SoK: Pragmatic Assessment of Machine Learning for
Network Intrusion Detection

Giovanni Apruzzese, Pavel Laskov, Johannes Schneider
Liechtenstein Business School — University of Liechtenstein
{giovanni.apruzzese, pavel.laskov, johannes.schneider} @uni.li

Abstract—Machine Learning (ML) has become a valuable
asset to solve many real-world tasks. For Network Intrusion
Detection (NID), however, scientific advances in ML are still
seen with skepticism by practitioners. This disconnection is
due to the intrinsically limited scope of research papers,
many of which primarily aim to demonstrate new methods
“outperforming” prior work—oftentimes overlooking the
practical implications for deploying the proposed solutions
in real systems. Unfortunately, the value of ML for NID
depends on a plethora of factors, such as hardware, that are
often neglected in scientific literature.

This paper aims to reduce the practitioners’ skepticism
towards ML for NID by changing the evaluation method-
ology adopted in research. After elucidating which factors
influence the operational deployment of ML in NID, we
propose the notion of pragmatic assessment, which enable
practitioners to gauge the real value of ML methods for NID.
Then, we show that the state-of-research hardly allows one
to estimate the value of ML for NID. As a constructive step
forward, we carry out a pragmatic assessment. We re-assess
existing ML methods for NID, focusing on the classification
of malicious network traffic, and consider: hundreds of con-
figuration settings; diverse adversarial scenarios; and four
hardware platforms. Our large and reproducible evaluations
enable estimating the quality of ML for NID. We also validate
our claims through a user-study with security practitioners.

Index Terms—Cybersecurity, Machine Learning, Intrusion
Detection, Deployment, Development, Network

1. Introduction

Machine learning (ML) techniques have become an in-
dispensable technology in many domains of computer
science, such as computer vision [1], [2], natural language
processing [3], audio and speech recognition [4], medical
applications [5], and increasingly in cybersecurity, e.g.,
malware analysis [0], spam and phishing prevention [7],
as well as network intrusion detection (NID). As stated by
Arp et al. at the beginning of their paper: “No day goes
by without reading machine learning success stories” [8].

However, deployment of ML methods in NID faces
substantial skepticism [9]-[11] among practitioners—
despite the fact that NID is one of the oldest applications
of ML in cybersecurity [12]-[14]. The main difficulty, as
pointed out by Sommer and Paxson [15], is that network
environments exhibit “immense variability”. Hence, most
ML models for NID developed in research papers cannot

be readily transferred into operational environments due to
a large uncertainty about their genuine value. In the real
world, what matters is not the improvements over prior
work, but rather the balance between the performance and
costs in routine deployment scenarios.

The main thesis of this paper is that research evalua-
tions of ML in NID should account for pragmatic aspects
of operational deployment. We elucidate all such aspects
by proposing the notion of “pragmatic assessment”’, whose
goal is ensuring that practitioners have all the necessary
information to determine whether a given ML solution is
applicable to a given NID context. From the viewpoint
of researchers, conducting such pragmatic assessments is
challenging: almost every paper on ML in NID published
in recent top-conferences has some shortcomings. How-
ever, as we will show in this work, it can be done. As such,
we endorse future efforts to adopt our proposed takeaways
so as to facilitate the integration of ML research results
into real network intrusion detection systems (NIDS).

MOTIVATIONAL EXAMPLE. Let us elucidate why
the state-of-the-art of ML in NID is still at an early stage
with respect to practical deployment. For this purpose, we
compare NID with two popular domains in which ML has
found applications: computer vision and malware analysis.

In computer vision, the evaluation methodology
adopted in research is now standardized. Current bench-
marks, e.g., ImageNet [16], were created before 2010
and are still widely used today—even in production [17],
because they contain data from the ‘real’” world. Abun-
dant literature! implicitly established reference standards,’
thereby removing the uncertainty on the real value of
the findings obtained in research environments. A similar
case can be said for malware analysis. After the release
of prebin [20] in 2014, containing real Android apps
(benign and malicious), abundant® ML research has been
carried out on Drebin (e.g., [21]-[23]). Agreeably, brebin
is not perfect (some papers found some ‘duplication’
issues [24]), and some malware families are not popular
anymore. However, a crucial fact remains: malware is
malicious everywhere and everytime [25]. Therefore, a
proficient ML model trained on prebin can be deployed
on any system analyzing Android apps. For instance, [26]
show that the method originally proposed in [20] is effec-
tive even on (real!) apps collected in 2017-2019.

1. As of March 2022, [16] has over 35K Google Scholar citations.

2. E.g., ResNet [18] models are known to consistently achieve very
high accuracy on ImageNet, which now represent the reference bench-
mark for computer vision (even on different datasets, e.g., CIFAR [19]).

3. As of March 2022, [20] has over 2K citations on Google Scholar.

In contrast,ML research on NID is far from such The RQ of 86 is: “Can pragmatic assessments be

maturity . Among the root causes is the lack of (open- done in research?”. We answer this RQ by perform-
source) data that is representative of the real world. ing the rst pragmatic assessment of ML-NIDS. We

For instance, thousands of proposals were validated on do so through a large set of experiments focused on
the KDD99 dataset, usually achieving near-perfect perfor- network traf ¢ classi cation. Our evaluation reports

mance [27]. However, the data KDD99 represents only the (statistically validated) performance of thousands
a single network (from 1999), preventing to estimate of ML models, spanning across diverse datasets, al-
the generalization capabilities of ML solutions [28]. We gorithms, pipelines, and labeling budgets. Moreover,

observe that, recently, more datasets are being publicly = we perform our experiments on different platforms,
released (e.g. [29]). Surprisingly, however, such “abun- and showcase the importancehafrdware—which is
dance' increased confusion. Consider, e.g., the recent nd- often overlooked in literature (and also in practice!).
ings of ML proposals evaluated on the poputacipsi7 We discuss our results and compare our paper with related
dataset [30]. Speci cally, we focus on [31] and [32]—both work in §7. To ensure reproducibility we release our
involving ML models based on diverse ML algorithms, in- code [35]: hence, our SoK can also serve as a benchmark
cluding Decision Trees (DT) and Neural Networks (NN). for future studies. Due to the sheer size of our experimen-
While [31] claims that NN are better than DT—as given tal campaign, the low-level details and results are provided
by a superior Fl-score (0.96 for NN, 0.95 for DT)— in our code repository. Finally, we provide details on our
the opposite occurs in [32]—with the DT reaching 0.99 survey with practitioners in the AppendiXfp. B).
F1-score, against the 0.96 of the NN. Moreover, it is
misleading to only consider a single performance metric2, Background and Problem Statement
for NID: even a high F1 score may conceal a suboptimal
false positive rate, making a given ML solution impractical We rst outline the general context of NIDS (§2.1). Then,
for realistic deployments [8]. To make all of this worse, we delve into the specic application of ML in NIDS
recent efforts found thaticips17 is awed [33]. Finally, (82.2), and explain how research on ML-NIDS is typi-
the authors of [34] showed that ML models trained oncally carried out (82.3). Finally, we elucidate the problem
the (xed) version ofcicibsi7 perform poorly against tackled by our SoK paper (82.4).
‘unknown' attacks. The current situation of ML in NID
can be summarized with a statement from Markus de Shod.1. Network Intrusion Detection Systems
(who_wa; Lead of_th_e Det_ect|on Englneerlng at NetFlix): e security of IT systems spans over three tasks: preven-
“Appl|cat|qn of ML in mtrqsmn detection has been UNeven tion detection, and reaction [36]. It is well-known that
at best, with deep and widespread (and generally justi ed}erfect prevention is unattainable, whereas the reaction
skepticism among subject matter experts” [9]. phase implicitly assumes that the attack has already taken
CONTRIBUTION . Our aim ischangingthe evaluation place. Hence, to minimize (or nullify) the damage result-
methodology adopted by research on ML for NID soing from a breach, a major role is played by the detection
as to remove the skepticism of practitioners towards thef cyber threats. In the case of network security, such a
quality of scienti ¢ solutions. To reach our goal, we rst role is devoted to “NIDS.” Such term encompasses diverse
summarize Machine Learning-based Network Intrusionmeanings (e.g., [37], [38]). Let us provide the de nition
Detection Systems (ML-NIDS). Then we provide four of NIDS adopted in our paper:
major contributions—each discussed in a dedicated sec-

tion (8) revolving around a given research question (RQ) DEF. 1. A NIDS is a systemthat protects anetwork
i.e., a set of (IT) systems that interact with each other.

The RQ of 83 is: “What are thfactorstaken into ac-

count by practitioners when developing ML-NIDS?” (we refer the reader to the RFC [39] for the exhaustive de nitions
To answer this RQ, we: (i) elucidate the business relaof “network” and “system”)

tionships between the end-users of ML-NIDS and the Since their conception [40], NIDS have undergone
developers of such ML-NIDS; (ii) outline the chal- signi cant improvements. Initially, NIDS only analyzed
lenges that such developers must face when devisindata pertaining to network trafc, such as raw packet
their solutions; (i) present the factors that contribute captures (PCAP), and the detection was performed by
to the real value of a ML-NIDS; and (iv) validate our “static” methods, i.e., through human-de ned “signatures”
factors by directly asking the practitioners' opinion. encoding patterns of known attacks. Due to the growing
The RQ of 84 is: “What should research on ML in complexity of network environments as well as the ap-
NID do to allow practitioners to estimat¢he real pearance of adaptive attackers, however, static detection
value of the corresponding results?” To answer thismethods became infeasible. To cope with such a dynamic
RQ, we: (i) formalize our notion of gragmatic ecosystem, NIDS started to adopt automated detection
assessmentii) explain how to conduct a pragmatic techniques stemming from the data analytics domain,
assessment through comprehensive guidelines. enabled by the availability of “big data” (potentially orig-
The RQ of 85 is: “Does the state-of-the-art allow inating from diverse sources) and by advancements in
us to estimate the real value of ML methods for computational power [41]. Such data-driven techniques,
NID?” To answer this RQ, we: (i) reviewll papers which include (among others) ML methods, improved
on ML-NIDS presented in top security conferencesNIDS while reducing the burden on human operators.
since 2017; (ii) analyze to what extent they meet the We provide an illustration of the typical NIDS de-
conditions of pragmatic assessments; and (iii) reporployment in Fig. 1, where the NIDS monitors all commu-
the practitioners' viewpoint on the state of research.nications performed by a given organization. The output

of a NIDS is in the form ofalerts (which can be post-
processed by dedicated modules, e.g., [42]), which must
be inspected and triaged by security operators. We stress
that NIDS can be deployed anywhere in a given network,
not just at the border (e.g., [43)).

Fig. 2: Architecture of an ML-NIDS.

“label” which denotes the ground truth of a given sample.
By providing such labels during the training stage of a
supervised ML model, it is possible to “guide' the learning
process and enable, e.g., classi cation tasks [54]. Obtain-
ing such labels is, howevegxpensiveand often error-
prone (as shown in [33]). We provide &pp. A.2 a more
Current state-of-the-art NIDS—and related tools, suchexhaustive description of supervised and unsupervised ML
as SIEM, (e.g., [44], [45])—may correlate information iN th'e NID context—which is f'ol'lowed by an exemplary
from various sources (e.g., whois geolocation [46], DNSapplication of ML to detect malicious traf ¢ (ilpp. A.3).
logs [47], or internal ACL), and can combine multiple ~ As pointed out by many reviews (e.g., [55]-{58]),
detection approaches (e.g., eithmisuse or anomaly the applications of ML for NID are highly successful.
based []) on diverse data_types [] For examp|e, éCC(-)rdln.gly,- ML has b-een shown not Only to automate
growing trend (even among practitioners [50]) is analyz-crucial triaging operations [46], but also to exceed the
ing NetFlows [51], i.e., high-level metadata summarizingdetection capabilities of non-ML NIDS (e.qg., [59], [60]).
the raw-communications between two endpoints [52]. We
outline the advantages of NetFlow analyse\pp. A.1. 2.3. ML-NIDS in Research

Fig. 1: Typical deployment scenario of a NIDS.

. . Let us illustrate the common work ow adopted in research
2.2. Machine Learning and NIDS to assess ML-NIDS, schematically depicted in Fig. 3.
A NIDS is a system that must orchestrate multiple compo-This work ow—typically borrowed from domains that are
nents. Each component may consider diverse inputs, andnrelated to cybersecurity—begins by acquiringedasef
its output may also be used by other components. All suclp. SuchD is divided into atrain andevaluation(or “test”)
components can adopt different analytical techniques, inpartiton—T and E respectively—by following a given
cluding those belonging to Machine Learning. split (e.g., 80:20, i.e., 80% oD is put in T, and the
The underlying principle of ML is to leverage the remaining 20% inE). Then, by using a given learning
functionality of an ML model By applying a given ML algorithmA (e.g., DT) onT, a ML modelM is developed:
algorithmto sometraining data, it is possible to develop a suchM is then evaluated oB, and its quality is measured
ML modelthat can autonomously “predict' (new) data— according to some performanceetric (e.g., F1-score,
e.g., determining whether an activity is legitimate or not.Accuracy). The intuition is that if is ‘good enough'
We provide our de nition of a Machine Learning-based and “better' than existing proposals, then the respective
Network Intrusion Detection System (ML-NIDS): research has achieved its purpose (e.g. [31], [32]).

DEF. 2. An ML-NIDS is a NIDS that includes, among
its components, a (trained) Machine Learning model.

To better understander. 2, we provide an exemplary
architecture of an ML-NIDS in Fig. 2. The ML-NIDS can
receive different types of input data (either in batches or in
real-time [53]), which are forwarded to specigipelines

such pipelines are made up of one or mooenponents Fig. 3: Typical ML work ow adopted in research.
and analyze the given input(s). In the case of an ML-)) o
NIDS, at least one pipeline will include an ML model— Despite being correct in principle, such a work ow has

typically preceded by @reprocessingcomponent tasked two intrinsic limitations from a practitioner's viewpoint.

to transform the input data to a format accepted by the 1) The lack of an “universal’ dataset for NID. If

ML model (e.g., by extracting the relevant “features'). The such a dataset existed, it could be used in any assess-
output of all such pipelines can then be used as input ment to generalize the performance of an ML-NIDS.
to other pipelines (and respective components), which However, the immense variability of networks [15]
may leverage additional ML models (for the same, or a makes creating such a dataset close to impossible
different task). All such results are then aggregated into (even security companies share such an opinion [61]).

the output of the NIDS (i.e., alerts). Furthermore, this problem prevents [61] a reliable
Among the ML community, it is common to distin- “transferring' of ML models across different net-
guish betweensupervisedand unsupervisedML algo- works (in contrast, transfer is feasible in other do-

rithms [15]. The difference revolves around the notion of mains in which ML has found applications [62]).

2) The primary focus is on the ML model, M . Such 3.1. Business Perspective of ML for NID
M , however, is just a single component within the
ML-NIDS (seeDer. 2), which is a complex system.
For instance, there are many elements that come bot

Consider an organization that uses a NIDS (which may
r may not already leverage ML) to protect its network,
beforeandafter M ; moreoverM can bephysically nd j[hat wants to enhange such NIDS with.a new ML
deployed on devic,es mountiﬁg diversardware solution for a given detection problem. To this purpose,
') _ the organization can develop the ML solutioanhouse
We claim that research papers can provide valuable inpr rely oncommercial-off-the-shefCOTS) products [72].
sights for practitioners. In this paper, we accept the rst|et us elucidate the implications of these two use-cases.
problem (which cannot be solved today), and focus on |, hoyse. The organization must rst design the ML
rectifying the latter. Speci cally, we argue that practition- solution, which can be done either by replicating
ers are more interested in the (general) Methodrather existing proposals or by devising an original one.
than in the (speci c) MLmodel Hence, practitioners will Then, the organization must oversee the ML solution
appreciate if a research: accounts for the most likely o jis entirelifecycle which includes: data collec-
scenarios to be faced by the ML-NIDS; and also allows to tion, preprocessing, and labeling (for both training
estimate theostsrequired to sustain the ML-NIDS during and testing the ML model); development of the ML

its entire operational lifecycle [63], [64]. model (including repeated testings for parameter cal-
ibration); deployment of this ML model in the NIDS

2.4. Skepticism of ML-NIDS Practitioners infrastructure; as well as any maintenance [73], [74].
) . COTS. The organization must choose among avail-

According to a recent survey, over 75% of companies gple products on the market the one that best ts their

employ ML solutions for network security [65]. Most NIDS. Such a choice depends on the characteristics

of such companies, howeveatelegatetheir cybersecurity of a given COTS solution, as advertised byvigndor

to third-party vendors [66]. Indeed, several commercial|, both use cases, the deployment of a ML-NIDS entails

products for NID actively leverage ML (e.g., [67]-[69]). o bl - theend ie th i ati d th
Yet, all such products adopt ML methods that are decade o players: theend user(i.e., the organization), and the

Id and v in thei ised f h 8evelopers(i.e., either an external vendor, or the same
old and mostly in their unsupervised form (e.g., the one-;qanization). Such a relationship is represented in Fig. 4:

class S\./M of [.] was proposed in 2002 _[D S‘mP'y The organization needs a solution according to its security
put, the integration of research endeavours into operationdlaseqy and the developers provide a product to meet this
environments is slow in the context of ML-NIDS. demand. In any case, it is tievelopewho has to make

_Such slow-pace stems from the skepticism [9] of praC+gchnical decisions and ensure the operational quality of
titioners towards the “successes' of research papers. Sughla na product—during its entire lifecycle.

skepticism is well-founded: as we will show in our SoK,
the current state of research hardly “‘complies' with the
demands of professional ML-NIDS developers (85). In-
deed, our own survey (85.3) reveals that research papers—
instead of providing answers—Ileave practitioners with
uncertainty which can be summarized as: “It works in
your network But will it work equally well inmy network
and is itaffordable (now, and in the long-term)?” Fig. 4: The business perspective of ML-NIDS.
Our Goal. We rmly believe that the research com-
munity can answer such a question. However, providing
such an answemhich not necessarily needs to be always
positive [71]) requires a radical change of the current
assessment methodology—which should account for the
necessities of real developers. To the best of our knowl3.2. Deployment Challenges of ML for NID
edge, such necessities have never been formalized in t
context of ML-NIDS (related work is discussed in 87.3).
Therefore, we rst elucidate all thiactorsthat practition-
ers must take into account whenever real deployment o
ML in NID is considered. Then, we propose the notion of ‘|
pragmatic assessmenmthich explains what research pa-
pers must do to satisfy the needs of practitioners. Finall
we perform the rstpragmatic assessment of ML in NID.

