

IEEE European Symposium on Security and Privacy Genova – June 7th, 2022

Sok: The Impact of Unlabelled Data in Cyberthreat Detection

Giovanni Apruzzese, Pavel Laskov, Aliya Tastemirova

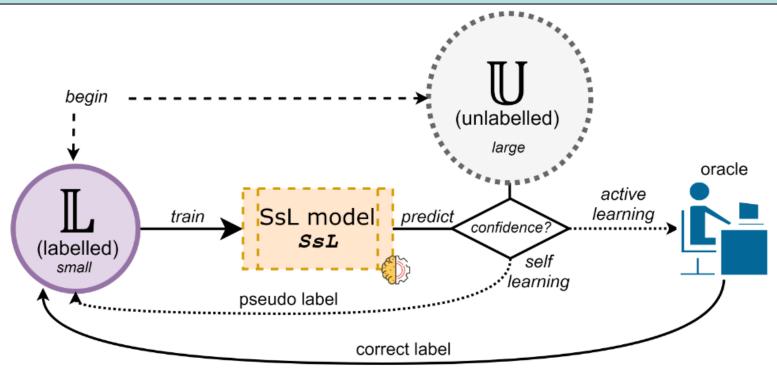
Once upon a time...

- At the beginning of 2021, I was having a meeting with Prof. Pavel Laskov, brainstorming about new research directions on Machine Learning (ML)
- Pavel: "We should look at Semisupervised Learning, it's very trendy now!"

Semisupervised Learning

- Labelled data is expensive, but unlabelled data is cheap(er)
 - → Why not using unlabelled data to improve the proficiency of ML models?

Mixing labelled with unlabelled data is a ML approach denoted as "Semisupervised Learning" (SsL)



The assumptions of SsL appears to be enticing for Cyberthreat Detection (CTD)

Once upon a time... (cont'd)

- At the beginning of 2021, I was having a meeting with Prof. Laskov,
 brainstorming about new research directions on Machine Learning (ML)
- Pavel: "We should look at Semisupervised Learning, it's very trendy now!"

- It was the first time I directly tackled SsL, so I did what most researchers do when they start focusing on a new topic:
 - I looked into existing literature on SsL applications for CTD...
 - ...and started to replicate (basic) SsL methods on public CTD datasets

All that glitters is not gold...

- My initial results portrayed SsL to be bad.
 - Like, really bad ☺
- As a sanity check, I asked a colleague of mine (Aliya Tastemirova) to:
 - independently replicate the SsL methods I developed
 - and evaluate their performance on different CTD datasets
- Her results confirmed my initial findings.

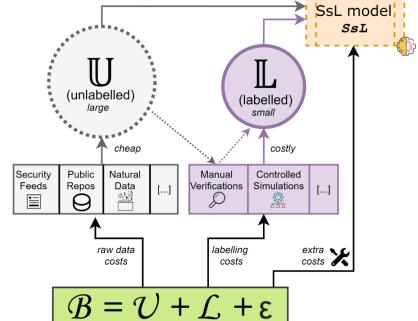
- We (Pavel, Aliya, and I) had a joint meeting, and we decided to dig deeper:
 - either all of us were wrong...
 - ...or something odd was going on between the lines.

Bad performance?

- In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score by using ~100 labels and thousands of unlabelled samples.
- One could claim such performance to be good...

Bad performance? (cont'd)

- In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score by using ~100 labels and thousands of unlabelled samples.
- One could claim such performance to be good...
- ...unless a (traditional) supervised learning classifier using only 100 labels (without any unlabelled data) achieved an F1-score of 0.91
- Our initial experiments showed that using unlabelled data provided "uncertain" improvement (if any).
 - In reality, unlabelled data may be cheaper to acquire than labels, but it is not free!



If SsL is bad, then why is it so trendy in research?

We investigated <u>all</u> (ttbook) existing literature on SsL for CTD, asking ourselves:
 "What are the benefits of unlabelled data in SsL?"

If SsL is bad, then why is it so trendy in research?

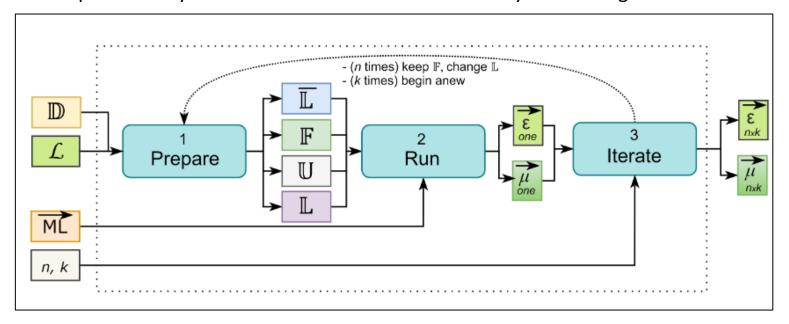
We investigated <u>all</u> (ttbook) existing literature on SsL for CTD, asking ourselves:
 "What are the benefits of unlabelled data in SsL?"

