samples, Lb, to be included
in L. Hence, CEF-SsL composes L by first selecting Lb
benign samples from L; then, CEF-SsL keeps populating
L by choosing malicious samples from L until the budget
L is depleted, resulting in Lm malicious samples. The
values of L and Lb depend on each CTD task, and are
reported in Table 3. Because each combination of L and C
represents a different setting, we restart CEF-SsL at each
change (hence, 12 times) to allow a fair comparison.

TABLE 3: Composition of L for different L and C. In all cases,
|L|=(Lm+Lb), F=0.2*D, L=0.8*D, and U=(L-L).

CTD NID PWD MD
Scenario and C L Lm Lb L Lm Lb L Lm Lb

balanced
Cb=Cm

100 50 50 40 20 20 80 40 40
200 100 100 80 40 40 160 80 80
400 200 200 160 80 80 320 160 160
800 400 400 320 160 160 640 320 320

unbalanced
Cm=2 ∗ Cb

200 50 100 80 20 40 160 40 80
400 100 200 160 40 80 320 80 160
800 200 400 320 80 160 640 160 320

1600 400 800 640 160 320 1280 320 640

very
unbalanced
Cm=5 ∗ Cb

500 50 250 200 20 100 400 40 200
1000 100 500 400 40 200 800 80 400
2000 200 1000 800 80 400 1600 160 800
4000 400 2000 1600 160 800 3200 320 1600

We observe that our choices of L result in L that are
smaller than the testing set F, which is a good practice
in CTD research [54]. Overall, our models are trained
with as little as 40 labels (for PWD), and as high as
2400 labels (for NID) The resulting sets L and L are
immediately used to train the lower bound SL and the
upper bound SL, both tested on F. Then, CEF-SsL uses
the remaining sets according to each SsL method in −−→ML.
More detailed information on such development can be
found in Appendix A.2.

6.4. Evaluation

We apply the described implementation of CEF-SsL
on each dataset. The considered ML methods use the
Random Forest (RF) learning algorithm, for three rea-
sons. First, because RF are widely adopted by past work
(e.g., [40], [86], [143], [145]), favoring comparisons. Sec-
ond, since RF are known to provide an excellent tradeoff

11

between performance and computation time, and they can
also be parallelized: to provide statistically significant
results we must consider thousands of models, hence we
favor algorithms that are fast to train. Third, because
preliminary analyses confirmed the previous statement: we
empirically found that RF achieve similar performance as
other algorithms (e.g., neural networks) while requiring a
fraction of the training time.17

Performance Assessment. We choose the F1-score
(a positive is a malicious sample) as performance metric,
which is common in CTD.18 We report in Table 4 the
average F1-score achieved by each method in

−−→
ML on each

dataset, across all the different combinations of L and C.
Granular analyses and model-to-model comparisons can
be made by looking at the full results in Appendix B.

TABLE 4: Average F1-score of all methods. Boldface denotes the best
SsL method on each D. Gray cells denote the best ‘pure’ pseudo labelling
method, while dark-gray is for the best active learning method.

CTD NID PWD MD
Method CTU13 UNB15 IDS17 Mend UCI δPhish DREBIN Ember AndMal

SL 0.979 0.942 0.989 0.958 0.974 0.958 0.907 0.970 0.986
SL 0.611 0.447 0.878 0.852 0.884 0.780 0.480 0.667 0.910
SsL 0.613 0.447 0.879 0.852 0.886 0.778 0.486 0.662 0.910

π SsL 0.588 0.437 0.820 0.850 0.884 0.778 0.474 0.647 0.900
π̂ SsL 0.584 0.435 0.818 0.849 0.883 0.777 0.470 0.641 0.890

αSsLl 0.693 0.582 0.897 0.863 0.903 0.770 0.546 0.687 0.924
αSsLo 0.637 0.577 0.874 0.855 0.891 0.745 0.497 0.673 0.916
αSsLh 0.510 0.436 0.786 0.834 0.851 0.714 0.423 0.598 0.892

απSsLl 0.664 0.533 0.853 0.861 0.901 0.767 0.529 0.654 0.901
απSsLo 0.633 0.595 0.857 0.854 0.890 0.745 0.489 0.647 0.895
απSsLh 0.486 0.427 0.744 0.833 0.851 0.711 0.410 0.579 0.865

The following insights can be drawn from Table 4.
First, albeit almost counter-intuitive, using all pseudo-
labels is the most effective among the ‘pure’ pseudo la-
belling techniques. Second, despite the identical labelling
budgets in NID datasets, SsL methods achieved varying
performance: in UNB15 they achieve only 0.6 F1-score at
best, whereas in IDS17 they can reach almost 0.9 F1-score;
this highlights the importance of conducting evaluations
on diverse datasets. Third, active learning appears to be
the best way to use the labelling budget, but in δPhish it
is always inferior to ‘pure’ pseudo labelling; moreover,
it is interesting that the results of the models trained on
the (correct) high confidence labels consistently achieve
the worst performance. Fourth, in all datasets, all models
performed very similarly (on average) to the baseline SL.
Such small gap requires to be further investigated via
statistical comparisons, which we will do in §6.5.

Assessment of Extra Costs. Many factors contribute
to ε for each considered ML method. All of our imple-
mented methods share the same testbed, and most of such
costs are equal for all methods. We hence focus on the
most salient ‘cost’ of each method that we can measure:
its execution time.

We report in Table 5 the total time required to develop
each model, which comprises all the steps for (re)training
and (for SsL methods) predicting unlabelled data.

From Table 5, we can observe that the model requiring
the highest time is often the baseline SsL. This is not
surprising, because it is trained on the entire U after
training the baseline SL, and using it to predict the entire

17. We do not aim at benchmarking every conceivable implementation
of SsL methods. Nevertheless, our CEF-SsL code allows to select a
different learning algorithm by changing just one line of code.

18. We also measure Recall and Precision, reported in our GitHub.

TABLE 5: Average execution time (seconds) of all methods. Bold values
denote the SsL method with best F1-score on the same D (cf. Table 4).

CTD NID PWD MD
Method CTU13 UNB15 IDS17 Mend UCI δPhish DREBIN Ember AndMal

SL 30.31 18.75 33.55 1.365 0.420 0.535 3.054 147.6 42.81
SL 0.392 0.388 0.393 0.349 0.390 0.401 0.381 0.395 0.438
SsL 35.00 24.44 39.65 1.199 1.036 1.040 1.430 101.4 30.53

π SsL 12.74 15.32 23.92 1.090 0.930 0.942 1.064 2.257 3.702
π̂ SsL 27.00 28.77 45.13 1.864 1.473 1.487 1.824 6.791 8.726

αSsLl 3.471 4.955 8.990 0.905 0.885 0.895 0.847 0.897 0.960
αSsLo 3.469 4.954 8.989 0.904 0.883 0.896 0.846 0.895 0.957
αSsLh 3.466 4.950 8.987 0.898 0.880 0.894 0.844 0.893 0.952

απSsLl 23.49 27.22 38.50 1.744 1.356 1.375 1.666 5.267 7.593
απSsLo 23.39 26.98 38.48 1.746 1.354 1.375 1.662 5.493 7.699
απSsLh 23.28 26.78 38.06 1.747 1.350 1.372 1.655 5.258 7.579

U. In contrast, all other models are trained on a much
smaller dataset.

However, using only the execution time when compar-
ing the ε is not always fair. Some models may be better in
terms of execution time but require some manual tuning,
e.g., setting the desired level of confidence c. Compare,
for instance, SsL and αSsLl on CTU13: the former requires
35s, whereas the latter only 3s, which is a 32s difference.
However, choosing an appropriate c for αSsLl requires:
(i) inspecting the results of αSsLl, (ii) setting the new c,
(iii) devising a new αSsLl, (iv) inspecting the results of
the new αSsLl, and (v) deciding whether it has acceptable
performance or not. These procedures have a human in
the loop and hence a significantly higher ε (which cannot
be shown in Table 5). On the other hand, SsL always
achieves the reported performance, and by being entirely
automated will result in an overall lower ε.

6.5. Statistical Validation

To substantiate the claim that some SsL using U
outperforms the respective baseline (SL or SsL), statistical
tests can be carried out. Here, we use the Wilcoxon
ranksum [132], in which two populations are compared
with the goal of verifying a given null hypothesis H0. The
test outputs a z-value used to derive a p-value: H0 can be
accepted or rejected on the basis of p, according to a target
significance level. We use the two-tailed version of the
test, hence H0 is that the two populations are statistically
equivalent: the larger the p-value, the more H0 should be
accepted (and viceversa). We set the significance level to
0.05, implying that if p > 0.05 then the two populations
are equivalent; conversely, if p≤0.05, the two populations
are different (this is especially true if p�0.05).