Remark: Real ML-NIDS requiredeveloperswho are
responsible for the lifecycle of the ML model (Fig. 4).

hI‘arlree main challenges affect the real deployment of ML-
NIDS: (1) each network is unique, (2) each network per-
etually evolves over time, and (3) the implicit presence
f adversaries. These challenges (which contribute to the
ack of an universal dataset” mentioned in §2.3) are
emblematic of ML in NID and exist irrespective of who
Yoversees the lifecycle of the ML-NIDS. Let us explain.

1) The uniqueness of networkshas been pointed out
.) in various works (old [15] and recent [28]): some ac-
3. Practical Deployment of ML in NID tivities are legitimate in one network and illegitimate
in another network. Hence, deployment of ML-NIDS
Our rst contribution addresses the RQ: “What are the requires trainingand testing operations performed on
factors taken into account by practitioners when devel- data originating from the monitored network [75].
oping ML-NIDS?” To answer this RQ, we must rst 2) Thedynamic nature of modern networks is another
elucidate the business perspective of ML-NIDS, and then major hurdle for deployment of ML in NID. Every
describe the deployment challenges faced by developers day, new hosts can appear or be removed; new ser-
when designing ML solutions for NID. vices may be adopted; and new network segments

may be attached—all of which may introduce new
types of vulnerabilities. Such phenomena represent
the well-known problem of “concept drift” [76].

3) The implicit presence of adversariesmplies a dif-
ferent, more serious type of concept drift [34]. While
the natural network evolution may be controllable to
some degrek this is hardly the case for attackers
who want to evade a NIDS [77]. Such adversaries
are well motivated and may even devise evasion
strategies that speci cally target the ML model [72]).

We observe that the last two challenges (intrinsic to most
ML applications in cybersecurity [8]) are unpredictable
and hence cannot be solvairing the developmemnf

an ML model. Overcoming these challengsspossible

but requires re-assessments of the ML modfer its
deploymentIf the prediction quality of the ML model
deteriorates, it must be updated or replaced. Such main-
tenance is indispensable for ML-NIDS, and accounting
for its costs—unique to each network—is crucial for
determining the pragmatic value of ML solutions for NID.

Remark: Real ML models for NID must beeveloped
deployed and maintainedvia periodic re-assessments.
Such operations must be performiaiependentlyfor
each network monitored by an ML-NIDS.

3.3. Factors affecting the real value of ML in NID

The deployment challenges of ML for NID are well-
known by practitioners, who must take into account sev-
eral factorsbefore developing any ML model. We now
answer our rst RQ by connecting all the foundations
described insofar and elucidate all such factors.

Overview. The value of any security solution can be
expressed as the tradeoff between operational effective-
ness and expenses. An ML method for NIGefectivef it
yields an ML modeM that exhibits, e.g., a high detection
rate while raising few false alarms. Tlxpensese ect
all costs incurred during the lifecycle of . We denote
the value of an ML model as (M). From the research
perspective, (M) depends (at the high level) on the ML
algorithmA and on the datasé& (82.3). However, from
the practical viewpointD must be collected, and must
be deployed in the real NIDS. These operations introduce
additional dependencies that crucially affect both the ef-
fectiveness and the expenses ifM).

Factors. We propose to formalize the dependencies
contributing to (M) through the following ve factors.

Preprocessing (P). There exist a plethora of mecha-
nisms (each with its own operational costs) meant
to transform raw data into the format accepted by
an ML model M . These mechanisms affect the
information included inD and utilized byM to

make its predictions—hence in uencing the effec-
tiveness oM . Consider, for instance, the generation
of NetFlows from PCAP, for which many tools are
available—each having its own logic [52]: As shown
in [29], exactly the same raw data (in PCAP) yields
different NetFlows (even if generated via similar

We

tools), leading to ML models with different perfor-
mance (we will also show this in our experiments).
Data availability (D). The quality of a giverD is linked

to its size and sample diversity, so that can prop-
erly “learn' how to predict future data [78]. However,
obtaining such @ has a cost [79], which is higher
whenM requireslabelleddata for trainin§. Ground
truth veri cation is costly and error-prone [61], and
it can lead to noisy samples [80]. For instance, [33]
found many labelling issues in a well-known dataset
for NID (the cicips17 [30]). Finally, although some
tools can (synthetically) generate malicious data (e.g.,
CALDERA [81]), some companies require several
months to obtain a representative dataset of ‘normal’
network activities (e.g.CAIAC [75]).

System Infrastructure (S). Any M is just a single el-
ement within the NIDS, and hence its effectiveness
depends on the NIDS infrastructure (82.2). The in-
frastructure determines, e.g., the type of data ana-
lyzed byM . For instance, the information included
in the NetFlows analyzed by aM is dictated by
the sensors deployed in the NIDS infrastructure. The
infrastructure, furthermore, affects (i) the type of
decisions expected fromt , (e.g., binary or multi-
class classication); as well as (ii) the logical ar-
rangement of the individual decision units within the
ML pipeline. For instance, a pipeline can include a
standalone ML model, an ensemble of ML models, or
a cascade of ML models (e.g., [82]-[84]). We provide
a schematic of an ML pipeline including a cascade
of a binary and multi-class classi er in Fig. 10.
Hardware (H). The detectioncapabilities of a ML
model are hardly affected by the computational re-
sources available. However, hardware in uence the
runtimefor both thetraining and theinferencestage

of M. The former is necessary for the periodic
re-training of M ; the latter is crucial to deter-
mine whereM can be physically deployed. Indeed,
ML models for NID can be placed anywhere in
a network [65], spanning from low-power loT de-
vices [85] to high-end computing platforms [86].
Unpredictability (U). It is impossible to knowin ad-
vance how the threat landscape and the network
environment will evolve. Moreover, ML methods
introduce further uncertainty by using randomized
algorithms (e.g., Random Forests); but also because
it is not possible to know a-priori how to collect a
T that maximizes the effectiveness ®f (and that
does so in the long-term).

can hence express the value of a ML method for NID
as a functiorf de ned with the following equation (Eq.):

(M)=1f(P;D;S;H;V): 1)

Because ofJ, we note that (M) is not deterministic.

We stress that all the factors above inuence each
other. For instance$ also implicitly affectsH, but also
P. Furthermore, ML solutions for NID should be continu-
ously assessed)}, which requires both human and com-
putational resources. For instance, updatingvith newT

6. We observe that whilg is required for supervised methods, a

4. E.g., administrators know when organizations adopt new serviceslabelledE is always necessary to validate performance [49].
5. E.g., even if administrators are aware of major changes, they do not 7. Training-time is also crucial for ne-tuning: an optimal con gura-

know if such changes will impact the performance of their ML-NIDS.

tion will be found in less time for methods that are faster to train.

may require additional labeling efforts [87)); however,
such retraining can be computationally expensivg énd
overlooking the training runtime can be detrimental [88]
Practitioner Validation. We conducted a survey ask-
ing the opinion of practitioners on our proposed set o
factors. Our population entails 12 practitioners with hands-
on experience in ML and NID; overall, our participants
work (or have worked) in the SOC of renown companies.
(We provide all details inApp. B.) The results of our
survey are summarized in Table 1, which reports the
percentage of our interviewees that believed whether each
of our factors was: “not important” (); “important” ();
or “crucial” (!) for real deployments of ML-NIDS.

TABLE 1: Viewpoint of practitioners on our set of factors.

Factor | [

0% | 9% | 91%
9% | 18% | 73%
9% | 27% | 64%
9% | 64% | 27%
9% | 18% | 73%

CIn0OT

On average, 66% of practitioners consider all our factors
to be “crucial” for estimating the real value of a ML-
NIDS. Interestingly, 0% believe that preprocessiRg (s
“not important,” which was ranked as the most crucial
factor by all our respondents. The unpredictability) (
and data availability) are also deemed to be pivotal
by 73% of our population. The least relevant factor is
hardware 1), which is considered “important” by 64%.
However, as we will showd can be the deciding factor
to assert which ML solution is truly the best (86.3).

Takeaway. Our proposed ve factorsH;D; S;H; U) are
considered to be relevant for estimating the real value
of ML in NID by most practitioners.

4. Pragmatic Assessment of ML-NIDS

We now address our second RQ: “What should research
on ML in NID do to allow practitioners to estimatthe

real value of the proposed solutions?” Indeed, practitioners
must account for all the factors in Eqg. 1: they will not
implement an ML method without knowing how much
training data is required. They would also be reluctant to
reproduce an ML method if it is not clear whether such

4.1. Development Requirements

A pragmatic assessment must transparently discidise
“information pertaining to the requirements for developing
f(and maintaining) a given solution. In the context of
research on ML-NIDS, such information must include:

The schematic of th&IDS infrastructurewith re-
spect to the proposed ML methofl {n Eq. 1). Such
schematic must pinpoint “where' the corresponding
ML model is meant to be deployed. Such information
serves to establish: (i) the function of the ML model;
(ii) which components/speci cations are required to
operate the ML model; and (iii) whether additional
components are required to post-process its output.
The hardware speci cation®f the platforms used to
train and test the ML model, which affect its run-
time (H in Eq. 1). Such speci cations must include
the RAM, the CPU (i.e., model, threads, maximum
frequency) and—if necessary—the GPU. It is also
important to report the CPU utilization during its
runtime (i.e., how many threads were used, and at
what frequency), because it plays a crucial role in
the energy consumption. In particular, especially for
the CPU, theexact model must be reportéd For
instance, stating that “the CPU is an Intel Core i5”
(e.g., [95]) is misleading because there are hundreds
of such CPUs with signi cantly different perfor-
mance: according to PassMark, an i5-470M is 35
times slower than a i5-12600KF [96]. To demonstrate
the effects of “super cial' hardware speci cations,
we perform an original experiment 84.4.

The dataset compositiofor both the trainingT and
evaluatiorE partitions O in Eqg. 1). Such information

is crucial for supervised ML methods, as it allows
determining the amount of labeled data necessary to
develop the respective ML model. Such information,
however, is also relevant for unsupervised ML algo-
rithms, because even unlabelled data has a cost [79].
Thedetails of the ML methodsed to develop the ML
model. Such details include the feature set, the exact
algorithm (e.g., DT) and its parameters, the task (e.qg.,
binary or multi-class classi cation), and the design of
its pipeline (e.g., stand-alone or ensemble). All such
information contributes t® andS in Eq. 1.

a method is truly superior to existing solutions. Finally, Finally, it is (obviously) desirable that the implementation

an ML method for NID that has not been tested in ancode is openly released, and if the adopted dataset is pub-

adversarial environment may contain security risks [39]. licly available. As stated by Lindauer et al. [97], scienti ¢
To answer our second RQ, we propose the followingreproducibility “facilitates progress™ if the entire testbed

notion of pragmatic assessmemthich draws on several
past works from both the research (e.g., [8], [

is publicly accessible, then developers can determine if
], [91]) there are any similarities between the real and experimen-

and industrial (e.g., [92], [93]) domains.

DEF. 3. A pragmatic assessmeatiows practitioners to
assert the value of an ML method for NID iif:

bias, and present high degree of con dence;

the (likely) operational scenarios of the NIDS;
all requirements for developing the proposed ML
method are clearly speci ed.

tal environments—potentially enabling a direct transfer of

the resulting ML model (if the environments are similar).
Reporting all the above-mentioned details also allows

to roughly estimate the expenses for maintaining the ML

the reported results are free of any experimental solution (therefore accounting for part ofin Eq.1).

the evaluation is carried out on testbeds resembling4.2. Likely Operational Scenarios

Security systems must face real threats, hence pragmatic
assessments must consider scenarios that are likely to
occur in reality. To meet this condition, we propose three

~ Let us explain how these three conditions can be met g Note that CPUs can be under/overclocked and therefore exhibit
in researchand at a high level, starting from the last one. different frequencies than those reported by their manufacturers [94].

complementary use-cases tttan be taken into account D containing time-related information. Assessing the
in research on ML for NID. Given the lack of an universal “static' case is straightforward: it is suf cient to compose
dataset (82.3), our underlying intuition is tmaximise T andE by randomly sampling frond. On the other hand,
the utility of a given datasetDoing this requires the for the ‘temporal' case, it is necessary to splitinto T
researcher to use their domain expertise and “creativity'.andE according to sensible temporal criteria. For instance,
. the split can be based on themestampassociated to
{2 ot ang Open W1 is 1t o o cuh Samie: i1 5o possie (s chonseabe. et
model expects each sample to res'er.nl;le those seen d portion of D, ar_ld use ag the * rst part (assuming that
ing its training stage. However, ML methods should beLB is chronologically ordered). Nevertheless, tirae-gap

: ’ betweenT andE should not be overlooked. For example,

assessedlso in “open world” scenarios [91], due to e :

X . . the results can differ if only minutes pass betwg@eand
the unpredictability of the threat landscape i6 Eq. 1). .
Indeed, these are the scenarios that ML methods origiI-E’ compared to when the gap is days or weeks.
nally intended to address [15]. For unsupervised anomaly
detection, open world scenarios are implicit: after learning.+-2->- Naive and Adaptive Adversaries.Security sys-

a given concept of “normality’, no pre-existing knowledge ems must always assume the presence of adversaries.

is required to detect anomalous behaviors (unsupervisegtch adversaries can be ‘naive’ and rely only on known

methods have no notion of ‘classes). In contrast, for°ensive strategies (i.e., hoping to bypass an unpatched

classi cation problems (common in NID) assessing openSYStem). However, the most serious threats come from
adaptive' attackers who actively attempt to exploit the

world scenarios requires additional effort: Testing ML -)

classi ers only on aE having the exact same classes asSPECi € vulnerabilities of their target. In the case of

T (closed world) prevents estimating any form of adapt-ML methods, such vulnerabilities involve the so-called
adversarial examples [100]. After more than a decade of

ability of the ML-NIDS. For a pragmatic assessment, the : ; , .
research demonstrating their effectiveness, it is paramount

ML classi er should be evaluatedlsoon anE containing ¢ i s 1o al ” h a threat
attacks different than those i (open world). or pragmatic assessments to also consider such a threat.

This can be done by (a) injecting iB some mali- There are dozens of ways to bypass ML systems via
cious classesiot includedin the originalD — e.g., by ~adversarial examples [101] and considering all such ways
borrowing malicious samples from other datasets [32]; ofS clearly infeasible since they are ultimately unpredictable
by entirely creating novel attack classes via, e.g., [31] (a$V in Eq. 1). As stated by Biggio and Roli, priority should
done in [98]). Alternatively, it is possible to (Bxclude Pe given to the “more likely threats” [89]. The idea is
some malicious classes i from being put inT, and endor5|ngjefen5|ve proact|v!t)the developgr evaluates an
put such classes i instead. Both approaches are viable ML method in advance against the adaptive “adversarial”
and can be combined in principle. However, as pointecfttacks that are more likely to occur in reality. To this
out by Apruzzese et al. [28]nixing data from different end, it is crucial to consider adaptive attacks that conform
networks presents some fundamental issues instance, {0 athreat models that are both viable and feasibitée
if two networks are considerably different then it is dif- Provide the following recommendations (extending those
cult to trust the resulting performance of an ML model. Py [72]) to facilitate the design of such threat models.
Therefore, mixing data from different networks should be Adversarial MindsetReal attackers adopt a cost/ben-

done only after thorough topological analyses. et rationale [64]: they will not launch attacks re-

4.2.2. Static and Temporal Data DependencyML quiring huge resource investments—even if they_are
methods were originally conceived by assuming the va- lIKely to succeed, there may be other targets (i.e.,
lidity of the iid principle, i.e., “independent and identi- different from ML models) that yield a better ‘pro t.
cally distributed random variables” [99]. However, the iid Consider the right “Box: Adversarial ML threat
principle does not always hold in network environments ~ Models are often expressed with the notion of a “box
because the data (both benign and malicious) analyzed by ~ that identi es the system targeted by the attacker. In
a NIDS is likely to present temporal dependencies. As an the case of ML methods for NID, the “box” is the
example, a botnet-infected machine will rst contact its ~ €ntire NIDS—and not just the specic ML model.
CnC, and only afterwards it will execute the malicious Hence, when considering a “white-box” attacker,
commands received by the CnC. For this reason, it is SUch an attacker would have complete knowledge of
recommended (e.g., [2]) to choogeso that its samples the entire NIDS—.l.e.,.a rather extreme circumstance,
come ‘“after'T. Investigating only this “temporal' case, as such information is well-protected [72]. For this
however, prevents a generic assessment: the results will €ason, we recommend not to place “white-box
only resemble the “sequence’ of the samples captured by ~ Settings at top priority (contrarily to [8]): such worst-
a given D. Hence, to provide more general results, we case scenarios are feaS|bOIe in general security, but not
propose to consideboth cases, i.e., by assuming that: very likely against NIDS.