Task	Paper (1st Author)	Year	Lower Bound	Ablation Study	Upper Bound	Stat. Sign.	Trans	parency Balance	Repr.	Dataset
Network Intrusion Detection	Li [93] Long [94] Görnitz [95] Seliya [96] Symons [97] Wagh [98] Noorbehbahani [35] Ashfaq [99] Qiu [67] McElwee [100] Kumari [68] Yang [101] Gao [102] Shi [103] Yao [36] Yuan [104] Zhang [65] Hara [105] Ravi [106] Gao [107]	2007 2008 2009 2010 2012 2014 2015 2017 2017 2017 2018 2018 2018 2019 2019 2020 2020 2020 2020	````XXXXXX\\\\\\\\\\\\\\\\\\\\\\\\\\\\)	*************	X	***************	× × × × × × × × × × × × × × × × × × ×		NSL-KDD NSL-KDD Private NSL-KDD Kyoto2006 NSL-KDD NSL-KDD Custom NSL-KDD NSL-KDD
	Li [108] Zhang [70] Liang [109]	2020 2021 2021	× • •	0 0 0	× /	• •	У Х У	× / /	0	NSL-KDD, Private CICIDS2017, CTU13 NSL-KDD
Phishing Detection	Gyawali [110] Zhao [111] Gabriel [15] Yang [112] Bhattacharjee [113] Li [55]	2011 2013 2017 2017 2017 2017	× • • • •	\\00\\	\ \ \ \ \ \	× × × 0 0	\ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 /* 0 0 0	Private Det.MalURL Private Private Private Custom
Malware Detection	Moskovitch [114] Santos [115] Nissim [116] Zhao [117] Nissim [118] Zhang[119] Nissim [120] Ni [121] Chen [122] Rashidi [66] Fu [123] Irofti [124] Pendlebury [86] Sharmeen [125] Chen [126] Koza [11] Noorbehbahani [13] Li [127] Liang [109]	2008 2011 2012 2012 2014 2015 2016 2016 2017 2017 2019 2019 2020 2020 2020 2020 2020 2021 2021	x x x x x x x x x x x x x x x x x x x	\x0x\0\\\\\0x000x00	*	0 x 0 x 0 x 0 0 0 0 x 0 0 0 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Custom Custom Private Private Custom Private Custom Private Custom Private Private Drebin Private DREBIN, EMBER AndroZoo Drebin, AndroZoo MCC Private AndMal17 FalDroid, DREBIN, Genome Custom

Revealing the impact of unlabelled data in CTD

The state-of-the-art does not allow to determine whether using unlabelled data is truly beneficial in CTD

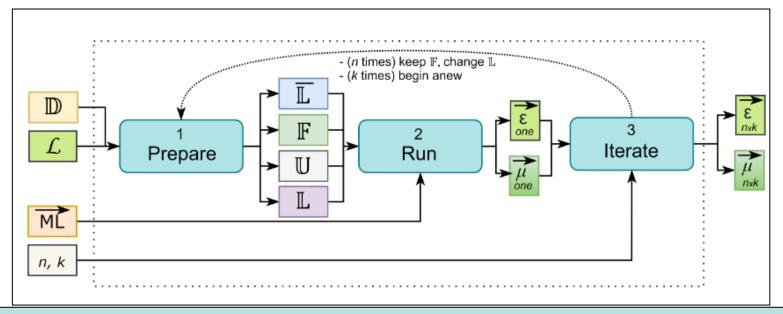
- As a constructive step, in our paper we:
 - Provide a set of requirements to estimate the benefits (if any) of using unlabelled data in CTD
 - Propose a framework, CEF-SsL, that allows to meet all such requirements in research
 - We experimentally evaluate CEF-SsL on 9 CTD datasets by considering 9 SsL methods.



Revealing the impact of unlabelled data in CTD

The state-of-the-art does not allow to determine whether using unlabelled data is truly beneficial in CTD

- As a constructive step, in our paper we:
 - Provide a set of requirements to estimate the benefits (if any) of using unlabelled data in CTD
 - Propose a framework, CEF-SsL, that allows to meet all such requirements in research
 - We experimentally evaluate CEF-SsL on 9 CTD datasets by considering 9 SsL methods.



Let me show you some hard numbers on the "troubleshooted" version of CICIDS17 [1]...

IEEE European Symposium on Security and Privacy Genova – June 7th, 2022

Sok: The Impact of Unlabelled Data in Cyberthreat Detection

Giovanni Apruzzese, Pavel Laskov, Aliya Tastemirova