For each dataset, we compare the populations contain-
ing the performance of the baseline SL against: (i) the best
‘pure’ pseudo-labelling method (gray cells in Table 4);
and (ii) the best active learning method (dark gray cells
in Table 4). We are comparing19 the methods, not the
individual models (model-to-model comparisons can be
made from Figs. 6–8). The results of such tests are in
Table 6, reporting the size of the populations20, and the
output z- and p values.21

From Table 6, we can draw the following conclusions.

19. The test is valid: the compared populations have the same amount
of elements and the conditions are shared among all elements, where the
only difference is the generation process (i.e., the specific ML method).

20. Such size is given by n*k*12, because we consider 3 cost
scenarios with 4 budgets. For NID, each element is the average of the
N malicious classes.

21. The EffectSize of the test can be dervied by z√
PopSize

.

12

TABLE 6: We statistically compare the SL baseline method against the
best ‘pure’ pseudo-labelling and the best active learning methods. Bold
values denote when H0 is accepted (p>0.05), i.e., the two methods are
statistically equivalent. Cells in green (red) denote cases where using U
statistically increases (decreases) performance.

Best ‘pure’ pseudo-labelling Best active learning
Dataset PopSize Method p-value z-value Method p-value z-value

CTU13 396 SsL 0.873 0.159 αSsLl < 0.001 4.310
UNB15 1104 SsL 0.964 –0.044 απSsLo < 0.001 15.98
IDS17 540 SsL 0.932 0.085 αSsLl 0.978 –0.027

UCI 1200 SsL 0.473 0.717 αSsLl < 0.001 7.386
Mend. 1200 SsL 0.713 0.368 αSsLl < 0.001 6.757
δPhish 1200 SsL 0.554 –0.590 αSsLl 0.002 –3.113

Drebin 1200 SsL 0.310 1.015 αSsLl < 0.001 11.78
Ember 1200 SsL 0.603 –0.512 αSsLl < 0.001 3.407
AndMal 1200 SsL 0.712 –0.370 αSsLl < 0.001 12.01

Active Learning provides statistically significant im-
provements, which can be remarkable (cf. Figs 6–8);
a finding that is consistent with past works (e.g., [95]).
However, this is not always true: on IDS17, αSsLl is
statistically equivalent to SL, meaning that there is no
benefit in using U on IDS17 (at least according to our
testbed). Moreover, it can be detrimental: on δPhish, the
best method using active learning (αSsLl) yields lower
performance than the baseline SL, and such difference is
statistically significant (p=0.002�0.05).

Pseudo Labelling is not useless. In UNB15, the pseudo-
active method απSsLo statistically outperforms the base-
lines (SL, and also SsL). However, in all its ‘pure’ appli-
cations, it provides no benefit: its best performer is SsL,
which is always statistically equivalent to SL. To put it
differently, in the ‘worst case’ using U will not induce
performance loss.

Finally, we also conducted the one-tailed variant of
the statistical test, which confirms all previous findings.

7. Discussion and Future Work

We make some crucial remarks on our evaluation.
Importance of our Requirements. Without consid-

ering SL, it was not possible to determine that any
‘pure’ pseudo-labelling model was not just useless but
even detrimental, due to achieving the same or inferior
µ(·) while requiring higher B. For instance, consider the
detailed results on UCI in Fig. 7a: the SsL models achieve
a respectable F1-score of 0.9 when trained only on 40
labelled examples. However, the same result is achieved
by the baseline SL, which does not make use of an U
containing 8000 samples. Similarly, on AndMal20, investing
in U provides very little benefit because the performance
gap between SL and SL is marginal. Furthermore, ac-
tive learning was considered to be superior to random
sampling [12], but for two of our datasets, IDS17 and
δPhish, this cannot be confirmed. Such insights would
not have been possible without a massive and statistically
validated comparison: looking only at Table 4, one may
conclude that the best active learning model has better
average performance than the SL baseline. Finally, by
considering Req. 2, it was possible to determine the lowest
cost induced by using U in the SsL pipeline due to lack
of human supervision (cf. Table 5).

Balancing. An intriguing occurrence can be observed
from Figs. 6–8. In the presence of data-imbalance, the
performance can be lower despite a higher labelling bud-
get. This is evident for Ember (Fig. 8b). In the balanced

scenario where Cm=Cb (leftmost plot): when L contains
800 correct labels, all models converge to a 0.8 F1-score;
however, when Cm=5Cb (rightmost plot), the performance
when L has 2400 correct labels ranges from 0.55 to 0.75
F1-score. We tried to regulate these situations by applying
oversampling techniques (e.g., [150]), but we never saw
significant changes. Such interesting result also occurs on
AndMal20 and UCI despite at a lower magnitude.

Scope. Despite our extensive evaluation, we stress that
our results should serve as a basis for future works22, and
should not be used to derive ‘universal’ statements. For in-
stance, the considered SsL methods represent just a subset
of all conceivable SsL techniques: hence our experiments
cannot be used to conclude that “all pseudo-labelling
techniques are not very effective in CTD”. In addition,
we stress that we apply well-known methods on existing
datasets and do not claim superiority over past works.
In Appendix C, we present a case study comparing our
results with a recent paper [70] using a similar testbed as
ours. Furthermore, although our cost model (cf. §3.2) can
represent any classification problem, in our evaluation we
use CEF-SsL to assess binary classifiers. This is because
the main goal of CTD is separating threats from legitimate
events, but we acknowledge that some applications may
involve fine-grained analyses. Evaluations of SsL methods
in multi-classification settings are challenging, and we
provide some considerations in Appendix D.

Labelling Accuracy. We assume that all the con-
sidered datasets are correctly labelled. However, such
assumption may be overly optimistic: as described in
§2, manual labelling is an error-prone task, and some
recent papers highlighted that even well-known datasets
may contain flaws (e.g., [151]). Due to the seminal nature
of this SoK paper, we do not make any change to the
provided labels—which also facilitates comparisons with
previous works using such datasets, as the ground truth
is the same. Nevertheless, we endorse future studies to
question the correctness of the labelling procedures—
especially if aimed at realistic deployments, as wrong
labels induce data poisoning (which can also affect un-
labelled samples [152]).

Concept Drift. Our evaluation assumes that the data
distribution is stationary. In reality evaluations should be
performed at regular intervals to prevent concept drift (cf.
§3.2). Such operations, however, are facilitated by the
design of our framework: CEF-SsL can also be applied
to lifelong learning scenarios by selecting F and L on a
temporal basis. For instance, in Tesseract [86], the initial
model is developed under the assumption that all samples
from the past are correctly labelled, resulting in over 50K
samples. Our CEF-SsL can be applied by assuming that
only a fraction of ‘past’ samples are correctly labelled
(L) while the remaining ones are not verified (U), and the
most recent samples are used as test (F).

8. Conclusions

Acquiring ground truth information in CTD is difficult,
but large amounts of unlabelled data are regularly avail-
able. These premises make SsL an intriguing opportunity,

22. We will update our GitHub repository with new findings if such
findings are derived from CEF-SsL.

13

as it exploits unlabelled data to mitigate the problem of
scarce ground truth. While many previous works have
employed SsL for diverse CTD tasks, none of them inves-
tigated the benefit provided by unlabelled data. Despite
being relatively cheap, such data still brings certain costs
into the ML pipeline.

In this SoK paper, we specifically investigate the
utility of unlabelled data and hence facilitate deployment
of SsL methods for CTD. We formalize the evaluation
requirements that enable one to assess the impact of
unlabelled data in the development of a SsL model, under
the assumption of a limited labelling budget. Prior works
in this area had different scope and never considered such
requirements, hence the impact of unlabelled data could
not be assessed.

As a constructive demonstration, we provide an eval-
uation framework that meets all these requirements and
use it to perform the first statistically validated benchmark
of 9 selected SsL methods on 9 well-known datasets for
CTD. The results reveal that only SsL methods using
active learning are statistically better than baselines that
do not use unlabelled data; however, in some cases they
can degrade performance.

Our paper hence highlights the substantial margin for
improvement of SsL methods for CTD. This motivates the
quest for future contributions that exploit unlabelled data
in CTD, compensating the high cost of expert knowledge
in this field.