(a) samples are all independent of each other; (b) temporal ~ Realizable AttacksAside from conforming to the
dependencies may be present in the data stream. assumed threat model, the perturbation used to create

Investigating both cases in reseatcaquires a dataset an adversarial example should be physically real-
izable [102]. This does not mean that it must be
9. We note, however, that investigating both cases may not be "uni- created in the “problem-space” [103], as this may
versally' possible. Sequential ML methods that speci cally look for
temporal patterns (e.g., [53]) implicitly assume the presence of temporal

dependencies; whereas some datasets may simply not provide time- 10. We argue that attackers with full knowledge of the whole NIDS
related information to investigate any form of temporal dependencies. would opt for more disruptive strategies than data perturbations.

not be feasiblE in research when operating on a validation techniques, as they do not provide a suf cient
pre-collected datasé&t. Indeed, as observed by [72], amount of measurements for pragmatic assessments.
even perturbations in the feature space can be real- _ -
istic if the manipulation preserves the dependencie: Takeaway. Accounting for all the factors contributing
between features, and considers features on which to the real value of ML for NID requires pragmatic
real attacker has some in uené%_ assessments, summarized in Flg 5. Extensive informa-

Unbounded PerturbationsResearch on adversarial | tion must be provided, diverse likely scenarios must be
ML usually aims at devising minimal perturba- con_sid_ered, e_md. multiple trials must be made to provide
tions that are subject to self-imposed constraints Statistically signi cant results.
(e.g., one pixel attacks [105]). However, as also
remarked by Carlini et al. [106] (and, more recently,
also by [107]), real attackers are not interested in
"bounded' perturbations, as long as they achieve their
goal (e.g., evading a security system).
We make an important remark. Assessing the robustness to
adversarial perturbations serves to gauge the vulnerabili-
ties (or strengths) of an ML methdxkforeits deployment.
It is up to the end user of such an ML method to deter-
mine whether the envisioned threat deserves a dedicated Fig. 5: Characteristics of Pragmatic Assessments of ML in NID.
treatment—which should be economically justi ed [71].

4.4. Experiment: the importance of CPU specs
4.3. Unbiased and Statistically Validated Results \ye perform a simple experiment to demonstrate the im-
: : ortance of reporting theompleteCPU speci cations.
The recent paper by Arp et al. [8] provides sensible rec? A : ; .
ommendations on how to conduct a meaningful evaluatior%he ?Sgﬁﬁ: \e/ef.o\ﬁv?r;icr)]ri]r?glgdZafjh?ez![mglea;ai}lioﬁr{gg:lsggng
of ML in cybersecurity. For instance, the base-rate fal- ;" jiacet Speci cally, we train and test a Decision
lacy should be considered, the right performance metnci ee (DT) binéry classi er ’on theTcs[110] dataset (i.e

should be measured, and comparisons should be made: g .
with the right baselines. All such guidelines are relevant.”’ more details inApp. D.1. We randomly sample 80%

for NIDS and must be followed also for our proposed (i.e., T) of D to train the DT, and test it on the remaining
o (1 : .

pragmatic assessments. Such guidelines, however, Iack259/° (l.e._,E)._We repeat sut_:h experiments 10 times.
Speci cations. We consider two different platforms,

crucial piece: the performance of an ML method shouldWhose setup are nearly identical “on the surface”: they

be statistically validated The motivation is simple: to .

account for the (intrinsic) randomness of MU {n Eq. 1); both mount 8ﬁB of DDR3 RAM (using tEe same fre-

and to mitigate the (intrinsic) sampling bias ThandE. quer&mes), bOth run Windows 10 QS’ and t he expe;me_ﬂ_ts
Such statistical validation is achieved by repeatingare one on the exact same version of Python and sci '_t'

the experiments for a suf cient amount of trials, whose Iearn_. The only _d|fference Is the exact model of th(_e CPU:

focus is establishing the (unbiased) erforma,nce of the o 'S an Intel i5-4670, and the other is an Intel i5-430;

ML method d gt f 2 sinale ML pd | Indeed. onl oth CPUs use their default clock speeds. Both training
method—and not ot a single MOgel. Indeed, on yfand testing the DT require only a single CPU core.

by measuring the performance of a large population’ o Results. On averagetraining the DT on the i5-4670

ML models—all trained/tested in similar settings—it is requires 11.1s, but it takes 34.7s on the i5-430 (a 310%

. - %crease). Whereasstingrequires an average of 0.39s on
?:Ao%mg:ihsc())% '\:lorg\c/)vveer;ljllatrg; Ff)(c))rp lcjlleattécr)rmsin?r? ab\;‘\fmiﬂcs:l_ the i5-4670, and 1.38s on the i5-430 (a 350% increase).
P >a p 9 Hence, reporting only a portion of the speci cations (e.g.,

methqd IS tru!y the best.. Carrying out comparisons that a%an Intel i5 CPU") introduces a lot of uncertainty on the
statistically signi cant (i.e., assuming a target 0:05),

however, requires many trials. For instance, an ML method'e‘c'[ual performance of the nal ML model.

yielding an ML model with 0.992 accuracy cannot be 5 State-of-the-Art (in Research)
claimed to be "better' than another ML method whose

ML model exhibits 0.991 accuracyver a single trial ag a nal motivation for this paper, we answer the follow-

Therefore, in cases where two methods yield model$ng RQ: “Does the state-of-the-art allow one to estimate
with similar performance, a large amount of trials may ihe real value of ML methods for NID?” We hence review
be required’. We thus discourage relying just on cross- recent literature to determine how much existing works

“comply' to our notion of pragmatic assessment.

11. Complete realistic delity is almost impossible as it would require
to reproduce the attacker's operations in the speci c targeted network. 15 As an example, consider @ that is partitioned intoT and E

12. A very recent work [104] pointed out that attackers may even beyith an 80:20 split. Such a split allows to apply 5-fold cross validation,
able to directly control the feature representation of a given example. which produces only 5 results and hardly valid to determine whether

13. We stress that pragmatic assessments require such statistical valn ML model is statistically better than another. In contrast, a more
idation for all the “likely' scenarios (84.2). For instance, the adversar-convincing and unbiased approach is to perform a large amount of trials
ial robustness should be repeated many times (as also recommendeg randomly sampling and€g from D many times (e.g., 50), each time
in [106]), each applying the same perturbation but to different sampleswith the same 80:20 split. Such an approach allows to compare two

14. Some tests require a sample-size of at least 50 [108]. Howevepopulations of 50 samples (via, e.g., a Welch's t-test [109]), enabling to
the test may also be inconclusive: in this case, no claim can be madederive sound conclusions on which ML method is better.

Disclaimer. Similarly to [8], , . the following analyt TAI_3LE 2: State-of-the-Art: papers pul_)lished since 20_17 in top cyberse-
. y [.] [] [.] . g Y curity conferences that consider applications of ML linked with NID.
sis is not meant to invalidate previous works: ultimately, npne
of such works aimed at realistic deployment. Our intention Paper | Year | Hardware | Runtime | Adaptive | Stat. Sign.| Avail. | Pub. Data
is highlighting that the current evaluation protocol adopted in 8o B4 207 7 ! 3 ! L
research papers can (and should) be improved. We provide a {0l | %05 | 7 ! 3 ! 71038
case-study describing some “practical redundancies' of a recent™ opeais] | 2018 7 T ° 7 7 7
. Pereira [95] 2018 © T © 7 3 © (1)
work (by the same authors of this SoK) App. A.4. Kheib [123] | 2018 | 7 7 © 7 7 7@
Araujo [124] 2019 7 E 7 7 3 7@)
ik 2019 7 3 7 7 7 7@
5 1 M th d | |t t . M“ﬂ?@ﬂya{ [] ! 2019 © 3 © 7 7 3((1))
7 7 3 (2
.1. Methodology (literature review) Jenali) el g I o 7 r |28
. . . . Li 2019 © 7 © 7 7 3 (2
Scope and inclusion criteria. The amount of pa- bulio] | 0i| 7 Tle 7] 38
pers that propose to use ML for NID is oﬁ-the-charts. pomalud |22 £ 3 ! 3|39
To perform a feasible but comprehensive analysis, we Lefeinam [175] | 2020 © 7 7 7 7o
investigated all papers published in nine of the most Han[) |20 s 3 ° 7 738
reputable cybersecurity conft_erenéésFor each venue, Gromani[157] | 202 3 . P ; T Tm
we investigated the proceedings from 2017 to 2021, Vepeel 31 22 7 ! o ? 7
kozub © 7 7 ©(2
and selected all papers that fell V_/lthlr_1 our scope. Such Fiszeub [| 2021) 7 7 ¢ ! 7] %@
7 3 7 3 (1
selection resulted in 30 papéﬁsconmdermg diverse types prmalizel |22l 7 ! e 3 Ty
of networks (from enterprise [46] to 10T [112]) and cyber panlon © 2z 3 3 3 ! 2|30
threats (from anomalous trafc [113] to APT [114], and Fu [40] 2021 © 3 3 7 7| 30

even adaptive attacks [115]). Nonetheless, all such papers
shared the same underlying assumption: the usage (a . - . .
evaluation) of ML to detect ‘intrusions' in networks. %d-z' Major Findings (and our interpretation)
Analysis. We inspected each selected paper from therrom Table 2, we see thaip one ts all despite being
perspective of our "pragmatic assessment' notion. Becaussublished in top conferences, no single paper allows to
each paper had different assumptions, we performed ousstimate the deployment value of the considered ML so-
analysis by asking ourselves six questions—each haviniitions. Nonetheless, we highlight some intriguing trends.
a set of standardized answejs). Speci cally: D Only a snapshot.Most papers assess the quality
1) “Are the hardware specications clearly of ML methods by training and testing the corresponding
reported?) Yes @); partially @©, e.g., no details ML models on a single “snapshot'. For instance, such

on CPU model); not providedr§. ML models are often evaluated only once, preventing
2) “Is the runtime clearly specied?} Yes 3); only to derive more general conclusions; it is concerning that
training time {); only inference time §); no (7). the term “statistical signi cance' is mentioned only in 2

3) “Is the vulnerability toadaptive adversarial attacks papers (i.e., [131], [136]). Moreover, most papers (almost
mentioned?} Yes, and it is evaluated3(); yes, but 70%) do not vary the composition of their training dataset,

only stated as a limitation€)); not mentioned). preventing to estimate the value of the ML method when
4) “Is the statistical signi canceused to provide more a company cannot afford to invest many resources in the
convincing results?” Yes 3); no (7). data collection procedures. We acknowledge that some
5) “Is the training dataset ever changed to account foof these papers propose ‘unsupervised' ML techniques;
diversedata availability?”) Yes 3); no (7). however, even unlabelled data has a cost [79]. In addi-

6) “Is the evaluation done on (at least sonm)blic tion, no paper considers different preprocessing mecha-
data?”) Yes @); yes, but it is not available to- nisms (85.1): we appreciate that most papers thoroughly
day (©); no, such data has always been kept pri-describe the preprocessing operations of their solutions;
vate (7). We also noted how many datasets were usedhowever, such procedures (including all parameters) are

The results of such analysis are summarized in Table 2ever changed, preventing to determine their impact on
We also remark that we considered two additional criteriathe ML pipeline. Finally, most papers use a single dataset.
namely: (i) whether the ML models were tested onlyina D Neglected Requirements.Only three papers
“closed world” setting; and (ii) whether the paper consid- (i-e., [130], [138]) provide a holistic vision of the hard-
ered different preprocessing operations. Such criteria ar@/are and runtime requirements used to develop the corre-
not included in Table 2 because tlesponse was the same sponding ML models. For instance, the proposal in [139]
for all papers i.e.: all 30 papers evaluated their models requires 2.5 hours to train, but no hardware information
(also) against unknown attacks (most of such papers arg provided. We nd it concerning that even papers that
on anomaly detection, which implicitly assumes an “openspeci cally focus on IoT settings do not provide such
world” setting); and none of the 30 papers consideredletails. For instance, the authors of E-Spion [112] rightly

different preprocessing mechanisms. state that “E-Spion is speci cally designed for resource-
16. We consider: IEEE SP and EuroSP; ACM CCS, AsiaCCS, AC—qonstramed IQT devices :_they_do measure the CPU uti-
SAC; NDSS and USENIX Security; as well as DIMVA and RAID. lization, but without reportingvhich CPU was used. Such
17. Some of these conferences still have to be held in 2022. an omission can be acceptable in research, but not when

18. We went through the proceedings four times over 5 months. real deployments are considered.
19. Eg., the ML-NIDS may analyze network data (e.g. Net- |J Smart Attackers. On a positive note, the major-

Flows [46]), or may account for data generated from an entire network: : « » : ; :
(e.g., nding "anomalies' in the measurements of all sensors in a giverl?ty of papers considers an open world setting In which

network [116]). We do not consider “malware detectors” (analyzing, e.g..2dversaries try to actively bypass the_ considered Ml_—'
android apps [117] or javascript [118] or PE les [119]) as ML-NIDS. NIDS. Some papers even evaluate the impact of adaptive

attacksin additionto measuring the performance in their Our evaluation is massive, hence the complete details
absence—which is commendable. We remark that [115]are reported in the Appendix (and repository [35]). Here,
[116] speci cally focus on such a threat, and hence haveve summarize our testbed (86.1), present some original
slightly diverse assumptions: for instance, not reportingresults (86.2), and derive practical considerations (86.3).
the hardware or runtime is less of a problem for [115],

[116]. However, the lack of multiple trials ensuring sta- 6.1, Experimental Setup

tistically signi cant results is still an issue.

Our evaluation revolves around the well-known problem
of malicious NetFlow classi cation, which can be done
via ML.2° We chose this problem because it allows one to

In our survey with practitioners, we also asked for theirdevise diverse ML pipelines. Indeed, NetFlow is generated
opinion on Table 2. Speci callyafter asking the ques- by preprocessing raw PCAP data; moreowveetecting
tions related to our factors (§3.3), we inquired whethermalicious NetFlows can be seen either as a binary or
the fact that some columns have man¥’ ‘was: “not ~ Multi-class classi cation problem (because a sample can
very problematic” (), “problematic” (), or “very prob- belong to diverse malicious classes). Such a problem can
lematic” (!). The results are shown in Table 3. Most be tackled through diverse ML pipelines, e.g., it is possible
practitioners (90%) agree that the lack of statisticallyto create arensembleof “specialized’ binary classi ers
Signi cant Comparisons is “Very prob|ematic_” Moreover, (each trained on a subset of the available data—similarly
59% believe that lack of data diversity is an issue. Perhapt® [60]); but it is also possible to create a cascade of a
surprisingly, 75% can overlook the absence of evaluation®inary and multi-class classier: the former determines
against adaptive adversarial attacks. Finally, the lack ofvhether a NetFlow is benign or malicious, and the latter

hardware speci cations was also deemed to be not anfers the specic class of a malicious NetFlow, e.g., a
crucial shortcoming—our evaluation will prove otherwise. DD0S or a Botnet (a schematic of such "cascade’ is shown

in Fig. 10). Moreover, many (labeled) datasets are publicly
available, ensuring scienti ¢ reproducibility.

These characteristics enable a broad coverage of use-
cases. In particular, we considdrousandsof different
con gurations, which vary depending on the following:

Source Dataset (5) CTU13 NB15, UF-NB15,
cicipbs17, GTCcS Each of these datasets is created
via a different NetFlow tool: Argus, nProbe, Zeek,
FlowMeter. An overview of these datasets is in
Table 4, while more details are ipp. D.1.

Data Availability for training (4) : Abundant(80%

5.3. Practitioners' Opinion

TABLE 3: Practitioners' opinion on the results displayed in Table 2.
Column | []!

Hardware | 25% | 75% | 0%
Runtime 0% 75% | 25%
Adversarial | 8% | 67% | 25%
Stat. Sign. | 0% | 10% | 90%
Avail. 16% | 42% | 42%
Pub. Data | 0% | 41% | 59%

Nonetheless, at the end of our questionnaire we posed
one last question to our interviewees: “In general, do you

think that research papers facilitate the practitioners' job in
determining theeal valueof the proposed ML methods?”
The answers were enlightening: 92% are “uncertain”,
whereas 8% are “left with more questions than answers
after reading a research paper”.

Takeaway. Despite abundant work proposing ML meth-
ods for NID, the state-of-the-art the art does not allow
practitioners to determine the real value of existing ML
solutions. We attempt to change the current evalua-
tion protocols with our proposegragmatic assessment

of D), Moderate(40%), Scarce(20%), Limited (only
100 samples per class). Refer toApp. D.3.

Size of thefeature set (2) Complete(i.e., using all
features provided by the NetFlow tool) &ssential
(using only half of such features). ReferApp. D.4.
ML Pipeline (6): a singlebinary detector(BD); a
singlemulti-class detectofmb); a cascadeof BD and
MD (BMD); as well as three ensembles which vary
depending on how the output is determined: via a
logical or (ED-0), throughmajority voting(ED-v), or
via a stackedclassi er (ED-s). Refer toApp. D.5.

notion—whichcan be dongas we will now show. ML Algorithm (4) : Random Forest (RF), Logis-

tic Regression (LR), Histogram Gradient-boosting
(HGB), Decision Tree (DT). Refer tapp. D.6.
Hardware speci cations (6). a high-end computing
appliance, a workstation, a common desktop, an old
laptop, a virtual machine with reduced capabilities,
and a Raspberry Pi 4B. Refer fpp. D.2.

To bridge the gap between research and practice, we NOW, 1, combination can be seen as an unique ML-NIDS,

focus on our last RQ: “Can pragmatic assessments be donghich is assessed againgtnown (by testing on the

in research?”, and make a constructive step towards the, o attacks seen at training)aknown (by testing on
integration of state-of-the-art ML methods into real NIDS. 42 ks not seen during training), aadversarialattacks

Speci cally, our goal is threefold:i Demonstrate that (based on [141], as they are feasible and hence likely to
our guidelinescan be followed in research experiments; j.. [72]). A detailed description of all these distinct

(i) showcase an exemplary case-study of ML for NID, onerational scenarios' is providedApp. E. For each ML-

malicious NetFlow classi cation, wherein weragmati- \ps we compute the true and false positive rate (
cally assessgxisting ML methods;iii) providestatistically '

validated resultdor future studies, by publicly disclosing 0. out of the 30 papers in Table 2, 16 use NetFlow-related data: [46],
the complete details and low-level implementation. [60], [113], [115], [124], [126], [128], [129], [132], [134]-[140].

(Given our ndings, we wondered: “did the situation
change ire022?” We investigate this question ipp. C.1)

6. Demonstration of a Pragmatic Assessment

10

andfpr); accuracy Acc, but only for multi-classi cation as Fig. 6) we can see that thgr decreases, which is
tasks); and runtime (for both training and testing). expected because the attacks are unknown. The detectors

TABLE 4: Summary of the datasets of our experimental evaluation. Dased orBD appear to be the mOSt rObUSt-_“ _iS intriguing
that the best results are achieved in thenited data

Dataset Benign Malicious ‘ Attack NetFlow

Fealures‘

cmesm[e] Sfemfh':s Sjgﬂsﬂes C'aesses — AS°“W['°"€] availability setting. Such phenomenon can be explained by
. rgus . .

NB15 [144] 22M 105K 7 45 Zeek [14°] the fact that training on few samples allows ML models

UF-NB15 [29] 2.3M 78K 7 40 nProbe [146] . R '

cIoIDS17 [30] | 16M 433K 9 76 | FlowMeter [33] to generalize better on “unseen' classes.

GTCS[110] 140K 378K 4 80 FlowMeter [147]

To provide statistically signi cant results and remove
any bias, we repeat all our experiments (both training and
testing) multiple times, speci cally: 1000 times for the
limited data availability (as there is a high chance of bias),
and 100 times for the three other availability settings.
Such repetitions are done by randomly sampfinfrom _ ,
D according to the data availability setting; wher@ass Fig. 7: Detection of unknown attacks.

always chosen by randomly selecting 20% of the availabIeG'Z.B. Adversarial RobustnessWe measure the robust-

samples of each class available in a gizetMoreover, we . ;
always follow the “dos” proposed by Arp et al. [3]. (Our ness of our detectors against the evasion attacks proposed

evaluation isfair: for each trial, we train all our models in [141]. The results are shown in Fig.8, reporting te .
on the same, and evaluate them on the sa®g both before (green bars) and after (red bars) the applica-

Finally, we also perform an extra set of experiments intion of the adversarial perturbations for all the detectors
which T ar,1dE are chosen by taking the temporal domainand for increasing amounts of training data (left to right).
into account, i.e.E contains only the “last' 20% samples From these results, we can see'that our de'tectormare
of a given dataset, arid contains the " rst' samples. robustwhen they are trained wittess data indeed, the

' red bars in the leftmost graph are always higher than those

Remark: our evaluation is massive, and is due to our in the other graphs (a similar phenomenon as the one
goal of providing a benchmark for future studies. A in Fig. 7). In particular, we observe thab is the most

single research paper needs not to perform an evaluatioriésilient detector when using limited data, but the weakest
of the same magnitude as the one in this SoK. (aside fromeb-v) when more data is available for training.

6.2. Main Results (Quantitative Analysis)

Let us discuss the results of detectors using HGB, since

it is a very recent algorithm for NID. Here, we aggregate

the results ofall datasets, and we focus on tHetection

performance on théigh-end platform. Fine-grained re- Fig. 8: Robustness to adversarial attacks.

sults are inApp. F, which reports thenulti-classi cation

performance, and the runtime on different hardware. 6.2.4. Runtime. We report the operational runtime (as
6.2.1. Baseline PerformanceWe report in Fig. 6 the measured on the high-end platform) for all our detectors
boxplots showing thepr and fpr of our detectors for (Ep includes bothep-o and Eb-v) in Fig. 9. Each plot
increasing (left to right) data availability settings. We can(related to a speci ¢ data availability setting) reports the
see that detectors usimp-v exhibit the worstpr but the time (in seconds) for training (blue bars) and testing
bestfpr, which is understandable because they requirgbrown bars) the respective detectors. We can see that,
multiple classiers to agree on the maliciousness of aon limited data, training is computationally less expen-
sample. In contrast, the other detectors appear to hawsive than testing. Moreover, we also observe that training
comparable performance. We nd it intriguing thatb the ensembles is much more resource intensive than the
detectors appear to be effective even using a very limitegimplemp andBb (the latter being the “cheapest' to train).
amount of labels (see rightmost plot in Fig. 6). More details are impp. F.3).

Fig. 9: Runtime (on théigh-endplatform).
Fig. 6: Baseline Performance.

6.2.2. Detection of unknown attacksWe report in Fig. 7 6.3. Practical Considerations

the performance against unknown attacks—which is comBYy inspecting all our resultsApp. F), we conclude that
puted by excluding one malicious class from a givien the “no free lunch” statement [148] is, once again, correct.
re-training all the involved ML models on such ndwand For instance, methods based on HGB can have a slightly
testing them on the benign portion Bf(for thefpr), and superior performance than, e.g., RF (cf. fipe and tpr

on the “excluded' malicious class (and then averaging thef BD using the complete feature set with limited training
resultingtpr). From Fig. 7 (which has the same structuredata onGgTcsin Table 9a). However, the HGB is worse

11

in “open world” scenarios (Table 10a)—but it has a lowerthe networks contained imB15 andUF-NB15: at this point,
runtime (cf. Tables 23 and 28). In this cases, it is up tothe organization can determine whether the NetFlow tool
practitioners to decide which method to deploy in theirused by their NIDS is compatible to those used\ais
NIDS. Our pragmatic assessment, which reports both thandur-NB15 (potentially by also considering the Essential
effectiveness (i.etpr, fpr, or Acc) and expenses (i.e., all and Complete feature set considered in our experiments).
the requirements as well as the operational runtime) enFor example, if the organization has already a NetFlow
ables practitioners to make informed decisions. Let us us#ol using nProbe, then such an organization can almost
our experiments to draw some practical considerations. directly transfer our ML methods trained om-NB15 onto

The power of statistical comparisonsBy performing their NIDS. Otherwise, the organization needs to manually
a massive amount of trials, it is possible to carry outdeploy nProbe into their NIDS rst (which requires some
statistical tests that can be used to infer which ML methodexpenses). In the (likely) chance that the organization nds
truly “outperforms' other competitofs. For instance, by no similarities with their own network and those captured
looking at the multi-classi cation table\pp. F.2), we can by our chosen datasets, such an organization can choose
see that thedcc of BMD and MD tend to be close (e.g., to develop the solution that best ts their necessities, e.g.,
on GTcsusing HGB with Limited datapmb has 0.994 by choosing the one that provides the best performance
while MD 0.982). With a Welch's t-test, we nd that the while requiring the least amount of labels.
resultingp-value is less than 0.0001 (i.e., below the usual
target = 0:05), which statistically proves tha&MD is 7 Discussion and Related Work
better thanmD (accuracy-wise). Despite being powerful,

such veri cations are underused in NID literature (85). \yo present some intrinsic dif culties of pragmatic assess-

Har?watlre C?n detelrm|gtla trée \I'V'nl?.er' L?tthus dretcall' ments, perform some re ective exercises on our ndings,
our motivational €xamp e (81). By ooking atthe detection , compare our paper with related literature.
results in the closed world scenario using the complete

feature set orcicipsi7 (Table 15a), we can see that— .
with the exception of LR methods—almost all detectors’-1- Challenges of Pragmatic Assessments

(BD, MD, ED-s andED-o) achieve near-perfect performance a yesearch paper that ful lls each criteria er. 3 would
in the abundant data av'a|lab|llty setting, withr close e appreciated by practitioners. However, while some
to 1, andfpr close to O; even a statistical test cannot qngitions are easy to meet, others are more dif cult. Let

determine the best method. In these cases, the ‘winnefs giscuss some (current and future) challenges, so as to
can be determined by looking at the runtime in Table 26-clarify the function of pragmatic assessments.

We can see that the fastest method to train isstheising Statistical Signi cance. Obtaining results that are
HGB, which requires 9s. However, HGB us#i36 cores yq0iq of bias requires to perform multiple randomized
of the high-end platform: in contrast, training the Using t1ja1s. The experiments carried out in this paper required
DT requires 25s but by using only one core. From a CPUyeeksof computations—some of which are performed
utilization perspective, the HGB is 13 times slower thang, eynensive hardware. Furthermore, some ML methods
DT. Hence, our takeaway is that the "best’ ML method e rooted on the existence of temporal patterns among
for NID on cicips17 uses DT as ML algorithrd’ data (e.g., [53]): in these cases, performing many trials
Small or Big Data? Some intriguing results have been ¢, gtatistically signi cant comparisons requires to either
obtained by ML models trained with limited amount of gpjit the originald into different subsets or use completely
labeled data (see the leftmost plots in Figs. 6 to 8). SOMgiterent p. Therefore, we acknowledge that pragmatic
of our ML models exhibited similatpr as those trained ;ggessments are not simple—which explains the situation
with a considerably higher budget, but they had a highe ortrayed in Table 2. They are, however, doable: for
tpr against both unknown and adversarial attacks (bu nstance, Liang et al. [139] performed more than 50 trials

at the expense of a slightly highépr against "known' o some of their experiments. Nonetheless, in some cases
attacks). This nding is noteworthy, as it may help in g
a

") X > i.e., if the results are “notably' different) only few trials
demystifying the necessity of having training datasets thal o s ¢ cient: the crux is reportingow manytrials have
count millions of samples. To quote a recent statement byeen performed. Finally, we encourage future works to
Andrew Ng: “Collecting more data often helps, but if you

. rely on statistical tests when claiming that a given ML
try to collect more data for everything, that can be a very ,cihog “outperforms the state-of-the-art.”

expensive activity[149]. We hence endorse development Shortage of Public Data. A well-known problem

of ML methods that require smaller training datasets. i, N|p s the lack of datasets usable for research pur-
Concrete use-caseSuppose an organization Wants g 1751 Such a lack makes it impossible for scien-

to deploy an ML method in their NIDS for identifying i ¢ hapers to exactly replicate the (real) network en-

malicious NetFlows. The organization can compare theif;.onment in which the proposed ML method can be

own network environment with those captured by ourgensived. Therefore, a pragmatic assessment is meant to
ve considered datasets, and see whether there exist anyiow practitioner€? to estimate the real value of an

similarities between our testbed and their real networkML method for NID; and not to “ensure that every
Suppose that the organization nds some similarities withyy method for NID,is deployed in practice.” Indeed
21. In real scenarios, evernad001% can be signi cant: a single false the latter requires researches to evaluate their ML-NIDS

negative can compromise a system, whereasghemust be close to 0. 1N €very possible network environment, which is clearly
22. We reached out to some of the respondents of our survey (after

they lled the questionnaire), and told them about such a nding: this 23. We stress that such an “estimate” is outside the scope of a research

made them change their mind on the importance of hardware. paper, since it can only be done by the developers of real products.

12

does not change substantially (see the distribution
of fpr and tpr in 86.2 for the Scarce, Moderate
and Abundant data); hence, for these cases, we rec-
ommend at least 3x3 repetitions (i.e., changihg
andT three times each). However, when considering
small T (see the results for the limited data in §6.2)
the performance can greatly vary; hence, for these
cases, we recommend at least 10x10 repetitions. We
stress that the training time for the Limited data was
signi cantly inferior than for all the other cases (refer
to Fig. 9), hence such a higher amount of repetitions
should be feasible to perforfi.

unfeasible. Nonetheless, future endeavours should attempt
to evaluate their ML methods on diverse datasets—which
is important to practitioners (85.3). We outline the opinion
of practitioners on NID datasets #pp. C.2

Concept Drift and Explainability. A pragmatic as-
sessment should not aim at investigating the robustness
of an ML method to the concept drift problethindeed,
robustness to concept drift can be realistically assessed
only after the deployment of an ML model; in contrast,
the goal of a pragmatic assessment is to guide decision
making before such deployment. Nevertheless, we ac-
knowledge that some ML methods can better deal with

concept drift [150], such as lifelong 'Iearning (e.g._, .[D, Simply put, meeting the requirements for our pragmatic
or those methods that present a high explainability [34],5ssessment is well within the reach of most researchers.

[151]. In particular, we mention that the participants of The role of our factors. We discuss the relevance of

our survey commented that providers of security so'”.'our factors (Eq. 1) by using our experiments (6):

tions should favor methods that are “explainable to their i

clients”. Unfortunately, it is well-known that the decisions P can be observed by comparing the resultsvemns

of ML models are dif cult to interpret [152]. Hence, we anduF-NB15 (e.g., Table 12a and Table 14a), because

cannot put the “explainability” into our proposed factors, ~ these datasets contain the exact same raw data, but

as it would be unfeasible to ful Il by research. the NetFlow tool (i.e., the preprocessing) is different.
E.g., themp using HGB with scarce data is robust

against our adversarial attacks gus (0.96tpr), but

the same method auF-NB15 is very weak (0.47pr).

D can be observed from any table (e.g., Table 9) as

the performance clearly changesTasncreases.

S can be observed by comparing the multi-

classi cation results of any table (e.g., Table 18),

as the performance oD and BmD differs due

to different pipelines (cf. our remark on statistical

7.2. Re ections and Recommendations

Feasibility and Sweet SpotsWe provide some rec-
ommendations that can maximize the pragmatic value of
research without requiring extensive effort. We focus on
those aspects that apply to “any” paper on ML-NIDS.

Experimental detailsProviding all details (84.1) of
the testbed (including hardware) is straightforward.

The only issue are page limitations: in these cases,
researchers can provide a link to supplementary les
(but we also endorse editors and organizers to accept
longer papers during the peer-review).
Performance As recommended by Arp et al. [8], at
least two “classi cation' performance metrics should

signi cance); but also by comparing the results of

different algorithms in any table.

H is shown by Table 32, as the runtime changes up
to 400% under diverse hardware settings.

U is highlighted by the great variance of results

achieved across our entire evaluation, which con rms

be computed (we usegr andfpr), which is trivial the role played by randomness.

to accomplish. Moreover, measuring the runtime (forthe unpredictability is also implicit: we cannot foresee
both.tra|r]|ng and Festlng) is also stralghtfowa(d andyhat is going to happeafter any ML model is deployed.
requires just few lines of code (plus, it helps in de- ygergtydy: Limitations. Our questionnaire (see
vising a sound and ef cient experimental work ow). Ao g resembles that aftructured interviewgused also,
Testbed varietylypically, a research paper on ML- o oy [56]), thereby allowing to derivguantitative
NIDS requires to evaluate (i) the proposed method,.q its” while protecting our participants against possible
and (i) a suitable baseline for comparison—both of y\pa violations [153]. Such a design choice was chosen
which should be assessed in the same setfings. yocayse our goal is twalidate the importance of our
However, we endorse papers that assume ML'NlD roposed factorg83.3), and to get the opinion of practi-
requiring larger to also assess cases entailing a 'Veryiinners on theurrent state-of-researct§5). Although our
small' T (some real product require months of data ;|osed.questions could introduce some form of bias, we
collection before they can be deployed [75]). Doing remark that (i) each question had a “negative' answer; and
this is feasible since the training time is shorter, and(ii) in some cases, the viewpoint of our population went
the “smaller'T can be generated as a subset é’f the;gainst our theses. We acknowledge that our questionnaire
larger' T (but in both cases; should be the saméj. 114 have been formulated in an “open question’ format;
Repetitions (supervised MLAs can be seen from pq ever, such a design choice could also be affected by
our evaluation, when using “large'the performance jaq since we ultimately had to interpret the (unstruc-
24. This requires the researcher to know—in advance—whether iured) answers we received and map them to our prgposed
given dataset contains instances of such drift, which may not be thdactors. We therEfor_e ‘?‘pknOWledge that some practitioners
case. Simultaneously, concept drift is unpredictable and it is not known anay have some priorities that are complementary to our
priori whether it will occur or not. Hence, results derived from “synthetic' fgctors. To account for such a limitation, we invited our

testbeds are questionable due to such unpredictabllitn (Eq. 1). : :
X o ; nden v me f rthey lled their
25. Hence, we reiterate that it is not necessary to consider hundredrseSpO dents to give us some eedbaftert ey ed the

of combinations (as we did in our demonstration).

26. Even if the performance with the “smaitl'is subpar, it would not 27. We believe our proposed “repetition sweet-spots” to be feasible to
subtract to the paper's contribution (as long as it is sensible to assumitegrate in any ML-NIDS paper; however, a paper can provide a valid
that the proposed ML-NIDS requires large. scienti ¢ contribution even without following our recommendations.

13

guestionnaire, thereby allowing us to derive additionaldepth comparison of this SoK with the (closest) related

insight (discussed ifpp. B.3). work by Arp et al. [8] (presented at USENIX Security'22).
Summary. To the best of our knowledge, no paper:
7.3. Related Work (i) elucidates the factors contributing to the real value of

ML for NID, and (ii) explains how research can account
Let us compare our paper with prior literature. We stresgor such factors; and then (iii) demonstrates how to do this
that our focus is on ML for NID, and we do not claim in practice through a statistically-validated re-assessment
generality over different domains. Nonetheless, we discussf hundreds of diverse ML-NIDS; and (iv) performs a user
how our pragmatic assessment can be extended to othstudy with practitioners to validate its major claims.
security applications of ML impp. C.4.

Technical papers.Taken individually, most papers on 8. Conclusion

ML-NIDS have different goals than ours. The authors

of [154] aim to “outperform the state-of-the-art’;, those The integration of ML methods proposed in research into
of [34] focus on concept drift, which is unpredictable gperational NIDS is progressing at a slow pace, due to
hence impossible to deteloeforethe deployment of a ML tne (justi ed) skepticism of developers towards the results
solution (as explained in §3.2). Pendlebury et al. [117]reported in scienti ¢ literature. Our SoK paper aims to
aim to eliminate experimental bias, but ultimately con- rectify this problem by changing the existing evaluation
S|de_r a.dn‘ferent security problem (i.e., malware a”alys's)methodology adopted in this research domain. We do
An intriguing research area focuses privacy of ML his py proposing the notion gfragmatic assessments
(e.g., [155]), which is complementary to our goal. Finally, \whose objective is allowing practitioners to estimate the
a signi cant number of papers perform evaluations ongperational effectiveness and required expenses related
outdated datasets (e.g., theL-kpD [156]), which makes {5 the entire lifecycle of a ML method for NID. After
the corresponding results of questionable value for mOderBresenting irrefutable evidence that prior research does
and realistic deployments. Others present uncertainties dygst gllow to estimate the real value of ML for NID,

to overlooking some factors that real developers must takge perform the rst pragmatic assessment. Our massive
into account (cf. §5). In contrast, our testbed involvesgyayation represents a benchmark for future research, but

recent datasets (including their * xed" version [33]), in- ig also useful for practitioners who can ascertain the real
creasing the realistic delity of our experiments. Due t0 yqjye of existing ML methods.