References

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends,
perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–
260, 2015.

[2] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability
analysis and discovery using machine-learning and data-mining
techniques: A survey,” ACM Comp. Surv., vol. 50, no. 4, pp. 1–
36, 2017.

[3] E. Nunes, A. Diab, A. Gunn, E. Marin, V. Mishra, V. Paliath,
J. Robertson, J. Shakarian, A. Thart, and P. Shakarian, “Darknet
and deepnet mining for proactive cybersecurity threat intelli-
gence,” in Proc. IEEE Conf. Secur. Inf., 2016, pp. 7–12.

[4] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and
M. Marchetti, “On the effectiveness of machine and deep learning
for cybersecurity,” in Proc. IEEE Int. Conf. Cyber Conflicts, May
2018, pp. 371–390.

[5] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Proc. IEEE
Symp. Secur. Privacy, 2010, pp. 305–316.

[6] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al.,
“Reviewer integration and performance measurement for malware
detection,” in Proc. Int. Conf. DIMVA, 2016, pp. 122–141.

[7] R. Meier, C. Scherrer, D. Gugelmann, V. Lenders, and L. Van-
bever, “Feedrank: A tamper-resistant method for the ranking of
cyber threat intelligence feeds,” in Proc. IEEE Int. Conf. Cyber
Conflict, 2018.

[8] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda, “Scalable, behavior-based malware clustering.” in Proc.
Netw. Distrib. Syst. Secur. Symp., vol. 9, 2009.

[9] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: ensem-
ble clustering and classification for predicting android malware
families,” IEEE Trans. Depend. Sec. Comput., 2017.

[10] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[11] J. Koza, M. Krcál, and M. Holena, “Two semi-supervised ap-
proaches to malware detection with neural networks.” in ITAT,
2020, pp. 176–185.

[12] Y. Gu and D. Zydek, “Active learning for intrusion detection,” in
Proc. IEEE Nat. Wireless Res. Collab. Symp., 2014, pp. 117–122.

[13] F. Noorbehbahani and M. Saberi, “Ransomware detection with
semi-supervised learning,” in IEEE Int. Conf. Comp. Knowl. Eng.,
2020.

[14] L. Sun, Y. Zhou, Y. Wang, C. Zhu, and W. Zhang, “The effective
methods for intrusion detection with limited network attack data:
Multi-task learning and oversampling,” IEEE Access, vol. 8, 2020.

[15] A. D. Gabriel, D. T. Gavrilut, B. I. Alexandru, and P. A. Stefan,
“Detecting malicious URLs: A semi-supervised machine learning
system approach,” in Proc. IEEE Int. Symp. Sym. Num. Alg. Sci.
Comp., 2016.

[16] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Good-
fellow, “Realistic Evaluation of Deep Semi-Supervised Learning
Algorithms,” Proc. Adv. Neur. Inf. Process. Syst., vol. 31, pp.
3235–3246, 2018.

[17] J. Huang, Y.-F. Li, and M. Xie, “An empirical analysis of data pre-
processing for machine learning-based software cost estimation,”
Elsevier Inf. Soft. Tech., vol. 67, pp. 108–127, 2015.

[18] B. Ashadevi and R. Balasubramanian, “Optimized cost effective
approach for selection of materialized views in data warehousing,”
J. Comp. Sci. Techn., vol. 9, no. 01, pp. 21–26, 2009.

[19] A. Owens and A. A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” in Europ. Conf. Comp. Vis.,
2018.

[20] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver,
and C. A. Raffel, “MixMatch: A Holistic Approach to Semi-
Supervised Learning,” NeurIPS, vol. 32, pp. 5049–5059, 2019.

[21] J. C. Chang, S. Amershi, and E. Kamar, “Revolt: Collaborative
crowdsourcing for labeling machine learning datasets,” in Proc.
Conf. Human Fact. Comput. Syst., 2017, pp. 2334–2346.

[22] E. Bursztein, M. Martin, and J. Mitchell, “Text-based CAPTCHA
strengths and weaknesses,” in Proc. ACM Conf. Comp. Commun.
Secur., 2011, pp. 125–138.

[23] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Im-
ageNet training in minutes,” in Proc. Int. Conf. Parallel Proces.,
2018.

[24] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouret-
dinov, and L. Cavallaro, “Transcend: Detecting concept drift in
malware classification models,” in Proc. USENIX Secur. Symp.,
2017.

[25] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE
T. Knowledge Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010.

[26] E. Law and L. v. Ahn, “Human computation,” Synthesis Lectures
Artif. Intell. Machin. Learn., vol. 5, no. 3, pp. 1–121, 2011.

[27] S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era:
artificial intelligence and machine learning in prostate cancer,”
Nature Reviews Urology, vol. 16, no. 7, pp. 391–403, 2019.

[28] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” J. Big Data, vol. 6, no. 1, pp.
1–48, 2019.

[29] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti, “Ad-
dressing adversarial attacks against security systems based on
machine learning,” in Proc. IEEE Int. Conf. Cyber Conflicts, May
2019, pp. 1–18.

[30] Z. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting
for label shift with black box predictors,” in Proc. Int. Conf.
Machin. Learn., 2018, pp. 3122–3130.

[31] J. Charlton, P. Du, J.-H. Cho, and S. Xu, “Measuring relative
accuracy of malware detectors in the absence of ground truth,” in
Proc. IEEE Military Commun. Conf., 2018, pp. 450–455.

[32] G. Apruzzese and M. Colajanni, “Evading botnet detectors based
on flows and random forest with adversarial samples,” in Proc.
IEEE Int. Symp. Netw. Comput. Appl., Oct. 2018, pp. 1–8.

14

[33] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review
on imbalanced data challenges in machine learning: Applications
and solutions,” ACM Comp. Surv., vol. 52, no. 4, pp. 1–36, 2019.

[34] C. G. Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser,
and S. Nadjm-Tehrani, “On generating network traffic datasets
with synthetic attacks for intrusion detection,” ACM T. Privacy
Secur., vol. 24, no. 2, pp. 1–39, 2021.

[35] F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad,
“An incremental intrusion detection system using a new semi-
supervised stream classification method,” Int. J. Commun. Syst.,
2015.

[36] H. Yao, D. Fu, P. Zhang, M. Li, and Y. Liu, “MSML: A novel
multilevel semi-supervised machine learning framework for intru-
sion detection system,” IEEE IoT J., vol. 6, no. 2, pp. 1949–1959,
2019.

[37] R. M. Verma, V. Zeng, and H. Faridi, “Data quality for secu-
rity challenges: Case studies of phishing, malware and intrusion
detection datasets,” in Proc. ACM Conf. Comp. Commun. Secur.,
2019.

[38] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion detection,”
IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1153–1176,
2016.

[39] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: detecting botnet command and control servers
through large-scale netflow analysis,” in Proc. ACM Annual Conf.
Comput. Secur. Appl., 12 2012, pp. 129–138.

[40] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi, and
M. Colajanni, “Deep reinforcement adversarial learning against
botnet evasion attacks,” IEEE T. Netw. Serv. Manag., vol. 17,
no. 4, 2020.

[41] D. Vekshin, K. Hynek, and T. Cejka, “DOH insight: Detecting
DNS over HTTPs by machine learning,” in Proc. Int. Conf.
Availability, Reliability, Secur., 2020, pp. 1–8.

[42] G. Fernandes, J. J. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi,
and M. L. Proença, “A comprehensive survey on network anomaly
detection,” Springer Telecom. Syst., vol. 70, no. 3, pp. 447–489,
2019.

[43] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traf-
fic characterization.” in Proc. IEEE Int. Conf. Inf. Syst. Secur.
Privacy, 2018.

[44] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” Elsevier Comp. Secur.,
2014.

[45] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems,” in Military Commun.
Inf. Syst. Conf., 2015, pp. 1–6.

[46] R. Mills, A. Marnerides, M. Broadbent, and N. Race, “Practical
intrusion detection of emerging threats,” IEEE TNSM, 2021.

[47] A. Das, S. Baki, A. El Aassal, R. Verma, and A. Dunbar, “SoK:
a comprehensive reexamination of phishing research from the
security perspective,” IEEE Comm. Surv. Tut., vol. 22, no. 1, 2019.

[48] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a
haystack: Tracking down elite phishing domains in the wild,” in
Proc. ACM Internet Measur. Conf., 2018, pp. 429–442.