(i) the broad combination of use-cases, (ii) the hundreds gpe may ask: Must any future research paper

of trials to remove bias, and (iii) the consideration of perform a pragmatic assessment to be considered a
many likely deployment scenarios, our evaluation enablegigni cant contribution? ” Our answer is a clearrio™: a
a fair and statistically validated benchmark of existing ML paper that does not meet all requirements of a pragmatic
methods for NID—bene ting both research and practice. gssessment can still be usefot research Indeed, we ac-
Reviews and SurveysSome reviews tackle the entire knowledge that pragmatic assessments are tough to carry
cybersecurity domain (e.g., [157]) and do not delve intogyt. However, as we showed, thegn be doneHence,
the speci city of ML; or focus on trustworthy ML devel- \ve endorse future work to improve their evaluations by
opment, but not from the perspective of NID (e.g., [158]). empracing our guidelines and using our resources.
Some papers focus on “deployment' challenges of ML, ETHICAL STATEMENT . Our institutions do not
such as: [159] and [90], which are both very generic andequire a formal IRB approval for carrying out the re-
do not focus on networked systems; [73], which doessearch presented in this paper. During our efforts, we al-
not have any form of practitioner validation, nor sys-\ays adhered to the Menlo report [163]. Our experiments
tematically explains how research can ful ll their needs; 4o not raise any ethical concern (they are a re-assessment
and [74], which is on network applications, but not spe-of prior work). Our survey with practitioners was done
cic of cybersecurity and thus do not consider the pres-sg a5 to preserve the anonymity of our respondents—
ence of malicious entities—which are intrinsic of NID. A \yhich is why we cannot disclose any further information
recent paper [11] interviewed 21 SOC analysts but neithephout our population. All our participants were informed
proposes nor empirically evaluates any solution that cafnat their responses would have been used for research.
meet practitioners' needs from the researcher perspectivg:yrthermore, all our participants know the identity and the
and do not focus on ML (only 10% of their population contact details of the authors of this paper, which they can
uses ML!). We also mention [160] and [161], which pro- yse to explicitly request their responses to be deleted.
pose “certi cation' of ML models—which is not relevant ACKNOWLEDGEMENTS . We would like to thank:
for NID research, whose focus is on the Miethod(due the Program Committee of EuroS&P'23 and NDSS'23
to the impossibility of reliably transferring ML models for the constructive comments that improved this paper
across network environments [28]). More related worksimmensely; the practitioners who contributed to our user-

provide a broad overview (e.g. [75]) or highlight the issuesstydy; and the Hilti Corporation for funding.
(e.g., [56]) of ML for generic cybersecurity tasks; others

may focus on a single aspect of ML for NID, such as
the architecture of an ML-NIDS (e.g., [162]), the role of
features (e.g., [82]), the impact of unlabelled data [79], or
the weakness to adaptive “adversarial” attacks (e.g., [72]).
Our paperextendsall such works by providing original
takeaways—some of which are overlooked, or even con-
trast those by past work. We provide #pp. C.3 an in-

14

References

(1]

[2

(3]

(4]
(5]
(6]

(71

(8]
[9]
[20]

[11]

[12]
[13]
[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
A. Esteva et al. Deep learning-enabled medical computer vision.
Nature Digital Medicing 2021. [28]
C.-J. Wu et al. Machine learning at Facebook: Understanding
inference at the edge. IEEE Int. Symp. High-Perf. Comp. Arch.
2019. [29]
D. W. Otter et al. A survey of the usages of deep learning for
natural language processingEE T. Neural Netw. Learning Syst.
2020. [30]

D. Amodei et al. Deep Speech 2: End-to-end speech recognition
in English and Mandarin. Ih'CML, 2016.

G. Litiens et al. A survey on deep learning in medical image (31]
analysis.Elsevier Medical Image Analysi®017.

D. Ucci et al. Survey of machine learning techniques for malware (32]
analysis.Elsevier Comp. Secyr2019.

T. Gangavarapu et al. Applicability of machine learning in spam 33
and phishing email ltering: review and approachéstif. Intell. (33]
Review 2020.

D. Arp et al. Dos and don'ts of machine learning in computer
security. INUSENIX Security Symp2022. (34]
M. De Shon. Information Security Analysis as Data Fusion. In
IEEE Int. Conf. Inf. Fusion2019. [35]
A SANS 2021 Survey: Security Operations Center (SOC). Tech-
nical report, SANS, 2021. [36]
B. A. Alahmadi et al. 99% false positives: A qualitative study

of SOC analysts' perspectives on security alarms. UBENIX
Security Symp2022. (37]
C. Kruegel and G. Vigna. Anomaly detection of web-based
attacks. INACM Conf. Comput. Commun. Sec@003. (38]

K. Wang et al. Anagram: A content anomaly detector resistant to
mimicry attack. INRAID, 2006.

K. Rieck and P. Laskov. Language models for detection of
unknown attacks in network traf cJ. Comp. Virology 2007.

R. Sommer and V. Paxson. Outside the closed world: On using
machine learning for network intrusion detection.|IEEE Symp. [41]

Secur. Privacy2010.
J. Deng et al. Imagenet: A large-scale hierarchical image database.
In IEEE Conf. Comp. Vis. Pattern Recpg8009. [42]

Y. You et al. ImageNet training in minutes. Int. Conf. Parallel

Proces, 2018. [43]
K. He et al. Deep residual learning for image recognition. In
IEEE Conf. Comp. Vis. Pattern Recog8016. [44]

S. I. Mirzadeh et al. Improved knowledge distillation via teacher
assistant. IPAAAI Conf. Artif. Intell, 2020. 5]
45

D. Arp et al. Drebin: Effective and explainable detection of
android malware in your pocket. INetw. Distrib. Syst. Secur.
Symp. 2014.

[46]

. . . 4
A. Demontis et al. Yes, machine learning can be more secure! A
case study on android malware detectidBEE Trans. Depend.
Sec. Comput.2017. [47]

D. Li et al. Can we leverage predictive uncertainty to detect
dataset shift and adversarial examples in android malware detec-
tion? In Ann. Comp. Secur. Appl. Con021. [48]

R. Galvez et al. Less is more: A privacy-respecting android
malware classier using federated learningProceedings on
Privacy Enhancing Technologie4:96—-116, 2021.

P. Irolla and A. Dey. The duplication issue within the DREBIN
dataset.J. Comp. Virology Hacking Tech2018.

[49]

(50]

G. Suarez-Tangil and G. Stringhini. Eight years of rider measure-
ment in the android malware ecosystetEEE Trans. Depend.
Sec. Comput.2020.

N. Daoudi et al. A Deep Dive inside DREBIN: An Explorative
Analysis beyond Android Malware Detection ScorA&M Trans.
Privacy Secur.2021.

(51]

(52]

15

P. Mishra et al. A detailed investigation and analysis of using
machine learning techniques for intrusion detecti@EE Comm.
Surv. Tut, 2018.

G. Apruzzese et al. The Cross-evaluation of Machine Learning-
based Network Intrusion Detection SysterttSEE T. Netw. Serv.
Manag, 2022.

M. Sarhan et al. Netow datasets for machine learning-based
network intrusion detection systems. Al Int. Conf. Big Data
Tech, 2021.

|. Sharafaldin et al. Toward generating a new intrusion detection
dataset and intrusion traf c characterization. Iimt. Conf. Inf.
Syst. Secur. Privacy2018.

R. Vinayakumar et al. Deep learning approach for intelligent
intrusion detection systemEEE Access2019.

C. Pontes et al. A new method for ow-based network intrusion
detection using the inverse potts modelEEE T. Netw. Serv.
Manag, 2021.

G. Engelen et al. Troubleshooting an intrusion detection dataset:
the CICIDS2017 case study. IEEEE Symp. Secur. Privacy
Workshop 2021.

G. Andresini et al. INSOMNIA: Towards Concept-drift Robust-
ness in Network Intrusion Detection. IACM Workshop Artif.
Intell. Secur, 2021.

Source-code of this paper (GitHub). https://github.com/hihey54/
pragmaticAssessment, 2023.

H. Yang et al. Security in mobile ad hoc networks: challenges
and solutionsIEEE Wireless Comm2004.

H.-J. Liao et al. Intrusion detection system: A comprehensive
review. J. Netw. Comp. Appl2013.

N. Tsikoudis et al. LEONIDS: A low-latency and energy-ef cient
network-level intrusion detection systemlEEE Trans. Emerg.
Topics Comp.2014.

R. Shirey. Internet security glossary, version 2. Technical report,
2007.

B. Mukherjee et al. Network intrusion detectiolEEE Network
1994,

D. Chou and M. Jiang. A survey on data-driven network intrusion
detection.ACM Comp. Sury.2021.

A. Nadeem et al. Enabling visual analytics via alert-driven attack
graphs. InACM Conf. Comp. Commun. Se¢i021.

N. Chaabouni et al. Network Intrusion Detection for 10T security
based on learning technigud&EE Comm. Surv. Tyt2019.

P. Radoglou-Grammatikis et al. Spear SIEM: A security informa-
tion and event management system for the smart deidevier
Comp. Netw.2021.

B. D. Bryant and H. Saiedian. Improving SIEM alert metadata
aggregation with a novel kill-chain based classi cation model.
Elsevier Comp. Secur2020.

A. Oprea et al. Made: Security analytics for enterprise threat
detection. InAnn. Comp. Secur. Appl. Con2018.

C. Feng et al. A user-centric machine learning framework for
cyber security operations center. IEBEE Int. Conf. Intell. Secur.
Inf., 2017.

A. Khraisat et al. Survey of intrusion detection systems: tech-
nigues, datasets and challeng&pringer Cybersecurity2019.

A. Yehezkel et al. Network Anomaly Detection Using Transfer
Learning Based on Auto-Encoders Loss NormalizationPiac.
ACM Workshop Artif. Intell. Secur2021.

D. Ucci et al. Near-real-time Anomaly Detection in Encrypted
Traf c using Machine Learning Techniques. IEEE Symp. Series
Comp. Intell, 2021.

Cisco I0S NetFlow. https://www.cisco.com/c/en/us/products/ios-
nx-os-software/ios-net ow/, Accessed in April 2021.

G. Vormayr et al. Why are my ows different? a tutorial on ow
exporters.lEEE Comm. Surv. Tyt2020.

(53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]
(62]

(63]

[64]
[65]
[66]
[67)
[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

A. Corsini et al. On the evaluation of sequential machine learn-[80]
ing for network intrusion detection. Iint. Conf. Availability,
Reliability, Secur.2021. 181]

R. J. Joyce et al. A Framework for Cluster and Classi er Eval- 182]
uation in the Absence of Reference Labels. ABM Workshop
Artif. Intell. Secur, 2021.

A. L. Buczak and E. Guven. A survey of data mining and machine [g3]
learning methods for cyber security intrusion detectidiEEE
Commun. Surveys Tut2016.

G. Apruzzese et al. On the effectiveness of machine and deeg4]
learning for cybersecurity. IREEE Int. Conf. Cyber Con icts
2018.

H. Liu and B. Lang. Machine learning and deep learning methods[85]
for intrusion detection systems: A surveypplied Science019.

M. Ring et al. A survey of network-based intrusion detection data

sets. Elsevier Comp. Secyr2019. [86]
G. Apruzzese et al. Identifying malicious hosts involved in peri-
odic communications. IProc. IEEE Int. Symp. Netw. Comput. [87]

Appl, pp. 1-8, Oct. 2017.

Y. Mirsky et al. Kitsune: An ensemble of autoencoders for online [88]
network intrusion detection. INetw. Distrib. Syst. Secur. Symp.

2018. [89]

T. Van Ede et al. Deepcase: Semi-supervised contextual analysis
of security events. INREEE Symp. Secur. Privacg022. [90]

A. Oliver et al. Realistic Evaluation of Deep Semi-Supervised
Learning Algorithms.NeurlPS 2018.

C. Vishik et al. Key concepts in cyber security: Towards a
common policy and technology context for cyber security norms.
NATO CCD COE Publication2016. [92]

K. S. Wilson and M. A. Kiy. Some fundamental cybersecurity
concepts.|IEEE Access2014.

(91]

93
N. Kshetri. Economics of arti cial intelligence in cybersecurity.]
IEEE IT Professional2021. [94]
S. Fischer-tabner et al. Stakeholder perspectives and require-
ments on cybersecurity in Europd. Inf. Secur. Appl.2021. [95]

T. Nguyen et al. A security monitoring plane for named data
networking deploymentlEEE Comm. Magazine2018.

Darktrace. Machine Learning in the Age of Cyber Al. Technical [96]
report, 2020.

Lastline. Using Al to detect and contain Cyberthreats. Technical[97]
report, 2019.

D. M. J. Tax. One-class classi cation: Concept learning in the [98]
absence of counter-exampld8J Delft — PhD Dissertation2002.

T. Moore. The economics of cybersecurity: Principles and policy [99]
options. Elsevier Int. J. Critical Infrastructure Protectiqr2010.

G. Apruzzese et al. Modeling realistic adversarial attacks agains{loo]
network intrusion detection system&CM Digital Threats: Re-

search and Practice2021. [101]

A. Paleyes et al. Challenges in deploying machine learning: a
survey of case studiedCM Comp. Sury.2022.

F. Pacheco et al. Towards the deployment of machine Iearning[loz]
solutions in network traf ¢ classi cation: A systematic survey.
IEEE Comm. Surv. Tyt2018.

G. Apruzzese et al. The role of machine learning in cybersecurity.
Digital Threats: Research and Practic2022.

[103]
[104]

R. Jordaney et al. Transcend: Detecting concept drift in malware
classi cation models. IMTUSENIX Security Symp2017.

I. Corona et al. Adversarial attacks against intrusion detection[105]
systems: Taxonomy, solutions and open issig#sevier Inf. Sci.
2013.

A. Vogelsang and M. Borg. Requirements engineering for ma-
chine learning: Perspectives from data scientistdninReq. Eng.
Conf. Workshops2019.

G. Apruzzese et al. SoK: The Impact of Unlabelled Data in
Cyberthreat Detection. IFEEE Eur. Symp. Secur. Privac2022.

[106]

[107]

16

B. Frenay and M. Verleysen. Classication in the presence of
label noise: a surveyEEE T. Neural Netw. Learn. Sys2013.

MITRE CALDERA. https://caldera.mitre.org/, Feb. 2023.

S. Das et al. Network Intrusion Detection and Comparative Anal-
ysis using Ensemble Machine Learning and Feature Selection.
IEEE T. Netw. Serv. Manag2021.

B. Biggio et al. One-and-a-half-class multiple classi er systems
for secure learning against evasion attacks at test timelntin
Workshop Multiple Classi er Syst2015.

Y. Yu et al. An efcient cascaded method for network intrusion
detection based on extreme learning machiresSupercomput.
2018.

K. A. da Costa et al. Internet of Things: A survey on machine
learning-based intrusion detection approach&lsevier Comp.
Netw, 2019.

A. Kim et al. Al-IDS: Application of deep learning to real-time
Web intrusion detectionlEEE Access2020.

B. Miller et al. Reviewer integration and performance measure-
ment for malware detection. Imt. Conf. DIMVA 2016.

D. Liu et al. FP-ELM: An online sequential learning algorithm
for dealing with Concept DriftElsevier Neurocomputind2016.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learninglsevier Pattern Recogn2018.

E. Jenn et al. Identifying challenges to the certi cation of machine
learning for safety critical systems. Eur. Cong. Embedded Real
Time Syst.2020.

V. Rimmer et al. Open-world network intrusion detection. In
Security and Atrti cial Intelligencepp. 254-283. Springer, 2022.

P. M. Winter et al. Trusted Arti cial Intelligence: Towards Cer-
ti cation of Machine Learning ApplicationsarXiv:2103.16910
2021.

On Arti cial Intelligence—A European approach to excellence
and trust. Technical report, European Commission, 2020.

M. Jalili et al. Cost-ef cient overclocking in immersion-cooled
datacenters. IMCM/IEEE Ann. Int. Symp. Comp. Arci2021.

M. Pereira et al. Dictionary extraction and detection of algorith-
mically generated domain names in passive dns traf cRKID,
2018.

PassMark — CPU Benchmarks. https://www.cpubenchmark.net/
cpu_list.php, 2022.

M. Lindauer and F. Hutter. Best practices for scienti c research
on neural architecture search. Machin. Learn. Res2020.

B. Bowman et al. Detecting lateral movement in enterprise
computer networks with unsupervised graph Al.RAID, 2020.

M. Dundar et al. Learning classi ers when the training data is
not IID. In IJCAI, volume 2007, pp. 756—61, 2007.

N. Srndic and P. Laskov. Practical evasion of a learning-based
classier: A case study. INEEE Symp. Secur. Privac014.

G. Apruzzese et al. Addressing adversarial attacks against security
systems based on machine learning. IEEE Int. Conf. Cyber
Conicts, 2019.

L. Tong et al. Improving robustness of ml classi ers against
realizable evasion attacks using conserved featuredJSBNIX
Security Symp2019.

F. Pierazzi et al. Intriguing properties of adversarial ml attacks
in the problem space. IEEEE Symp. Secur. Privacg020.

G. Apruzzese et al. SpacePhish: The Evasion-space of Adver-
sarial Attacks against Phishing Website Detectors using Machine
Learning. InAnn. Comp. Secur. Appl. Con2022.

J. Su et al. One pixel attack for fooling deep neural networks.
IEEE T. Evol. Comput.2019.

N. Carlini et al. On evaluating adversarial
arXiv:1902.067052019.

G. Apruzzese et al. Position:“real attackers don't compute gra-
dients”: Bridging the gap between adversarial ml research and
practice. INEEE Conference on Secure and Trustworthy Machine
Learning IEEE, 2023.

robustness.

[108] M. Happ et al. Optimal sample size planning for the wilcoxon- [133] M. Nabeel et al. CADUE: Content-Agnostic Detection of Un-

mann-whitney testStatistics in Medicine2019.

[109] D. W. Zimmerman and B. D. Zumbo. Rank transformations and [134]
the power of the Student t test and Welch's t test for non-normal

populations with unequal varianceSanad. J. Exp. Psych1993.

[110] A. Mahfouz et al. Ensemble classiers for network intrusion [135]

detection using a novel network attack datadetture Internet
2020.