[49] H. Kettani and P. Wainwright, “On the top threats to cyber
systems,” in Proc. IEEE Int. Conf. Inf. Comp. Tech., Mar. 2019,
pp. 175–179.

[50] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda, M. Mereu,
G. Mureddu, D. Ariu, and F. Roli, “Deltaphish: Detecting phish-
ing webpages in compromised websites,” in Proc. Springer Europ.
Symp. Res. Comput. Secur., 9 2017, pp. 370–388.

[51] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection
based associative classification data mining,” Elsevier Expert Syst.
Appl., vol. 41, no. 13, pp. 5948–5959, 2014.

[52] C. L. Tan, K. L. Chiew, K. Wong et al., “PhishWHO: Phishing
webpage detection via identity keywords extraction and target
domain name finder,” Elsevier Decision Support Syst., vol. 88,
pp. 18–27, 2016.

[53] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Predict-
ing phishing websites based on self-structuring neural network,”
Springer Neur. Comp. Appl., vol. 25, no. 2, pp. 443–458, 2014.

[54] S. Marchal and N. Asokan, “On designing and evaluating phish-
ing webpage detection techniques for the real world,” in Proc.
USENIX Cyber Secur. Exp. Test Workshop, 2018.

[55] J.-H. Li and S.-D. Wang, “Phishbox: An approach for phishing
validation and detection,” in Proc. IEEE Int. Conf. Depend. Auto.
Secur. Comput., 2017, pp. 557–564.

[56] I. Qabajeh, F. Thabtah, and F. Chiclana, “A recent review of con-
ventional vs. automated cybersecurity anti-phishing techniques,”
Elsevier Comp. Sci. Review, vol. 29, pp. 44–55, 2018.

[57] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking
classifiers for evasion: a case study on the google’s phishing pages
filter,” in Proc. Int. Conf. World Wide Web, 2016, pp. 345–356.

[58] “Machine learning for malware detection,” Kaspersky, Tech. Rep.,
2018.

[59] H.-D. Pham, T. D. Le, and T. N. Vu, “Static PE malware detection
using gradient boosting decision trees algorithm,” in Proc. Int.
Conf. Future Data Secur. Eng., 2018, pp. 228–236.

[60] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic
malware analysis in the modern era—a state of the art survey,”
ACM Comp. Surv., vol. 52, no. 5, pp. 1–48, 2019.

[61] P. Kotzias, J. Caballero, and L. Bilge, “How did that get in my
phone? unwanted app distribution on android devices,” in IEEE
Symp Secur. Privacy, 2021, pp. 53–69.

[62] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang,
“Measuring and modeling the label dynamics of online anti-
malware engines,” in Proc. USENIX Secur. Symp., 2020, pp.
2361–2378.

[63] N. Šrndic and P. Laskov, “Detection of malicious pdf files based
on hierarchical document structure,” in Proc. Netw. Distrib. Syst.
Symp., 2013, pp. 1–16.

[64] J. Xu, Y. Li, and R. H. Deng, “Differential training: A generic
framework to reduce label noises for android malware detection,”
in Netw. Distrib. Syst. Secur. Symp., 2021.

[65] S. Zhang and C. Du, “Semi-supervised deep learning based net-
work intrusion detection,” in Proc. IEEE Int. Conf. Cyber-Enabled
Distrib. Comp. Knowld. Discov., 2020, pp. 35–40.

[66] B. Rashidi, C. Fung, and E. Bertino, “Android malicious applica-
tion detection using support vector machine and active learning,”
in Proc. IEEE Int. Conf. Netw. Serv. Manag., 2017, pp. 1–9.

[67] Z. Qiu, D. J. Miller, and G. Kesidis, “Flow based botnet detection
through semi-supervised active learning,” in Proc. IEEE Int. Conf.
Acoustics Speech Sign. Process., 2017, pp. 2387–2391.

[68] V. V. Kumari and P. R. K. Varma, “A semi-supervised intrusion
detection system using active learning SVM and fuzzy c-means
clustering,” in Proc. IEEE Int. Conf. I-SMAC, 2017, pp. 481–485.

[69] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and
S. Yan, “Exploring connections between active learning and
model extraction,” in Proc. USENIX Secur. Symp., 2020, pp.
1309–1326.

[70] Y. Zhang, J. Niu, G. He, L. Zhu, and D. Guo, “Network Intrusion
Detection Based on Active Semi-supervised Learning,” in Proc.
IEEE/IFIP Int. Conf. Dep. Syst. Netw. Workshops, 2021, pp. 129–
135.

[71] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of
Things Intrusion Detection: Centralized, on-device, or Federated
Learning?” IEEE Network, vol. 34, no. 6, pp. 310–317, 2020.

[72] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poi-
soning attacks on federated learning-based IoT intrusion detection
system,” in Proc. Netw. Distrib. Syst. Symp., 2020, pp. 1–7.

[73] I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z.
Abidin, A. Liu, A. B. Costa, B. J. Wood, C.-S. Tsai et al.,
“Federated learning for predicting clinical outcomes in patients
with COVID-19,” Nature Medicine, pp. 1–9, 2021.

[74] Y.-C. Chen, Y.-J. Li, A. Tseng, and T. Lin, “Deep learning for
malicious flow detection,” in Proc. IEEE Symp. Pers. Indoor,
Mobile, Radio Commun., 2017, pp. 1–7.

15

[75] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Repr., 2016.

[76] L. Ale, L. Li, D. Kar, N. Zhang, and A. Palikhe, “Few-shot
learning to classify android malwares,” in Proc. IEEE Int. Conf.
Sign. Imag. Proces., 2020, pp. 1001–1007.

[77] P.-F. Marteau, “Random Partitioning Forest for Point-Wise and
Collective Anomaly Detection—Application to Network Intrusion
Detection,” IEEE T. Inf. Forensics Secur., vol. 16, pp. 2157–2172,
2021.

[78] Y. Zhao and M. K. Hryniewicki, “XGBOD: improving supervised
outlier detection with unsupervised representation learning,” in
Proc. IEEE Int. Joint Conf. Neur. Netw., 2018, pp. 1–8.

[79] Y. Fang, W. Zhang, B. Li, F. Jing, and L. Zhang, “Semi-supervised
malware clustering based on the weight of bytecode and api,”
IEEE Access, vol. 8, pp. 2313–2326, 2019.

[80] H. L. Duarte-Garcia, C. D. Morales-Medina, A. Hernandez-
Suarez, G. Sanchez-Perez, K. Toscano-Medina, H. Perez-Meana,
and V. Sanchez, “A semi-supervised learning methodology for
malware categorization using weighted word embeddings,” in
Proc. IEEE Europ. Symp. Secur. Privacy Workshops, 2019, pp.
238–246.

[81] A. Atzeni, F. Dı́az, A. Marcelli, A. Sánchez, G. Squillero,
and A. Tonda, “Countering android malware: A scalable semi-
supervised approach for family-signature generation,” IEEE Ac-
cess, vol. 6, 2018.

[82] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,”
in Proc. Netw. Distrib. Syst. Secur. Symp., vol. 5, 2018, p. 2.

[83] A. Mahindru and A. Sangal, “Feature-based semi-supervised
learning to detect malware from android,” in Auto. Soft. Eng.:
Deep Learning-based Approach. Springer, 2020, pp. 93–118.

[84] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Elsevier Neural Networks, vol. 113, pp. 54–71, 2019.

[85] M. Du, Z. Chen, C. Liu, R. Oak, and D. Song, “Lifelong anomaly
detection through unlearning,” in Proc. ACM CCS, 2019.

[86] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cav-
allaro, “TESSERACT: Eliminating experimental bias in malware
classification across space and time,” in USENIX Secur. Symp.,
2019, pp. 729–746.

[87] T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flow-
Print: Semi-supervised mobile-app fingerprinting on encrypted
network traffic,” in Proc. Netw. Distrib. Syst. Symp., vol. 27, 2020.

[88] Y. Chen, L. Liang, F. Yang, and J. Zhu, “Evaluation of information
technology investment: a data envelopment analysis approach,”
Elsevier Comp. Oper. Research, vol. 33, no. 5, pp. 1368–1379,
2006.

[89] P. W. Farris, N. Bendle, P. E. Pfeifer, and D. Reibstein, Marketing
metrics: The definitive guide to measuring marketing perfor-
mance. Pearson Education, 2010.

[90] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning
from data. AMLBook New York, NY, USA, 2012, vol. 4.

[91] M. Baker, “Reproducibility crisis,” Nature, vol. 533, no. 26, 2016.

[92] J. Pineau et al., “Improving Reproducibility in Machine Learning
research,” NeurIPS, 2020.

[93] Y. Li and L. Guo, “An active learning based TCM-KNN algo-
rithm for supervised network intrusion detection,” Elsevier Comp.
Secur., vol. 26, no. 7-8, pp. 459–467, 2007.

[94] J. Long, J.-P. Yin, E. Zhu, and W.-T. Zhao, “A novel active cost-
sensitive learning method for intrusion detection,” in Proc. IEEE
Int. Conf. Machin. Learn. Cyber., vol. 2, 2008, pp. 1099–1104.

[95] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Active learning
for network intrusion detection,” in Proc. ACM Workshop Secur.
Artif. Intell., 2009, pp. 47–54.

[96] N. Seliya and T. M. Khoshgoftaar, “Active learning with neural
networks for intrusion detection,” in Proc. IEEE Int. Conf. Inf.
Reuse Integration, 2010, pp. 49–54.

[97] C. T. Symons and J. M. Beaver, “Nonparametric semi-supervised
learning for network intrusion detection: combining performance
improvements with realistic in-situ training,” in Proc. ACM Work-
shop Secur. Artif. Intell., 2012, pp. 49–58.

[98] S. K. Wagh and S. R. Kolhe, “Effective intrusion detection system
using semi-supervised learning,” in Proc. IEEE Int. Conf. Data
Mining Intell. Comp., 2014, pp. 1–5.

[99] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-
L. He, “Fuzziness based semi-supervised learning approach for
intrusion detection system,” Elsevier Inf. Sci., vol. 378, pp. 484–
497, 2017.

[100] S. McElwee, “Active learning intrusion detection using k-means
clustering selection,” in Proc. IEEE Southeast Conf., 2017, pp.
1–7.

[101] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for
wireless IoT intrusion detection,” IEEE Wireless Comm., vol. 25,
no. 6, 2018.

[102] Y. Gao, Y. Liu, Y. Jin, J. Chen, and H. Wu, “A novel semi-
supervised learning approach for network intrusion detection on
cloud-based robotic system,” IEEE Access, vol. 6, pp. 50 927–
50 938, 2018.

[103] N. Shi, X. Yuan, J. Hernandez, K. Roy, and A. Esterline, “Self-
Learning Semi-Supervised Machine Learning for Network Intru-
sion Detection,” in Proc. IEEE Int. Conf. Comput. Sci. Comput.
Intell., 2018, pp. 59–64.

[104] Y. Yuan, L. Huo, Y. Yuan, and Z. Wang, “Semi-supervised tri-
Adaboost algorithm for network intrusion detection,” J. Distr.
Sens. Netw., 2019.

[105] K. Hara and K. Shiomoto, “Intrusion Detection System using
Semi-Supervised Learning with Adversarial Auto-encoder,” in
Proc. IEEE Netw. Op. Manag. Sympp., 2020, pp. 1–8.

[106] N. Ravi and S. M. Shalinie, “Semisupervised-Learning-Based
Security to Detect and Mitigate Intrusions in IoT Network,” IEEE
IoT J., vol. 7, no. 11, pp. 11 041–11 052, 2020.

[107] Y. Gao, S. Chandra, Y. Li, L. Khan, and B. M. Thuraisingham,
“SACCOS: A semi-supervised framework for emerging class
detection and concept drift adaption over data streams,” IEEE
T. Knowl. Data Eng., 2020.

[108] W. Li, W. Meng, and M. H. Au, “Enhancing collaborative intru-
sion detection via disagreement-based semi-supervised learning
in iot environments,” Elsevier J. Netw. Comp. Appl., vol. 161, p.
102631, 2020.

[109] J. Liang, W. Guo, T. Luo, V. Honavar, G. Wang, and X. Xing,
“FARE: Enabling Fine-grained Attack Categorization under Low-
quality Labeled Data,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2021.

[110] B. Gyawali, T. Solorio, M. Montes-y Gómez, B. Wardman, and
G. Warner, “Evaluating a semisupervised approach to phishing url
identification in a realistic scenario,” in Proc. Ann. Collab. Elec.
Messag. Anti-Abuse Spam Conf., 2011, pp. 176–183.

[111] P. Zhao and S. C. Hoi, “Cost-sensitive online active learning with
application to malicious URL detection,” in Proc. ACM Int. Conf.
Knowl. Discov. Data Mining, 2013, pp. 919–927.

[112] J. Yang, P. Yang, X. Jin, and Q. Ma, “Multi-classification for
malicious URL based on improved semi-supervised algorithm,”
in Proc. IEEE Int. Conf. Comp. Sci. Eng., vol. 1, 2017, pp. 143–
150.

[113] S. D. Bhattacharjee, A. Talukder, E. Al-Shaer, and P. Doshi, “Pri-
oritized active learning for malicious url detection using weighted
text-based features,” in Proc. IEEE Int. Conf. Intell. Secur. Inf.,
2017, pp. 107–112.

[114] R. Moskovitch, N. Nissim, and Y. Elovici, “Acquisition of mali-
cious code using active learning,” in Proc. Int. Workshop Privacy,
Secur. Trust KDD, 2008.

[115] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning
for unknown malware detection,” in Proc. Springer Int. Symp.
Distrib. Comp. Artif. Intell., 2011, pp. 415–422.

16

[116] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Detecting
unknown computer worm activity via support vector machines
and active learning,” Pattern Anal. Appl., vol. 15, no. 4, pp. 459–
475, 2012.

[117] M. Zhao, T. Zhang, F. Ge, and Z. Yuan, “RobotDroid: a
lightweight malware detection framework on smartphones,” J.
Netw., 2012.

[118] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Novel
active learning methods for enhanced PC malware detection in
windows OS,” Elsevier Exp. Syst. Appl., vol. 41, no. 13, pp. 5843–
5857, 2014.

[119] X.-Y. Zhang, S. Wang, X. Zhu, X. Yun, G. Wu, and Y. Wang,
“Update vs. Upgrade: modeling with indeterminate multi-class
active learning,” Elsevier Neurocomp., vol. 162, pp. 163–170,
2015.

[120] N. Nissim, R. Moskovitch, O. BarAd, L. Rokach, and Y. Elovici,
“ALDROID: efficient update of Android anti-virus software using
designated active learning methods,” Springer Know. Inf. Syst.,
vol. 49, no. 3, pp. 795–833, 2016.

[121] M. Ni, T. Li, Q. Li, H. Zhang, and Y. Ye, “FindMal: A file-to-
file social network based malware detection framework,” Elsevier
Knowl. Based Syst., vol. 112, pp. 142–151, 2016.

[122] L. Chen, M. Zhang, C.-Y. Yang, and R. Sahita, “POSTER: Semi-
supervised classification for dynamic Android malware detection,”
in Proc. ACM Conf. Comp. Commun. Sec., 2017, pp. 2479–2481.

[123] Y. Fu and J. Xu, “Malware detection via extended label propaga-
tion through graph inference,” IEEE Access, vol. 7, 2019.

[124] P. Irofti and A. Băltoiu, “Malware identification with dictionary
learning,” in Proc. IEEE EuSiPCo, 2019, pp. 1–5.

[125] S. Sharmeen, S. Huda, J. Abawajy, and M. M. Hassan, “An
adaptive framework against android privilege escalation threats
using deep learning and semi-supervised approaches,” Elsevier
Appl. Soft Comp., vol. 89, p. 106089, 2020.

[126] C.-W. Chen, C.-H. Su, K.-W. Lee, and P.-H. Bair, “Malware
family classification using active learning by learning,” in IEEE
ICACT, 2020.

[127] Q. Li, Q. Hu, Y. Qi, S. Qi, X. Liu, and P. Gao, “Semi-supervised
two-phase familial analysis of android malware with normal-
ized graph embedding,” Knowledge-Based Systems, vol. 218, p.
106802, 2021.

[128] M. Hutson, “Artificial Intelligence Faces Reproducibility Crisis,”
Science, vol. 359, no. 6377, pp. 725–726, 2018.

[129] M. Dehghani, Y. Tay, A. A. Gritsenko, Z. Zhao, N. Houlsby,
F. Diaz, D. Metzler, and O. Vinyals, “The benchmark lottery,” in
NeurIPS, 2021.

[130] K. Musgrave, S. Belongie, and S.-N. Lim, “A metric learning
reality check,” in Proc. Europ. Conf. Comp. Vis., 2020, pp. 681–
699.