[111] T. Liao et al. Are we learning yet? a meta review of evaluation [136]

failures across machine learning. NeurlPS 2021.

[112] A. Mudgerikar et al. E-spion: A system-level intrusion detection

system for iot devices. IPACM Asia Conf. Comp. Commun.
Secur, 2019.

[113] R. Bortolameotti et al. Decanter: Detection of anomalous out-

bound http traf ¢ by passive application ngerprinting. Knn.
Comp. Secur. Appl. Conf2017.

[114] S. M. Milajerdi et al. Holmes: real-time apt detection through

correlation of suspicious information ows. fEEE Symp. Secur.
Privacy, 2019.

[115] J. Wang et al. Crafting Adversarial Example to Bypass Flow-

&ML-based Botnet Detector via RL. IRAID, 2021.
[116] A. Erba et al.

tems. InAnn. Comp. Secur. Appl. Con2020.

[117] F. Pendlebury et al. TESSERACT: Eliminating experimental bias

in malware classi cation across space and time. USBENIX
Security Symp2019.

[118] A. Fass et al. Hidenoseek: Camou aging malicious javascript in

benign ASTs. INACM Conf. Comp. Commun. Se¢c@®019.

[119] H. Aghakhani et al. When malware is packin'heat; limits of
machine learning classi ers based on static analysis features. In[14

Netw. Distrib. Syst. Symp2020.

[120] G. Ho et al. Detecting credential spearphishing in enterprise

settings. INUSENIX Security Symp2017.

[121] K.-T. Cho and K. G. Shin. Viden: Attacker identi cation on in-
vehicle networks. IPACM Conf. Comp. Commun. Se¢017.

14
[122] H. Siadati and N. Memon. Detecting structurally anomalous

logins within enterprise networks. BkCM Conf. Comp. Commun.
Secur, 2017.

[123] M. Kneib and C. Huth. Scission: Signal characteristic-based[148]
sender identi cation and intrusion detection in automotive net-

works. INACM Conf. Comp. Commun. Se¢@018.

[124] F. Araujo et al. Improving intrusion detectors by crook-sourcing.

In Ann. Comp. Secur. Appl. ConR019.

[125] C. Feng et al. A systematic framework to generate invariants for

anomaly detection in industrial control systems.Natw. Distrib.
Syst. Secur. SymR019.

[126] F. Liu et al. Log2vec: A heterogeneous graph embedding based

approach for detecting cyber threats within enterprise AGM
Conf. Comp. Commun. Secu2019.

[127] M. Du et al. Lifelong anomaly detection through unlearning. In

ACM Conf. Comp. Commun. Se¢019.

[128] L. Leichtnam et al. Sec2graph: Network attack detection based

on novelty detection on graph structured dataDIMVA, 2020.

[129] A. Singla et al. Preparing network intrusion detection deep
learning models with minimal data using adversarial domain
adaptation. InProc. ACM Asia Conference on Computer and

Communications Securit020.

[130] X. Han et al. Unicorn: Runtime provenance-based detector for

advanced persistent threats. Nietw. Distrib. Syst. Secur. Symp.
2020.

[131] S. T. Jan et al. Throwing darts in the dark? detecting bots with

limited data using neural data augmentation|lBEE Symposium
on Security and Privagy2020.

[132] M. Ghorbani et al. Distappgaurd: Distributed application be- [158]

haviour proling in cloud-based environment. lAnn. Comp.
Secur. Appl. Conf.2021.

17

Constrained concealment attacks against
reconstruction-based anomaly detectors in industrial control sys-

2

wanted Emails for Enterprise Security. RAID, 2021.

M. Piskozub et al. Malphase: Fine-grained malware detection
using network ow data. INnACM Asia Conf. Comp. Commun.
Secur, 2021.

L.-P. Yuan et al. Recompose event sequences vs. predict next
events: A novel anomaly detection approach for discrete event
logs. INnACM Asia Conf. Comp. Commun. Sec@021.

L. Yang et al. CADE: Detecting and explaining concept drift
samples for security applications. WSENIX Security Symp.
2021.

D. Barradas et al. Flowlens: Enabling ef cient ow classi cation
for ml-based network security applications.Nietw. Distrib. Syst.
Secur. Symp2021.

D. Han et al. DeepAID: Interpreting and Improving Deep
Learning-based Anomaly Detection in Security Applications. In
ACM Conf. Comp. Commun. Sec®021.

J. Liang et al. FARE: Enabling ne-grained attack categorization
under low-quality labeled data. INetw. Distrib. Syst. Secur.
Symp, 2021.

C. Fu et al. Realtime robust malicious traf c detection via
frequency domain analysis. IACM Conf. Comp. Commun.
Secur, 2021.

G. Apruzzese and M. Colajanni. Evading botnet detectors based
on ows and random forest with adversarial samples. |EEE
Int. Symp. Netw. Comput. AppR018.

S. Garcia et al. An empirical comparison of botnet detection
methods.Elsevier Comput. Secu#5:100-123, 2014.

Argus NetFlow. https://qosient.com/argus/argusnet ow.shtml,
Feb. 2022.

N. Moustafa and J. Slay. UNSW-NB15: a comprehensive data set
for network intrusion detection systems. Nfilitary Commun. Inf.
Syst. Conf.2015.

ZeekIDS. https://bricata.com/blog/bro-ids-renames-zeek-ids/,
Accessed in Feb. 2022.

nProbe. https://www.ntop.org/guides/nprobe/, Feb. 2023.

A. H. Lashkari et al. Characterization of TOR Traf ¢ using Time
based Features. limt. Conf. Inf. Syst. Secur. Privacg017.

D. H. Wolpert et al. No free lunch theorems for search. Technical
report, 1995.

Andrew Ng: Unbiggen Al. Technical report, IEEE Spectrum,
2022.

J. Lu et al. Learning under concept drift: A revielEEE Trans.
Knowledge Data Eng2018.

C. Meske et al. Explainable articial intelligence: objectives,
stakeholders, and future research opportunities.Syst. Manag.
2022.

U. Bhatt et al. Explainable machine learning in deployment. In
ACM Conf. Fairness, Accountability, Transparen2p20.

R. Opdenakker et al. Advantages and disadvantages of four
interview technigues in qualitative researchForum: Qualitative
Social Research2006.

A. Binbusayyis and T. Vaiyapuri. Identifying and benchmarking
key features for cyber intrusion detection: an ensemble approach.
IEEE Access2019.

B. Jayaraman and D. Evans. Evaluating differentially private
machine learning in practice. IASENIX Security Symp2019.

C. lwendi et al. The use of ensemble models for multiple class
and binary class classi cation for improving intrusion detection
systems.Sensors2020.

R. Leszczyna. Review of cybersecurity assessment methods:
Applicability perspective Elsevier Comp. Secur2021.

P. Xiong et al. Towards a robust and trustworthy machine learning
system development: An engineering perspectisisevier J. Inf.
Secur. Appl.2022.

[159]
[160]

[161]
[162]

[163]
[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]

[173]

[174]
[175]

[176]

[177]

[178]

[179]

[180]
[181]

[182]

[183]

[184]

[185]

L. Baier et al. Challenges in the deployment and operation of[186] X. Wang. ENIDrift: A Fast and Adaptive Ensemble System for
machine learning in practice. IBur. Conf. Inf. Syst.2019. Network Intrusion Detection under Real-world Drift. IAnn.

E. Damiani and C. A. Ardagna. Certied machine-learning Comp. Secur. Appl. Coni2022.

models. Inint. Conf. Current Trends Theory Practice In2020. [187] X. Wang et al. MADDC: Multi-Scale Anomaly Detection, Di-
H. Jiang et al. To trust or not to trust a classi &eurlPS 2018. ggegﬂfligg:j gg;ezcé;); for Discrete Event Logs.Aim. Comp.
G. Giacinto et al. Network intrusion detection by combining one- [188]

. A. Kenyon et al. Are public intrusion datasets t for purpose
class classi ers. Innt. Conf. Image Anal. Proc2005. y p purp

characterising the state of the art in intrusion event datasets.

M. Bailey et al. The menlo reportEEE Secur. Privacy2012. Comp. Secur.2020.

X. Deng and J. Mirkovic. Commoner privacy and a study on [189] M. Zipperle et al. Provenance-based intrusion detection systems:
network traces. IPACM Ann. Comp. Secur. Appl. Can2017. A survey. ACM Comp. Sury.2022.

J. Kim et al. P2dpi: practical and privacy-preserving deep packet[lgo] M. Conti et al. A sur_/ey on industrial control system testbeds
inspection. INACM Asia Conf. Comp. Commun. Sec@021. and datasets for security researtBEE Comm. Surv. Tyt2021.

G. Apruzzese et al. Detection and threat prioritization of pivoting [191] IBM. = What is data labeling? https:/www.ibm.com/topics/
attacks in large networkslEEE Trans. Emerg. Topics Comput. data-labeling, 2023.

2017. [192] "Real Attackers Don't Compute Gradients”, a reside chat with
E. Chuah et al. Challenges in Identifying Network Attacks Using the co-authors on adversarial ML. https:/www.robustintelligence.
Net ow Data. In IEEE Int. Symp. Netw. Comp. App2021. com/resource-center/adversarial-ml- reside-chat, Feb. 2023.

R. Hofstede et al. Flow monitoring explained: From packet [193] L. Liu et al. Error Prevalence in NIDS datasets: A Case Study on
capture to data analysis with net ow and ip XEEE Commun. CIC-IDS-2017 and CSE-CIC-IDS-2018. IREE Conf. Commun.
Surv. Tut, 2014. Netw. Secuy.2022.

K. Wolsing et al. IPAL: breaking up silos of protocol-dependent [194] Sophos intercept x e_ndpoin_t _features. https://lwww.sophos.com/
and domain-speci ¢ industrial intrusion detection systems. In en-us/products/endpoint-antivirus, 2022.

RAID, 2022. [195] G. Pellegrino et al. Cashing Out the Great Cannon? On Browser-
P. Dodia et al. Exposing the Rat in the Tunnel: Using Traf ¢ Based DDoS Attacks and Economics. WUSENIX Workshop
Analysis for Tor-based Malware Detection. ACM Conf. Comp. Offensive Tech2015.

Commun. Secyr2022. [196] A.Kumar et al. Improving detection of false data injection attacks
Zeek conn.log. https://docs.zeek.orglen/master/logs/conn.html, using machine learning with feature selection and oversampling.

Feb. 2023. Energies 2021.

: —_ : 197] R. Bapat et al. Identifying malicious botnet traf ¢ using logistic
J. Ma et al. Supervised anomaly detection in uncertain pseudopeL -)
riodic data streamsACM T. on Int. Tech.2016. regression. INEEE Syst. Inf. Eng. Design Sym@018.

J198] G. Ke et al. Lightgbm: A highly efcient gradient boosting

A. Nappa et al. Cyberprobe: Towards internet-scale active de decision treeNeurlPS 2017.

tection of malicious servers. IRroc. Netw. Distrib. Syst. Secur.

Symp, 2014.
I Syarif et al. Unsupervised clustering approach for network Appendix A.
anomaly detection. Ihnt. Conf. Netw. Digit. Tech2012. Additional Background and Use-cases

G. Apruzzese et al. Deep reinforcement adversarial learning

against botnet evasion attackEEE T. Netw. Serv. Manag2020. We provide some supplementary descriptions and exam-

A. Demontis et al. Why do adversarial attacks transfer? Explain-ples to facilitate the understanding of our paper.
ing transferability of evasion and poisoning attacks.USENIX
Security Symp2019.

_ _ A.l. NetFlow-based analyses (and tools)
A. Erba and N. O. Tippenhauer. Assessing Model-free Anomaly

Detection in Industrial Control Systems Against Generic Conceal- Problem. Analyzing the all raw-data generated by
ment Attacks. InAnn. Comp. Secur. Appl. Cong022. modern networks is problematic [52], due to the sheer
A. S. Jacobs et al. AI/ML for Network Security: The Emperor size of full packet captures (PCAP). Indeed, performing
has no Clothes. IRCM Conf. Comp. Commun. Se¢#022. deep packet inspection (DPI) is computationally demand-
L. D'hooge et al. Establishing the contaminating effect of ing (in terms of processing and storaging), besides also
metadata feature inclusion in machine-learned network intrusionraisirlg [164] privacy concerid

detection models. IDIMVA, 2022. Solution. To make automated analyses of network
Y. Feng et al. CJ-Sniffer: Measurement and Content-Agnosticdata more feasible, a convenient alternative is to analyze
Detection of Cryptojacking Traf . IFRAID, 2022. high-level summaries of the communications between two
Z. Fu et al. Encrypted Malware Traf ¢ Detection via Graph-based endpoints, commonly referred to BietFlows A NetFlow

Network Analysis. InRAID, 2022. can be roughly expressed as the following tuple:

I. J. King and H. H. Huang. Euler: Detecting network lateral

movement via scalable temporal link prediction.Netw. Distrib. NetFlow= (srclP, dstIP, srcPort, dstPort proto, startTime endTime...), (2)

Syst. Secur. SymR022. h he | h d includ | h
M. Landen et al. DRAGON: Deep Reinforcement Learning for where the last three dots can include any element that

Autonomous Grid Operation and Attack DetectionAmn. Comp. reIates. to the‘ other elds (e.g., the a”}QU”t of bytes trans-
Secur. Appl. Conf.2022. ferred in the ~ ow'). Compared to traditional PCAP, Net-

R. A. Sharma et al. Lumos: Identifying and Localizing Diverse FIOWS present several advantage;. For instance, the PCAP
Hidden IoT Devices in an Unfamiliar Environment. WSENIX ~ version of thecicibs17 dataset is of 50GB, whereas
Security Symp2022. its NetFlow version requires just 1GB [33]. Such low
E. Tekiner et al. A lightweight loT cryptojacking detection re€quirements makes NetFlow viable for real time analyses,

mechanism in heterogeneous smart home networks.Ndtw.
Distrib. Syst. Secur. SymR022. 28. Encryption may solve the issue, but makes DPI challenging [165].

18

and the implicit lack of privacy issues is appreciated in
commercial products as well as for research—including
(e.g., [29], [31], [32]), but not limited to (e.g., [52], [166],
[167]), ML-speci ¢ proposals.

Variants. Initially introduced by CISCO in
1996 [168], the concept of NetFlow has evolved
SUb_Stant'a”y over the years. For instance, besldes b_emlgg. 10: An ML pipeline representing a detector by cascading a 2- and M-
available by default on most CISCO routers, it is possibleciass classi er. The Binary classi er rst analyzes a sample, predicting
to generate NetFlows via open-source software tools, suctihether such sample is benign or malicious. If the sample is malicious,
as Argus [143], nProbe [146], or CIC-FlowMeter [147] then it is forwarded to a M-class classi er that determines the speci c
. . . . malicious class (out of M possible classes).
(including its xed version by Engelen et al. [33]).
We even mention that Zeek [145] (formerly BrolDS),
among the leading tools for network monitorfig A 4. A “practically redundant' ML-NIDS
has implemented its own variant of NetFlows, named
“connection logs” [171]. In our evaluation, we will We present a case-study of a ‘redundant’ ML-NIDS
consider all these variants. adopted in a recent paper in a high-quality journal, [175].
Our objective is showcasing the immaturity of related
Disclaimer: NetFlow represent a cost-effective solution|to research from the perspective of operational deployrifent.
perform data-driven analyses for NID. However, despite|be- In [175], an ML-NIDS is rst developed, and then
ing used in both research and practice, NetFlows are not assessed in adversarial scenarios. The evaluation is based

panacea [98], [167], and we invite future work to explore also on the cTu13 dataset, which contains malicious samples

other data-types (or create new ones!). belonging to 5 different botnet families. The adversarial
attacks are carried out by applying small perturbations

A.2. Supervised vs Unsupervised ML to the malicious samples of each family: the ML-NIDS is

then tested on such adversarial samples. From a ‘research’

) X , , perspective, such methodology @orrect because the
supervisedML algorithms [15]. Supervised algorithms q5'in [175] was the assessment of adversarial attacks.

require the training data to be provided witbelsthat povever, from a “practical' perspective, the ML-NIDS
denote the ground truth of each sample, and are henqgysidered in [175] isedundantdue to a questionable

suited to "speci ¢’ tasks (e.g., distinguishing benign from g chitectural design (schematically depicted in Fig. 11).
malicious samples). In contrast, unsupervised algorithmg,qeed such ML-NIDS consists in an ensemble of ML

do not have such requirement, making them applicable,,e|s with the logic that each model is dedicated to
only to more "generic’ tasks (e.g., grouping similar data):, speci ¢ family; however, each model of the ensem-
indeed, without ground truth labels it is not possible tope is testedonly on the samples of its specic family.
‘supervise’ what the ML model is actually learning [54]. ence, the ML models of [175] can only be viable if
At a high-level, both supervised and unsupervised MLthe NIDS knows—in advancel—which ‘attacks' should

algorithms are applicable to either misuse or anomaly,q foryarded to the ML model(s), therefore defeating the
detection approaches. For instance, labelled data can serygire purpose of using ML to detect an attack.

as a guide to produce the signatures (for misuse detection,
e.g., [32]) or to establish the notion of normality (for
anomaly detection, e.g., [172]); at the same time, the sig-
natures can be determined by extracting some rules after
clustering (e.g. [173]), while the normality can be deter-
mined from the clusters with most data points (e.g., [174]).