[131] D. W. Zimmerman, “Comparative power of student t test and
mann-whitney u test for unequal sample sizes and variances,” The
Journal of Experimental Education, vol. 55, no. 3, pp. 171–174,
1987.

[132] S. Datta and G. A. Satten, “Rank-sum tests for clustered data,”
J. Amer. Statist. Assoc., vol. 100, no. 471, pp. 908–915, 2005.

[133] M. Happ, A. C. Bathke, and E. Brunner, “Optimal sample
size planning for the wilcoxon-mann-whitney test,” Statistics in
medicine, vol. 38, no. 3, pp. 363–375, 2019.

[134] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Intelligent
rule-based phishing websites classification,” IET Inf. Secur., 2014.

[135] G. Apruzzese, M. Colajanni, and M. Marchetti, “Evaluating the
effectiveness of adversarial attacks against botnet detectors,” in
Proc. IEEE Int. Symp. Netw. Comput. Appl., Oct. 2019, pp. 1–8.

[136] S. Rajagopal, P. P. Kundapur, and K. S. Hareesha, “A stacking
ensemble for network intrusion detection using heterogeneous
datasets,” Secur. Commun. Netw., vol. 2020, 2020.

[137] M. Di Mauro, G. Galatro, and A. Liotta, “Experimental review
of neural-based approaches for network intrusion management,”
IEEE T. Netw. Serv. Manag., 2020.

[138] M. Karabatak and T. Mustafa, “Performance comparison of clas-
sifiers on reduced phishing website dataset,” in Proc. IEEE Int.
Symp. Digit. Forensic Secur., 2018, pp. 1–5.

[139] S. R. Sharma, R. Parthasarathy, and P. B. Honnavalli, “A feature
selection comparative study for web phishing datasets,” in Proc.
IEEE Int. Conf. Elec. Comp. Commun. Tech., 2020, pp. 1–6.

[140] G. Vrbančič, “Phishing Websites Dataset–Mendeley Data,” 2020.

[141] M. Al-Sarem, F. Saeed, Z. G. Al-Mekhlafi, B. A. Mohammed,
T. Al-Hadhrami, M. T. Alshammari, A. Alreshidi, and T. S. Al-
shammari, “An optimized stacking ensemble model for phishing
websites detection,” Electronics, vol. 10, no. 11, p. 1285, 2021.

[142] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware
in your pocket.” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014.

[143] M. S. Rana, C. Gudla, and A. H. Sung, “Evaluating machine
learning models for android malware detection: A comparison
study,” in Proc. Int. Conf. Netw. Commun. Comp., 2018, pp. 17–
21.

[144] H. S. Anderson and P. Roth, “Ember: an open dataset for training
static pe malware machine learning models,” arXiv:1804.04637,
2018.

[145] C. Galen and R. Steele, “Empirical measurement of performance
maintenance of gradient boosted decision tree models for malware
detection,” in Proc. IEEE Int. Conf. Artif. Int. Inf. Commun., 2021.

[146] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, and
F. Massicotte, “DIDroid: Android Malware Classification and
Characterization Using Deep Image Learning,” in Proc. Int. Conf.
Commun. Netw. Secur., 2020, pp. 70–82.

[147] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and
F. Massicotte, “EntropLyzer: Android Malware Classification and
Characterization Using Entropy Analysis of Dynamic Character-
istics,” in Proc. IEEE RDAAPS, 2021, pp. 1–12.

[148] H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani,
and H. Fu, “DDefender: Android application threat detection
using static and dynamic analysis,” in Proc. Int. Conf. Consum.
Elec., 2018.

[149] A. Awasthi and N. Goel, “Phishing website prediction: A machine
learning approach,” in Progress in Advanced Computing and
Intelligent Engineering. Springer, 2021, pp. 143–152.

[150] S. Barua, M. M. Islam, X. Yao, and K. Murase, “MWMOTE–
majority weighted minority oversampling technique for imbal-
anced data set learning,” IEEE T. Knowl. Data Eng., vol. 26,
no. 2, 2012.

[151] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an
intrusion detection dataset: the CICIDS2017 case study,” in Proc.
IEEE Secur. Privacy Workshops, 2021, pp. 7–12.

[152] N. Carlini, “Poisoning the unlabeled dataset of semi-supervised
learning,” USENIX Secur. Symp., 2021.

[153] G. Apruzzese, M. Andreolini, M. Colajanni, and M. Marchetti,
“Hardening Random Forest Cyber Detectors Against Adversarial
Attacks,” IEEE T. Emerg. Topics Comp. Intell., vol. 4, no. 4, pp.
427–439, 2020.

[154] R. Panigrahi and S. Borah, “A detailed analysis of cicids2017
dataset for designing intrusion detection systems,” Int. J. Eng.
Techn., 2018.

Appendix A.
Experimental Testbed

All our experiments are performed on a machine
equipped with an Intel Xeon W-2195 CPU with 36
cores, 256GB RAM, 2TB SSD NVMe, and Nvidia Titan
RTX GPU. The implementation leverages Python3 and
the well-known ML library of scikit-learn. The specific
ML algorithm used as base for all our models is the
RandomForestClassifier. Training such classifier can be
parallelized: in particular, we set the njobs parameter to
use 34 cores (out of 36) of our CPU.

17

A.1. Data Preprocessing

NID datasets. The considered NID datasets all contain
more than one malicious class—which we treat differently.
• CTU13 is composed of 13 PCAP traces, each one con-

taining either benign or malicious traffic belonging
to a given botnet family out of 7 possible families.
Such traces are transformed into NetFlows via Argus.
To prevent overfitting, we remove the full IP-address
(we differentiate between internal/external IPs); we
also derive some additional metrics (e.g., bytes per
second, or the IANA port categories). The entire
feature set is provided in Table 7, which is similar to
the one in [153]. Then, we merge all sets according
to the specific botnet family, obtaining 7 sets con-
taining either benign samples, or malicious samples
belonging to a single family. We exclude those botnet
families with less than 1K samples.

• IDS17 is provided as NetFlows, each separated in
benign and malicious samples of different attacks.
We use the entire feature set provided by the authors
of IDS17, but we apply the same internal/external
differentiation as done for CTU13 to prevent overfitting
on individual IP addresses. We aggregate the sets of
NetFlows containing DoS attacks into a single set,
and we exclude the families underrepresented. We
create a dedicated set for the benign samples, which
we use for all the experiments.

• UNB15 the procedure is similar to IDS17. We use the
same feature sets provided by the authors (with
the usual distinction between internal/external ma-
chines). We aggregate the most represented families
in 5 distinct sets.

TABLE 7: Features considered for CTU13.

Feature Name Type

1 SrcIP internal Bool
2 DstIP internal Bool
3 SrcPort type Cat
4 DstPort type Cat
5 SrcPort Cat
6 DstPort Cat
7 Flow Duration [s] Num
8 Flow Direction Bool
9 Inc-Bytes Num
10 Out-Bytes Num
11 Total Bytes Num
12 Incoming Packets Num
13 Outgoing Packets Num
14 Total Packets Num
15 Bytes per Packet Num
16 Bytes per Second Num
17 Packets per Second Num
18 Inc- per Out-Bytes Num

The complete break down of the benign and malicious
sets for each NID dataset is provided in Table 8.

TABLE 8: Breakdown of traces for NID datasets.

Dataset Trace Attack
Class

Malicious
Samples Dm

Benign
Samples Db

CTU13

1 Neris 246889 6473336
2 e4f8 40904 2014041
3 svchost 4630 554284
4 qvodset 6127 2948062
5 NSISay 2168 323300
6 qvodset 143918 7104673

UNB15

1 DoS 16353

22187562 Exploits 44525
3 Fuzzers 24246
4 Recon 13987

IDS17

1 DoS 252661

2273097
2 DDoS 128027
3 PortScan 158930
4 SshFtp 13835
5 WebAttack 2180

In all experiments involving NID datasets, we devise
ensemble of classifiers, each focused on a specific family
(as done in [70], [153]). The results presented in our
graphs are the average of all classifiers.

MD datasets. The task of MD has been tackled either
as a binary classification [145] or as a multi-classification
ML problem [9]—the latter focusing on identifying the
specific malware family of a given sample. Because EMBER

only has a single malicious family, all our MD are binary
classifiers. To this purpose, we observe that DREBIN (col-
lected from 2010 to 2012) has hundreds of malware fam-
ilies, some of which extremely underrepresented: hence,
we considered the samples of top10 families and treated
them as a single class. On the other hand, AndMal20 is more
balanced across families, hence we consider all samples
as a single malicious class.