It is common to distinguish betweesupervisedand un-

A.3. An use-case of (supervised) ML in NID

Consider a NIDS that includes a ML model analyzing
NetFlows. Such ML-NIDS will receive the raw network Fig- 11: Exemplary design of a “redundant’ ensemble of ML models
traf c from the gateway (Fig. 1). Such data is in PCAP for NID (u.sed in [175]). Each <_:IaSS| eris trained on a specic attapk
(out of M); however, each classi er receives only samples that are either
format, and not usable by the ML model: hence, thepenign, or belong to the speci ¢ attack that the classi er can recognize.
PCAP is preprocessed into NetFlows (e.g., by using Ar-
gus [143]), and the resulting NetFlows are sent as input Furthermore, the ML-NIDS analyzes samples that are
to the ML model. The output of such ML model can either benign, or correspond to one among 5 botnet fam-
be further utilized, e.g., by an additional ML model. For ilies, i.e., a “closed world” setting. For instance, how
instance, it is possible to create a cascade of a binarwould the ML models in [175] behave on samples that are
and multiclass classi er (depicted in Fig. 10): the rst generated via different malicious activities (e.g., a brute-
ML model determines whether a NetFlow is benign orforce attack)? Finally, all the experiments in [175] are
malicious, and the second ML model analyzes only theperformed by attacking only a single ML model (based
malicious outputs—according to ti@ “known' classes. on RF). Hence, the effectiveness of the resulting attacks is
The initial PCAP can also be analyzed via traditional questionable: what if the attacked ML model was slightly

signature-based approaches (but in separate pipelines).
30. To avoid “pointing-the- nger', we observe that some of the authors
29. Zeek also provides additional logging tools (e.g., [98]), and isof [175] are shared with those of this SoK; nonetheless, we note that the
frequently mentioned in research papers (e.g., [61], [128], [169], [170]).methodology adopted in [175] derives from others peer-reviewed papers.

19

different from the one considered in the evaluation? WeB.2. Survey Design

acknowledge that some adversarial attacks can be “trans- . . .

ferred” [176], but such operations do not guarantee tht%ve carry out our survey through amline questionnaire

same degree of effectiveness. By performing many trials"2ving 13 questions with xed answets.

all such uncertainties could be removed. L) o

In the pragmatic assessment carried out in this SokB:2-1. Organization. The 13 questions were distributed

we do not make any of such ‘redundancies’, and henciNt0 four "‘pages’k), each with a speci ¢ purpose:

our results have a h|gher practica| value. P1) Introducing the questionnaire to the participant, and
determining their suitability for our questions.

. P2) Collecting the opinion on our proposdalctors
Appendix B. P3) Collecting the opinion on the situation of Table 2.
Survey with Practitioners P4) Collecting the opinion on the state of research.

Aside from P31, all the questions in the other pages had
A crucial contribution of our paper is the survey we three possible answers, which can be summarized as:

carried out with real practitioners. Our aim was to sub-"yes”; “yes, but”; and “no”.

stantiate two of our major claims: (i) whether our factors ~ To prevent "snooping bias' [8], the questionnaire was

were truly relevant for practitioners; and (i) whether prac-designed so that participants could not see the questions

titioners truly see research proposals of ML for NID with of @ given page until they answered the previous ones.

skepticism—and, if yes, what are some possible reasondVe gave the possibility of participants of not answering
Let us explain how we performed our survey, which guestions, because some participants may not have had

is rooted infairessandtransparencyto minimize bias. the expertise to answer all of them. Once they submitted
their answers, their response was recorded and no changes

) o could be made. There was no time limit for any question.

B.1. Selection of Participants We distributed the questionnaire to our participants

o o) . (after reaching an agreement) via email, which included
_ Eligibility Criteria. Our goal was collecting the opin- the Jink to our questionnaire. We asked each participant to
ion of “practitioners’ in the context of Machine Learning- provide us some form of con rmation that they submitted
based Network Intrusion Detection. For our survey, suchheijr answers—this was necessary to avoid cases in which
“practitioners” entail people that have (had) rst-hand g participant lled the questionnaire more than once.
experience with such technologies in the industrial sec-
tor. In-line with what We.described in 83.1, we hencepg o o QuestionsOnly one question was askedf and
focused on people who either work, or have worked forp4 i p1, we asked whether the company of the participant
companies that either: (&) provide cybersecurity to thirdaq 5 connection with ML and NID; such a question

parties, e.g., by monitoring the networks of their clientsaeteq as a form of veri cation (a “negative' answer would
via ML-NIDS; or (b) manage their own cybersecurity, .9., terminate the survey); iR4, we asked the simple question
they have a section entirely devoted to developing M'—'reported (verbatim) at the end of §5.3.

NIDS that protect the network of the entire organization. | contrast. P2 and P3 had 5 and 6 questions, re-

Furthermore, since we were also interested in C°"e°ti”gspectively. InP2, we: considered each of our proposed
mean_mgful opinions on the current state—of—research, OUke factors (§3.3); provided a brief explanation of such
participants had to have some connection with the resear¢.ior: and then asked “how important” such factor was
domain (mpst co-authored peer-reviewed publications). ¢y the respondent. IR3 we rst displayed an anonimysed
Population. Overall, we reached out and found agree- (author names were hidden) version of Table 2, and brie y
ments with a total of 12 “practitioners'. To prevent bias, explained what each column represented. Then, for each

the companies for which our practitioners work (or haveof the six columns in table, we asked “how problematic”
worked) are all different. To provide comprehensive andit was that such a column had a certain amount of

diverse opinions, we did not set ourselves any boundary

to either thelocation of the company (some are from the .

USA, some are based in the pEugl, (or in #g&ze (some B.3. Analysis and Feedback
have dozens of employees, some are world-leaders in Cwfter lling the questionnaire, some of our respondents
bersecurity). Although our population may appear small,gave us soméeedback which we now summarize.

we stress that the corresponding companies have clients «; depends!” Many respondents commented that
distributed everywhere in the World. To ensure fairness, they felt the urge to answer all questions with “it
all our interviewees were unaware of thgeci c research depends”. We were expecting this, which is why we

we were carrying out; and none of the authors of this iy ot include such a possibility in our questions:
SoK had ever asked the opinion of the respondents of our participants would have chosen that option.

surveybeforehand Finally, also for fairness, we reached “ did not expect that!” Some respondents stated
out to our population by sending a generic email, stating 5t hardware is often not a concern in operational

that “we w%nt tohcollect the oplnl?n of pra;]ctltl?jners on | environments, because computational resources are
ML-NIDS about the current state of research and practica abundant. We responded to them by showing some of

deployment of such technologies.” our results, and they changed their mind: apparently,

31. In other words, we did not “cherry pick' people that we knew 32. We created a copy of our questionnaire for reviewing purposes,
would con rm our claims (some responses go against some claims!) accessible at this link: https://forms.gle/TxfwmAqG7zi5WCsZ9

20

TABLE 5: State-of-the-Art (2022): papers published in top cybersecurity

they did not expect that some ML methods may ex_conferences that consider applications of ML linked with NID.

hibit similar detection performance, while requiring

SUbStantia”y different time to train or test. Paper | Year | Hardware | Runtime | Adaptive | Stat. Sign.| Avail. | Pub. Data
“Ilt must be explainable!” Some respondents com- Az 223 7 .7> E 138
mented that their clients always ask for “reasons why “fosee iV 20221 7 ! ! ! S 138
something (bad) happened,” thereby inducing secu- el | 20| 4 : : 4 7138
rity providers to favor “explainable’ ML methods. sl s = ° 7 T e
We were aware of the importance of this “factor' «ingpss | 2022| 3 3 7 7 3 | 3@
(as also evidenced in [11]) but we could not include Shama (o) | 202 | o 7 ° 7 7
it in our list because it would be unfeasible fany bR N o - 5 3 3 3138
research to provide an exhaustive answer for practical wndf>l | 205 3 s s ! S 138
purposes—at least today [152] (even [11] argues that_Welsing [16° | 2022 | 7 7 7 7 L EEEC)
explanations are client-speci c!).
Let us provide somadditional information . code (i.e., [60], [113], [116], [124], [130], [136]-[140]),

Timeline.The rst response was registered at the endyhich is a mere 33%. Such a low percentage dramatically

of Jun. 2022, and the last at the start of Oct. 2022. increased to 75% in 2022: 12 out of 16 papers in Table 5

Missing answersOne of our respondents did not published their code (i.e., [61], [79], [170], [177]-[180],

answer any of the questions iaz wherea_s two], [184]-[187]). Such a positive trend is encourag-

respondents skipped the “Stat. Sign.” questio®® jng for both research and practice, since it facilitates

Length.Filling the questionnaire required20 mins. reproducibility and can also allow practitioners to directly
Our repository [35] also includes some code-snippets proassess research proposals in production environments.
viding a breakdown of the answers received.

) C.2. NID datasets: practitioners' opinion
Appendix C.

Complementary Analyses The real-world utility of public NID datasets has been

scrutinized by many works—the most relevant being the
paper by Kenyon et al. [188]. In what follows, we extend
the main takeaways of [188] by providing some original
observations based on our interactions with practitioners.
) Context. The performance of any ML method depends
C.1. State of Research (in 2022) on its training data (§2.3). Due to the increasing popularity
f ML, the research community on ML-NIDS can now
enet from dozens of publicly available datasets. We
refer the reader to some surveys of recent datasets for
diverse domains related to ML-NIDS: [29], [58], [179],

We provide in this Appendix some additional considera-
tions that further enrich the contributions of this SoK.

In 85 we presented the state-of-research from 2017 untyg
2021. This was because we carried out our survey wit

practitioners in Summer'22 (i.e., 2022 was still ongoing).
However, at the time of writing, all venues considered

in our analysis have been held also in 2022: we nd[], [190]. Despite the .usefulness Of.SUCh datasets in
instructive to analyze also this year to see if there areresearch, from the operational perspective the sheer con-

any ‘improvements' w.r.t. the situation portrayed in §5. cept of a dataset has intrinsic limitations. Let us explain.

Methodology. We perform the exact same analysis Proble_,-m. We (informally) a_sked practitioners about
described in §5, but by considering the proceedings Ofglle practical relevance of publlcly.avanable datasets for
2022. We repeated our analysis twice, between Feb. an L-NIDS. The genefa' consensus |s_that all datasets t'hey
March 2023. We identi ed 16 papers, reported in Table 5 are aware O.f are inappropriate to derive sound conclusions
Altogether, these papers have various goals related to mLon thg applicability of a given M.L meth.od. The reasons
NIDS (e.g., evaluating novel attacks [177], or proposing@'€ diverse, but can be summarized as:
explainability methods for ML [178]). Similarly to §5, all Unrealistic assumptionsviany datasets have samples
these papers consider a single preprocessing mechanism generated via ‘simulations’ (e.g\B15 [144]), and
(the only exceptions are: [79], [179], which consider data the labelling may be done either too rigorously or
generate via different NetFlow tools); and consider open- ~ too loosely (e.g., [33]). For instance, assuming that
world settings (aside from [79], wherein the evaluation ~ the ground truth is known foeachsample is overly
represents a closed-world setting). optimistic (practitioners use coarse labelling strate-

Improvements. By looking at Table 5, we observe gies [61], [191], [192]).
an improvement w.r.t. Table 2 Notably, we appreciate Fixed point in time and spacén order to serve as
the utilization of more public datasets (which we believe @ “benchmark” for research purposes, a ML-NIDS
stems from the increased release of open NID da]%%ets dataset must be immutable. As a result, even if the
and the consideration of diverse data availability scenario. ~ data comes from real networks and corresponds to
The hardware also appears to be reported more often w.rt. true attacks (e.g.cTu13 [142]), its practical value
Table 2. However, we believe that the most signicant quickly deteriorates as the state-of-the-art advances
improvement (which is not captured in these tables) is an (€.g., new network services may replace previous
increased release of source-codadeed, out of the 30 standards, and the threat landscape evolves). For

papers in Table 2, only 10 publicly disclosed their source instance, showing that a ML-NIDS can detect botnet
samples that were “problematic' 10 years before is

33. Papers using NetFlows: [8], [79], [170], [178]-[182], [186], [187]. not very relevant today (from a practical perspective).

21

Practitioners also remarked that these problems do nan original experiment to showcase the importance of
undermine the scienti ¢ contribution of research papers. hardware on runtime (84.4).

Mitigation. We asked practitioners if they had any Literature Analysis and Validation. The main theses
recommendations to mitigate the problems affecting pubof [8] rely on an analysis of 30 papers over 10 years
lic datasets for ML-NIDS. Accordingly, existing datasets (from 2011 to 2021): in contrast, our SoK considers a
could be enhanced by generating "nevdatasets that higher number (46 in total) of more recent works (from
capture recent trends—e.g., by using CALDERA [81].2017 until 2022). Finally, the contributions by [3] are
For instance, thepsi7 [30] was updated with a more exclusively based on prior literature and “laboratory nd-
comprehensive versiott. Doing this, however, may be ings”, whereas our SoK has an additional validation phase
tough for researchers: creating a new dataset makes thgipported by a user study with real practitioners.
result of prior works not comparable, thereby requiring the
researchers to assess previous methods on the new datase .

(which is necessary for a meaningful comparison [8]). Un—&'h' Pragmatic Assessments for other IDS
fortunately, performing such re-assessments is not simpl
due to the lack of source codepreventing a simple (and
bias-free) implementation of prior baselines [107], [169].
For this reason, practitioners endorse researcheiseto
as open as possible with their implementatiafongside
being helpful for future research, a “plug-and-play' artifact

enables practitioners to assess the proposed ML-NID . .
on their own environments—provided, of course, thatfma.lys'S (refer to 82). By removing such an element, the
the corresponding paper allows practitioners to estimatel.m'qm':'ness of networks. deployment. challgnge (83.2)
whether it would work in the rst place. dlsapp(_ears. From a practical perspective, this leads to
narrowing-down of the problenif the IDS does not have
to account for the underlying network complexity, then
it is easier to de ne the boundaries of what represents
We compare our SoK with the work by Arp et al. [8]. an ‘intrusion' or not. For example, detecting malware
Different goals. Arp et al. [8] aim to provide rec- at the host level can be done a-priori, since “malware
ommendations that improve the soundness of ML asses$s malicious everywhere, everytime” (§1). Consequently,
mentsfor future researchin contrast, our recommenda- we argue that the results of similar researches are more
tions aim toreduce the practitioners' skepticism on the directly applicable to reality. As a matter of fact, many
practical valueof research papers. For this reason, somecommercial security products integrate state-of-the-art ML
of our recommendations focus on aspects that are orthoganethods: e.g.deep learnings used by Sophos tdetect
nal to research, and contrast those of [8]. For instance, [&nalware [194]; and also by other companies tetect
claim that “an evaluation of adversarial aspects is [...] aphishing webpagels 07]. Therefore, we believe that there
mandatory component in security research”, and sugges$s a reduced necessity for pragmatic assessments in IDS
“focusing on white-box attacks where possible”; in con-that do not envision the underlying network complexity.
trast, we argue that attackers with full-knowledge of the Extension. Research papers on other IDS can, how-
ML-NIDS is an extreme assumption in real environmentsever, still embrace our proposed pragmatic assessment
(as also mentioned in [107]), and our experiments focusotion: all our recommendations can be broadly applied
on adaptive attackers with partial knowledge (which areto ML-IDS Nonetheless, in these cases, we arguettieat
more likely in reality). role of hardware is even more importarindeed, while
Different focus. Arp et al. [8] focus on generic ap- an organization (may) have the possibility of deploying
plications of ML for security, and some recommendationsthe ML elements of a NIDS on diverse machines, in
have poor relevance in the specic NID contetivhich the case of host-IDS there is less room for doing this,
is our focus). For example, [8] emphasize the problem okince the analysis must be performed on the specic
“temporal snooping”, which may be relevant when, e.g.,hos®. For example, consider our original experiment in
analyzing malware samples, but not-so-much in when th&4.4: the inference time can be substantially different
analyses focuses on network activities over short times¢3x in our case) even for CPUs mounting “an intel i5”.
pans (as we explained in 8§4.2.2; even our results showlence, papers on host-IDS (including, e.g., commodity
that there is barely any difference, performance-wise). antiviruses) should put high emphasis on the siz€ ahd
Overlapping and Actionable recs.While some rec- E, and on the runtime for both training and testing—while
ommendations by [8] can be applied for our cases (e.gglearly specifying the hardware speci cations. We also
the base-rate fallacy §4.3), some of our recommendationsndorse future researchers to consider different hardware
are not elaborated in8]. For instance, although [8] rec- con gurations: this can be done, e.g., by downclocking
ommend to “move away from a laboratory setting [e.g.,the CPU, or running the experiments on a virtual machine
for runtime] and approximate a real-world setting [e.g.,and regulating the allocated computational resources (as
for open-world]”, there is no mentioning of how this could we did in our experiments).
be done in NID: in contrast, we propose, e.g., leaving-

out' some malicious samples (84.2.1), and we perform 3s. of course, an organization can choose to deploy the ML element
of a host-IDS on a powerful remote machine, but doing this for all

The focus of this SoK is on Machine Learning applications
for Network Intrusion Detection Systems. Let us explain
how our pragmatic assessment can be applied to other
types of Intrusion Detection Systems (IDS) [48].
Context. What sets a (ML-based) NIDS apart from
ther IDS is the presence of a “network' element in its

C.3. Comparison with a closely related work

34. Unfortunately, even this version was found to be awed [193]. machines of an organization may be impractical. Alternatively, if an
35. Among the 46 papers we analysed in this SoK, only 22 releasearganization used a centralized server that simultaneously analyzes all
their source-code at the time of acceptance (i.e., 48%AqHe C.1). the low-level operations of the hosts, then this would resemble a NIDS.