PWD datasets. All PWD datasets include malicious
samples of a single class. To the best of our knowledge,
PWD has always been treated as a binary classification
problem; hence, developing our PWD is more straightfor-
ward compared to NID and MD. The UCI and Mendeley

datasets are provided directly as features; whereas for
δPhish, we extract the most significant features based on
the information of each provided webpage (HTML, URL,
DNS) to achieve a similar feature set as the other two [53].
The queries to the DNS servers were performed in 2019,
and some returned null results; we still consider these
pages in our evaluation, as this happened for both benign
and malicious pages. We provide in Table 9 the complete
feature set used for δPhish.

TABLE 9: Features computed for the δPhish dataset.

URL-features REP-features HTML-features
IP address SSL final state SFH

’@’ (at) symbol URL/DNS mismatch Anchors
’-’ (dash) symbol DNS Record Favicon

Dots number Domain Age iFrame
Fake HTTPS PageRank MailForm
URL Length PortStatus Pop-Up

Redirect Redirections RightClick
Shortener Objects
dataURI StatusBar

Meta-Scripts
CSS

A.2. Developing the SsL models

We describe our SsL methods and provide an example.
‘Pure’ pseudo-labelling. We first use SL to predict

the pseudo-labels of U and provide the confidence, c, of
such predictions. Depending on c (see §6.2), the pseudo-
labelled samples will be inserted in L, resulting in a
‘mixed’ L used to train a ‘pure’ pseudo-labelling model.
For the pseudo-labelling with retraining, we use π SsL
to predict the labels of the remaining samples in U, and
assign those with c ≥ 99% to L (with the pseudo-label).

‘Pure’ active learning. CEF-SsL composes another L
(and another U) with a two-step approach, by assuming
that half of the labelling budget is used initially, and the
remaining half is used for labelling the suggested samples.
To this purpose, the initial L is changed by randomly re-
moving half of its benign and malicious samples, therefore
restoring the budget L to half of its initial value. Such L
is used to train a ‘support’ SL model that predicts the
labels of U and the corresponding confidence, c. CEF-
SsL then simulates a human oracle that assigns the correct
label to the samples that meet a confidence threshold (cf.

18

§6.2) by accounting for such costs from the residual L.
Such samples, with their correct label, will be inserted
in L. To allow a fair comparison where all the models
use an L with the same size, we assume that the cost
for labelling each ‘suggested’ sample is standardized. This
assumption is realistic, because it assumes that the sample
already exists (it comes from U) and a human operator can
more efficiently verify a sample that is being provided
with, compared to choosing and verifying samples ran-
domly, or entirely creating new ones. The resulting new
L (containing only correct labels) is then used to train the
corresponding active learning model.

Pseudo-active models. We use the ‘support’ SL
(trained on the ‘halved’ L) to predict the pseudo labels
of U, and put all those with c ≥ 99% in L (with the
pseudo label). Such ‘mixed’ L is used to train a support
π SsL, which predicts the remaining U: the samples whose
confidence meets the criteria in §6.2 are randomly put into
the ‘mixed’ L until finishing the leftover budget. Such L
(having the initial correct labels, the pseudo labels, and the
‘suggested’ correct labels) is used for training the pseudo-
active SsL model.

Example. Consider the unbalanced case on CTU13

where Cm=2Cb, and L=200 (cf. Table 3). For the ‘pure’
pseudo models and the baseline SL, the L is used all
at the beginning, and the final L will always have 150
correctly labelled samples: 50 malicious samples and 100
benign. For active learning methods, the first half of the
labelling budget (100) is used for the initial learner, by
randomly choosing and removing 50 benign samples and
25 malicious samples from the previously randomly drawn
L; doing so leads to a smaller initial L with 75 samples.
Then, because of our standardized assumption, the oracle
will randomly assign the correct label to 75 samples that
meet the desired confidence criteria, irrespective of their
class. The oracle will not label more samples than what it
is allowed by the budget. Nonetheless, the corresponding
model will be tested on F, and then the entire process is
repeated 5 times to account for randomness in choosing
the ‘suggested’ samples.

Appendix B.
Benchmark

We present our benchmark evaluation, whose nature is
exploratory: we are not interested in providing results that
‘outperform’ the state-of-the-art. Our focus is providing
the first statistically validated benchmark for SsL methods
in CTD and promote future analyses. Hence, we consider
realistic scenarios where the amount of labelled data is
scarce: in our evaluation, we never use more than 2.4K
labelled samples. As a consequence, some results may
appear to be underwhelming: we consider such outcomes
to be positive, as they highlight the huge improvement
margin concealed by SsL.

Results. The overall benchmark results are shown in
Figs. 6 for NID datasets; Figs 7 for PWD datasets; and
Figs 8 for MD datasets. Each figure consists in a set of 3
subfigures, each focused on a specific dataset. Every sub-
figure reports 3 plots, each focused on a specific ‘balance’
scenario (i.e., a specific C). Every plot reports the F1-score
(vertical axis) achieved by all the considered SsL methods

(lines) for increasing labelling budgets L (horizontal axis).
We observe that the performance of our MD for DREBIN

(Fig. 8a) is significantly worse than on Ember (Fig. 8b) and
on AndMal20 (Fig. 8c). Such phenomenon is due to our cho-
sen aggregation strategy. Indeed, the considered malicious
samples in DREBIN belong to 10 different families; however,
such samples are randomly chosen when composing the
L, i.e., L (which is very small) may not contain some
families. As such, if these families are notably different
from those included in F and—at the same time—vastly
present in F, then the MD will exhibit low performance.
This phenomenon, however, does not appear in AndMal20

(for which we also aggregate families into a single class):
an explanation is that the malicious families in AndMal20

are more similar to each other than those in DREBIN.
How many experiments does the benchmark in-

clude? We report in Table 10 the overall number of
models considered in our evaluation. Specifically, for each
dataset we report n, k and the corresponding N. Multiply-
ing all of these numbers yields the ‘runs’ of any model
that does not leverage active learning, i.e., SL, SL, SsL,
π SsL, π̂ SsL. Because we draw the samples for active
learning randomly and we repeat such draw 5 times for
each corresponding model, all the 6 active learning models
(i.e., αSsLh, αSsLo, αSsLl, απ SsLh, απ SsLo, απ SsLl)
are assessed 5 times as much. Hence, for every line in a
given plot, each ‘point’ is the average results of as many
models as reported in Table 10. As an example, on CTU13,
each point in a given plot of Fig. 6a is the average F1-score
of 990 models if the line is related to an active learning
method, or 198 models if not—all of which evaluated for
the corresponding value of L and cost scenario C.

TABLE 10: Total amount of results included in each ‘point’ of Figs 6–8.

CTD
(Figure)

Dataset
(Subfigure) n, k N Active

models (6)
Other

models (5)

NID
Figs. 6

CTU13 (Fig. 6a) (11,3) 6 990 198
UNB15 (Fig. 6b) (23,4) 4 1840 368
IDS17 (Fig. 6c) (15,3) 5 1125 225

PWD
Figs. 7

UCI (Fig. 7a) (20,5) 1 500 100
Mendeley (Fig. 7b) (20,5) 1 500 100
δPhish (Fig. 7c) (20,5) 1 500 100

MD
Figs. 8

Drebin (Fig. 8a) (20,5) 1 500 100
Ember (Fig. 8b) (20,5) 1 500 100

AndMal20 (Fig. 8c) (20,5) 1 500 100

All the values in Table 10 correspond only to a specific
combination of L and C, meaning that the overall amount
of models developed in our evaluation is 12 times as
much—for each D. In summary, the results of SoK paper
correspond to 500 760 active learning models and 83 460
non-active learning models, for a total of 584 220 models.

Appendix C.
Case Study: Comparison with a prior work

Let us discuss a case study where we compare our
evaluation with a recent work sharing a similar testbed.

The combination of pseudo labelling and active learn-
ing has been investigated also by Zhang et al. [70] on CTU13

and IDS17 by using–among others–the same confidence
levels as our implementation: above 99% for the pseudo
labelling, and below 1% for active learning (making it
equivalent to our π SsL and αSsLl). In [70], the two
source datasets (IDS17 and CTU13) are divided into a single
set of benign samples; whereas the malicious samples
are distributed into several sets depending on their attack

19

family, and then aggregated into a single malicious class.
This is a valid operation, but it slightly differs from our
testbed, because we treat malicious classes separately for
each NID dataset.

Let us describe the evaluation methodology of [70].
Our first observation is that, after ‘preprocessing’ the
source datasets, the authors of [70] obtain 100K samples
for CTU13 and 600K samples for IDS17. In contrast, after
preprocessing, we obtain 20M samples for CTU13 and 3M
for IDS17—and this is despite removing some underrepre-
sented families (cf. Table 2). We are not aware of the
reason of this gap, but also other studies (e.g., [153],
[154]) obtain similar compositions as ours.

Regardless, each preprocessed dataset in [70] is further
filtered to obtain a D containing 15K benign samples and
9K malicious samples. Such D (which represents only a
small portion of their preprocessed traffic, i.e. 10% for
CTU13, and 4% for IDS17) is never changed in the evaluation
and the remaining samples are never used. In contrast, we
consider as D the entire datasets after preprocessing.

Then, the authors of [70] partition such D into L and
F by using a 70:30 split (we use 80:20), resulting in a L
with 17K samples, and a F with 7K samples—both having
ρ=(62,38). The split is done randomly, but the process is
never repeated and the F stays the same for the entire
evaluation. What would have happened if F contained
different samples? We address this issue by changing F
multiple times (k) for each malicious class (N), meaning
18 times for CTU13, and 15 times for IDS17.

To obtain their L (and corresponding U), the authors
of [70] isolate a variable portion of samples from L,
specifically either 5%, 10% or 20% (hence, the correct
labels in their L range from ∼1K to ∼4K). The choice
of samples put in L is done randomly in [70], but the
experiments are repeated only 10 times. In contrast, we
do so n times for each new F, meaning that we do so 198
times for CTU13 and 225 times for IDS17. This increases
the confidence of our results. Moreover, we also consider
different balance ratios, whereas the balancing in [70] is
always a fixed ρ=(62,38) for all sets.

Finally, in [70] they consider the SL baseline, but
neglect the SsL baseline and the SL baseline. Both lacks
are significant: without SsL, it is not possible to estimate
the least possible benefit provided by U (if any); without
SL, it is not possible to determine any upper bound in
performance. If the SL is not far from SL, then it may
not be worth in investing in U for using SsL methods.

Let us compare our results, with the aim of pinpointing
what ‘issues’ prevent deriving actionable conclusions on
the impact of unlabelled data in [70]. For simplicity, we
focus on the F1-score achieved on CTU13 (cf. Fig.6a).
The baseline SL in [70] achieves a lower performance
than ours despite being trained on more samples: the
one in [70] obtains 0.81 F1-score when trained on 4000
samples, whereas our baseline SL trained with an L of
2400 samples (the highest we considered) reached 0.87
F1-score, as evidenced by the rightmost plot in Fig.6a.
When applying pseudo-labelling in [70], the performance
increases from 0.81 to 0.83 F1-score. All these results
contrast with ours, because the performance of our cor-
responding model, π SsL, is lower than the baseline.
However, while our results take into account a total of
198 trials, the ones in [70] are performed only 10 times,

which is hardly enough to make any informed decision
on whether it is truly convenient to invest in U .

Finally, the authors of [70] do not maintain the original
L when applying active learning, and do not report how
many samples require to be ‘actively labelled’ as they
inject all those within the confidence threshold (below
1%) into L (as also done in Tesseract [86]), making
any comparison with our models (and, also, with their
baselines) unfair.

We can conclude that the evaluation performed in [70]
can only show that, under certain conditions, some SsL
methods can improve the performance. However, the re-
sults obtained cannot certify that such improvement is
significant, because they are conducted in a fixed setting
(same F, same balance ratio, only 10 runs), despite being
performed on two datasets. Hence, the question “do I need
U?” is still open.

Appendix D.
CEF-SsL for multi-classification

In our evaluation we treat CTD as a binary clas-
sification problem, where a sample is either benign or
malicious. The motivation is that N+1 classification (with
N>1) assumes a ‘closed world’ scenario where all mali-
cious classes are known beforehand, which is hardly the
case in the dynamic cybersecurity landscape. Neverthe-
less, some specific applications may favor SsL method de-
voted to multi-classification: applying CEF-SsL in similar
settings is possible, i.e., by manually specifying the cost to
label each malicious sample Cx, and performing hundreds
of runs of CEF-SsL—but this is empirically difficult from
a research perspective. Some alternatives exist, but they
are also challenging.

The main challenge is randomly choosing a limited
amount of samples from N malicious classes. For instance,
some datasets (e.g., DREBIN) only have a very limited num-
ber of samples for some classes; a possible workaround
is applying some aggregation techniques and create some
‘macro’ classes; however, such approach may introduce
some experimental bias. Another option is removing those
classes for which only few samples are available: in this
case, however, the ML model may perform poorly if
such families ‘appear’ after the model is deployed. To
mitigate such problem, all underrepresented classes can
be merged into a dedicated ‘other’ class: the ML model
may retain some performance at inference; but it may also
be confused when the more represented classes present
similarities with the samples of the ‘other’ class.

Another challenge is composing ‘appropriate’ parti-
tions, i.e., L, U and F. It is well-known that, in reality,
benign events are more abundant than malicious ones,
and it is common to compose train/test partitions where
benign samples are the majority. However, when malicious
samples belong to different classes and the labeling budget
is limited, it begs the question of “how many samples per
class should be included in L?”. As an example, assume
that L=500; how should L be composed when a dataset
contains 10K benign samples, alongside three malicious
classes, the first with 2000 samples, the second with 100
samples, and the third with 50 samples? And what about
U and F? A possibility is using the relative distribution in

20

(a) Results on CTU13. For every plot, each ‘point’ represents the average results of 198 models (and 5 times as many for all models using active learning).

(b) Results on UNB15. For every plot, each ‘point’ represents the average results of 368 models (and 5 times as much for all models using active learning).

(c) Results on IDS17. For every plot, each ‘point’ represents the average results of 225 models (and 5 times as much for all models using active learning).

Figure 6: Network Intrusion Detection. For each dataset, we report the results for the three cost (or balancing) scenarios. Each scenario is shown
in a plot, where the y-axis reports the F1-score and the x-axis the (increasing) labelling budget. Each method is denoted with a line on each plot.

a given dataset, but it may induce bias or skew the model
into favoring the majority class. Conversely, it is possible
to infer which family is more popular ‘in the wild’, but
this may require extra resources to study updated security
feeds.

21

(a) Results on UCI. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active learning).

(b) Results on Mendeley. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active
learning).

(c) Results on δPhish. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active
learning).

Figure 7: Phishing Website Detection. For each dataset, we report the results for the three cost (or balancing) scenarios. Each scenario is shown in
a plot, where the y-axis reports the F1-score and the x-axis the (increasing) labelling budget. Each method is denoted with a line on each plot.

22

(a) Results on DREBIN. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active
learning).

(b) Results on Ember. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active learning).

(c) Results on AndMal20. For every plot, each ‘point’ represents the average results of 100 models (and 5 times as much for all models using active
learning).

Figure 8: Malware Detection. For each dataset, we report the results for the three cost (or balancing) scenarios. Each scenario is shown in a plot,
where the y-axis reports the F1-score and the x-axis the (increasing) labelling budget. Each method is denoted with a line on each plot.

23

	1 Introduction
	2 Background and Related Work
	2.1 Uniqueness of CTD with Respect to Labelling
	2.2 Specific Labelling Issues in CTD
	2.3 Focus of the Paper
	2.4 Related Work

	3 Semisupervised Learning for CTD
	3.1 Introduction to Semisupervised Learning
	3.2 Cost model of SsL for CTD
	3.3 Requirements for Evaluation of SsL Methods

	4 State-of-the-Art
	4.1 Methodology
	4.1.1 Search
	4.1.2 Screening
	4.1.3 Investigation

	4.2 Findings

	5 Proposed Evaluation Framework
	5.1 Stage one: Prepare
	5.2 Stage two: Run
	5.3 Stage three: Iterate

	6 Demonstration
	6.1 Datasets
	6.2 Selected SsL Methods
	6.3 Implementation
	6.4 Evaluation
	6.5 Statistical Validation

	7 Discussion and Future Work
	8 Conclusions
	References
	Appendix A: Experimental Testbed
	A.1 Data Preprocessing
	A.2 Developing the SsL models

	Appendix B: Benchmark
	Appendix C: Case Study: Comparison with a prior work
	Appendix D: CEF-SsL for multi-classification