22

Appendix D TABLE 6: Distribution of samples for each Dataset.
Experiments: Con guration Settings Dataset | Class | Anack \ samples
i X L. 0 Benign 16748326
We now provide an exhaustive description of our mas- 1 neris 205928
sive experimental campaign. Our experiments focus on cTU13 3 L 5168
supervised ML models for NID that analyze NetFlows. As : it | 40904
explained in 86.1, such settings allow to witness the effects 6 muro 6127
of all the “factors' described in our paper—while guaran- 0 Benign | 139186
teeing reproducibility. Indeed, using NetFlows showcases ores |—at—Ses | 2L
the role of data preprocessing, supervised settings high- 3 brute 835er
light the importance of labelling, the generic “intrusion 5 B'”_ 10760
detection' epitomizes the distinction between open and T e
closed worlds, and several public datasets are available. : recon e
We begin by presenting the considered datasets. Then, NB15 z Shell 1511
we thoroughly explain all the diverse con guration set- 2 | ez | 2424
tings to meet all the conditions of a pragmatic assessment. 7 ana 2677
0 Benign 2295222
X 1 expl 31551
D.1. Public Datasets 2 recon | 12779
3 dos 5794
. . . UF-NB15 4 shell 1427
To provide meaningful results, for our evaluation we 5 fuzz 22310
consider ve datasets that include recent traf ¢ and attack 8 | boor 1 i
patterns, and which span across large and small network 0 | Bengn | 1666837
segments. We focus on datasets that are publicly available L ddos 912
and validated by the state-of-the-art. In particular, we 3 e —— e
consider the following ve datasetsTu13 NB15, UF-NB15, cicios17 | l';trtlrs’ e
CICIDS17 , GTCS Let us explain our choice. 6 fip 3973
. . . 7 pscan 159151
CTU13 [142] is one of the largest publicly available 8 ssh 7980
9 other 971

datasets for NID. The data ioTu13 is generated
in a large network environmen{ 300 hosts), and
contains attacks generated by divelbggnetfamilies.
NB15 [144] is well-known [129], [135] and contains
many attacksfrom DoS [195] to shellcode injections.
UF-NB15 [29] is generated from thexact saméraf ¢

of NB15, but the NetFlows derive from a different tool
(i.e., UF-NB15 has differentr thannNBi1s).

cicibs17 [30] is among the most popular datasets

(e.g., [32], [128]) for NID. Its original version was 0
found to present labelling aws [33], so we perform most 40% of the frequency) and 8GB of RAM.

our experiments on theed versionof CICIDS17 . loT. A Raspberry Pi 4B Wit.h 2GB of RAM (_4 cores).
GTCs[110] is a very recent dataset. It includes similar We do not use GPU acceleration to ensure fairness.
attacks as those iicips17, but the network is We perform the majority of our experiments on the

smaller (i.e., it has less than a dozen hosts). high-end platform. The reason (as explained in 83.3) is
An in-depth view of such datasets is provided by that hardware only affectsthe runtime of an ML model.

Table 6, showing the exact amount of samples per clas$!€NCe, we use the other platforms to comparetriiaing
For cicips17 we merge some underrepresented familiesandinferenceruntime of each ML model. We do this only
into a single class (i.eqther); whereas foNB15, UF-NB15 on theGTcsdataset, as runtime scales almost linearly with
we exclude some families because they had signi cantlyin® Size of the analyzed data.

mismatching numbers (in terms of available samples)

which—we believe—could be due to labelling issues. D.3. Data Availability

In our experiments, we treat each datafetas a

separte envionment, and we do ot perform any mxn L%, Pl W SDelen B oL heep o onln
due to the intrinsic risks of such operations [28]. P

the amount of labelled data is a hard constraint. To ensure
] . fair and consistent comparisons, we always compose the
D.2. Hardware speci cations evaluation partitionE by choosing 20% of the available
samples for each class im Then we consider four “data
availability' scenarios that regulate:

Abundant we use all the remaining samples as train-
ing (i.e., T is 80% ofD).

Laptop Intel Core i5-430M@2.5GHz (4 cores) and
8GB of RAM. The OS is Windows 10.

Workstation Intel Core-i7 10750HQ@2.6GHz (12
cores) with 32GB RAM. The OS is Windows 10.
Low-end A “downclocked' variant of the worksta-
tion, running on a Virtual Machine (using Ubuntu
20.04) that is set up to use only 4 cores (using at

We carry out our evaluation on three different platforms
each with different computational resources.
High-end (default). A dedicated server for ML ex-
periments, running an Intel Xeon W-2195@2.3GHz
(36 cores), 256GB RAM. The OS is Ubuntu 20.04. 37. We veri ed this manually: all our ML models we develop across

Desktop Intel Core i5‘4_670@3-26HZ (4 cores) and i our platforms achieve ultimately comparable detection performance—
8GB of RAM. The OS is Windows 10. despite being trained/tested on different platforms

23

Modest we use half of the remaining data (i.&.,is

40% of D).

Scarce the training data is restricted to only a fth

of the remaining samples (i.€T,is 15% ofD)

Limited: we use only 100 samples per class as train-

ing dataT.
Nevertheless, we set a cap on the maximum amount of
samples that are considered for any evaluation. Speci -
cally, whenever we choose a dataset, the amount of benign

analyze each sample, and the output is produced by

a nal decision component. In particular, we consider

3 variants—each producing a binary output:

— Logical Or ED-o), where a sample is considered
malicious if at least one classi er says so.

— Majority Voting (ED-v), where a sample is consid-
ered malicious if at least M/2 classi ers say so.

— Stacked g£D-s), where an additional ML model
analyzes the predictions of all the M classi ers.

samples that are put i cannot exceed 500k, whereas the we recall (cf. App. A.4) that some past works propose
amount of malicious samples for each class cannot exceashsemble detectors where each classi er receivégthe
166k (i.e., one third of the benign Samples). Indeed, SOMenalicious Samp|es that it can recognize (e_g_, []), and
datasets (e.gGTU13) contain millions of samples which the results are taken by averaging the performance of
are realistically dif cult to manage (labelling issues are each classi er. Despite the poor pragmatic value, we nd
common in NID [33]). Moreover, we do not want the instructive to consider also such ‘redundant' design, which
malicious samples to be more present than benign sanyve denote agp (cf. Fig.11).

ples because this is not realistic: in reality, attacks are a \wjth respect to the NIDS architecture in Fig.2, all our
‘needle in a haystack” [114]. We remark, however, thatdetectors can be placed in the exemplary “ML pipeline”,

we perform hundreds of trials—each draWing a differentwhere the preprocessing is done by the NetFlow tool.
amount of samples from a source dataset to compose

(and hencer andE). Hence, we can reasonably assume :
that all samples in each dataset are analyzed by some M'I?'6' Selected ML Algorithms

model (either for training or testing such a model). We create 4 variants of each detector, each using a speci ¢
ML algorithm. Of course, there exist dozens of ML algo-
rithms, and benchmarking all of them is unfeasible and

also outside the scope of our paffelOur focus is hence

NetFlows exporters can generate diverse features. In SOME. - select subset of ML algorithms that have found use

cases, however, some features cannot be computed bl%'r ML-NIDS based on NetFlows (and that are known to

cause the source PCAP data does not contain the necess%ré(“easy to explain’). In particular, we use:

pieces of information (see [52]). Hence, we consider two L .
cases of feature sets for each source dataset: Decision Treg(DT). One of the most popular classi-
cation algorithms for NID (e.g., [31], [32], [196]).

Complete we useall the features provided with
each dataset (and, hence, by the respective NetFlow Random Fores(RF). A WeII-kno_Wﬂ (e.g., [.])en-
semblemethod, where each estimator is a single DT.

exporter). To avoid classi cation bias [8], we omit the Logistic RegressiofLR). Among the most common
plain IP address and network ports (we replace the ML algorithms (also for NID [197]), it relies on

latter with their IANA categories, as done in [175]). ; o .
Essential we use a subset of about half of the ﬂ;ﬁﬁ:gn(ti geclljs_ll_ognrgeé:gflmsms than tree-based algo-
original features, which include the essential NetFlow Histogra.m.bradient—booétin(ﬁGB) This algorithm

elgls'(e.g., d'uratlon, packets, bytes []),' leverages a novel boosting technique [198] that
Such distinction is also used to shape the different oper- oo training signi cantly faster with respect to

ational scenarios (described App. E). other gradient-based algorith#s

. T From a resource utilization viewpoint, the learning phase
D.5. Design of the ML Pipelines for RF, LR and HGB use all cor:s available on a%p?eci c
We always focus on ML components that operate as @latform; whereas DT only uses a single core. On the
detectionengine within the NIDS. We consider a wide other hand, the inference phase always uses a single core.
array of such detectors, each with its own pipeline, which ~ To the best of our knowledge, we are the rst to
we now describe. A schematic is given in Fig. 12. evaluate detectors using HGB in our testbed, which is
Binary Detector D, Fig.12a). It consists of a single Why we focus on this ML algorithm in our main paper.
binary classi er: a sample is benign or malicious.
Multiclass Detector NiD, Fig.12b). It consists of a Appendix E.
single 1+M—cl_ass classi er which infers whether a Experiments: Operational Scenarios
sample is benign, or belongs to one among M classes.
Binary+Multiclass Detector gvD, Fig.10). This
pipeline envisions a cascade of two ML models: the
rstis a binary classi er (i.e., theD), and the second
is an M-class classi er which must determine the
family of the malicious samples provided as output
by the rst classi er.
Ensemble Detector (Fig.12c). This pipeline consists
of an ensemble of M binary classi ers, each special- 38. In our source-code, changing the ML algorithm is a one-liner.

ized on a single type of attack—which is common in 39 we also assessed neural nets, but HGB always outmatched them—
NID (e.g., [60]). All such classiers independently which is why we chose HGB as exemplary gradient-based algorithms.

D.4. Feature sets

For each dataset, all the considered ML-NIDS are assessed
in three different scenarios, which include both “closed”
and “open” world settings. Speci cally:

Known Attacks (Baseline) This is the optimistic
“closed world” setting: we usall the available attack
classes for botft andE.

24

(a) BD Detector (o) MD Detector (c) Ensembles. The “decision component' determines ED-o, ED-s, ED-v.

Fig. 12: Design of the ML pipelines entailed in our considered ML-NIDS.

Unknown Attacks. To assess the performance the rst 40% samples fomT—resulting in a time-gap of
against unknown attacks, we use the exclusion tech40% samples betweeh andE.
nigue presented in 8§4.2.1: we re-train each detector
on all but oneof the available attack classesinand E 2. Adaptive “ P
,) . E.2. iv versarial” Attack
then test it on the leftout class (by using 20% of its daptive "adversaria acks

samples irE). For simplicity, we do such retraining we describe our adaptive attacks, which resemble the
by considering the “complete’ feature set. well-known paper by Apruzzese and Colajanni [141].
Adversarial Attacks. We carry out adversari@va- Threat Model. The defenderis an organization that
sionattacks based on a well-known prior work [141], 5qopts a ML-NIDS to detect malicious activities occurring
which envisions attacks that are both realistically i, their network—a deployment scenario similar to the one
feasible (i.e., the attacker treats the ML-NIDS as agepicted in Fig. 1. In particular, the NIDS includes an ML
black-box and cannot observe the output because gomponent that analyzes NetFlows, outputting whether a
is accessible only from security administrators [72]) NetFlow is benign or malicious according to the data seen
and physically realizable (by extending the communi-yring its training stage. Thattackeris assumed to have
cations with junk bytes of data). To comply with the zready in Itrated the network (by, e.g., exploiting some
settings in [141], we consider the Essential feature,qrg gay vulnerability, or by successfully “phishing' some

set. More details are iApp. E.2 employees). As such, the attackecapableof controlling
We re-assess every scenario through many trials, eaakome hosts, e.g., by manipulating the network communi-
involving a differentT andE. Let us explain. cations. The attackemowsthat the organization adopts a
ML-NIDS, but is agnostic of the exact functionalities of
E.1. Dependencies and Repetitions such ML-NIDS; moreover, the attacker cannot observe the

. . utput of the ML-NIDS because the attacker has no access
All the three scenarios are assessed by assuming boff the admin console of the ML-NIDS. The attackeants
static' apd temporal’ data deper.ldenmes (§.4'2'2)' to maintain access to the network: hence, the attacker is
Static dependency.Under this assumption, we al- aware that they must operate stealthily and continuously
ways compos@ andE by random sampling fro®. change their activities to avoid being detected, especially
To ensure statistically signi cant results that accountif the ML-NIDS is retrained with data pertaining to more
for randomness, we perform a massive amount Ofecent attacks. Thetrategy adopted by attacker is to
trials for each setting. Speci cally, we repeat the modify the network communications (by, e.g., adding junk
training/testing: 100 times for thAbundant Mod- payloads) of the controlled machines, which results in “ad-
eratg and Scarcelabelling budgets; and 1000 times versarial perturbations' that will affect the data analyzed
for the Limited labelling budget. by the ML-NIDS. Such an erratic behavior can confuse
Temporal dependency.To take into account the po- the ML-NIDS, potentially bypassing its detection. Such a
tential temporal dependency between samples, we rehreat model denotes attacks that f@sibleto stage [72],
peat the same 3 operational scenarios, but by changind hence likely to occur in reality.
ing the way we compos@ and E. Speci cally— Implementation. We create the adversarial perturba-
instead of randomly sampling from—we compose tjons by manipulating the NetFlows samples. Such per-
E by selecting themost recensamples, whereas we trpations can be considered to be applied in the “feature
composeT by selecting therst appearing samples. gpace’ [103]. To ensure that the resulting adversarial sam-
Of course, the composition df is done according ples are physically realizable [102], we follow strict rules.
to the considered data availability setting—hence al- .
We only perturb NetFlows whose source host is

lowing a fair comparison with the “static' scenarios. . "

As egplained in §42 2, the temporal scenarios are within the internal network. Indeed, our threat model

assessed only once. p'e; dataset (because they assume assumes that the attacker has access and can control
some machines within the target network.

a deterministic appearance of samples).. . We only perturb UDP NetFlows. This is because
As an example, consider thidoderatedata availability other protocols may not allow the introduction of
setting. For thestatic assumption, we rst creat&€ by perturbations at the network-levél
randomly choosing 20% of the samples for each class '
In a givenb, and then create by choosmg 40% of the 40. For instance, some protocols (e.g., ICMP) have payload restric-

remaining samples per class. For tamporalassumption, tions, whereas others perform additional communications (e.g., TCP's
we select the last 20% samples for each class€Efaand three-way handshake) that could result in unreliable adversarial samples.

25

The perturbations increase (by tiny amounts) thelndeed, to measure the bene t BMD we measure ita\cc
duration or the exchanged bytes—which are bothon the malicious samples predicted fy; to allow a fair
common NetFlow features (and “controllable' by our comparison, we also measukec for MD—but only on the
attacker). We do not decrease such features becausealicious samples, otherwise the results would be skewed
it may result in corrupted packets. Moreover, we in favor of the benign samples which are analyzedvioy
ensure that the resulting "adversarial NetFlow' doesbut not by the multi-class classi er &mpD.
not violate physical constraints (e.g., exceeding the
MTU, or the maximum NetFlow duration). E.3.3. Adversarial RobustnessNext, we craft the ad-
After applying the perturbation, we re-create theversarial samples (as explained App. E.2). We isolate
sample by taking into account inter-features depenfrom E the NetFlows that meet our criteria (must be
dencies (e.g., we recalculate the “bytes per second’}JDP and start from an internal host, and of course be
Finally, to replicate the scenario considered by Apruzzesénalicious), and re-compute ther of all our detectors on
and Colajanni [141], we only assess such attacks again§tich “clean’ samples (which should be different from the
the detectors that use the Essential feature set. This choié@tial tor computed on the whol&). Then, we apply
is also motivated by the fact that it is impossible to predictthe perturbations and analyze the resulting adversarial
the effects of our perturbations to some features of théamples with all our detectors: if such “adversaript
Complete feature set. As such, we consider the Essenti&} lower than the one on the “clean’ malicious samples,
setting to ensure that all of our adversarial samples aréhen the attack is successful.
physically realizable. Nonetheless, a recent work [104]) .
also suggests that our perturbations can be considered &s3-4. Reiterate and nalize. All the procedures above
a “worst-case” scenario, wherein an attacker has comprc@re then repeated 100 times for the Abundant, Moderate
mised the NetFlow exporter and is able to manipulate thénd Scarce data availability settings, and 1000 times for

preprocessing operations of the ML-NIDS. the Limited data availability setting. Finally, we repeat all
such experiments one last time by considering the tempo-

ral dependency (and hence choosihgndE accordingly).

E.3. Performance Evaluation
We consider several performance metrics. Speci cally:

False Positive Ratéfpr), because any security sys- Appendix F.

tem must exhibit low rates of false alarms.
True Positive Ratdtpr), because our primary focus

Experiments: Benchmark Results

is on intrusion detection (a positive is a malicious Al our results are provided in a series of tables, each
sample, irrespective of its class). Furthermore, oukeporting the results achieved by all combinations of ML

adversarial attacks focus @vasion and hence will
affect thetpr.

pipelines and ML algorithms for the increasing settings of
data availability on a given dataset. The values reported in

Accuracy (Acc). Due to the base rate fallacy [S], each table vary depending on the purpose of each table.

we only useAcc to assess the multi-classi cation
capabilities for the malicious classes (i.e., only for
MD and BMD).

F.1. Detection Performance (binary)

Training time which is the time (in seconds) to train We report our results fobinary classi cationby distin-

a given ML model or.

Inference timewhich is the time that a (trained) ML

model needs to analyze all samplesEin
For each dataset and data availability setting, we choose
an ML algorithm (i.e., either RF, DT, LR, HGB). Then,
we proceed by adopting the following work ow.

E.3.1. Training. First, we develop all our detectors, i.e.:
BD, MD, BMD, as well as all the “specialized' detectors of
ED (i.e.,ED-v, ED-o, ED-s). All such detectors come in three
variants: one using the Complete feature set; one using the
Essential feature set; and one using the Complete feature
set but trained without considering a speci ¢ malicious
class—i.e., the unknown attacks (The latter yields M-
1 sub-variants of each detector.) All such detectors are
trained on the sam& (with the appropriate changes of
features or classes), and we measure their training time.

E.3.2. Inference. Then, we test each detector @by
computing thefpr and tpr while measuring the time
required to analyz€&. ForMD, we consider a sample to be
detected if it is classi ed as any attack class. Moreover,
because thembp usessD as rst detection layer, it follows
that thefpr andtpr of BMD are always the same &®.

26

guishing the “closed” and “open” world settings.

“Closed World”: cTu13 in Tables 7,GTcsin Ta-
bles 9,NB15 in Tables 11,ur-NB15 in Tables 13,
cIcIDS17 in Tables 15. Each of these tables reports
the thetpr andfpr achieved by all our considered
ML models, where we also differentiate the Essential
from the Complete feature set. In particular, every ta-
ble contains two subtables: the former (e.g., Table 7a)
reports the results in the absence of temporal de-
pendencies, and hence the values denote the average
metric (and standard deviation) across the many trials
we performed. Whereas the latter (e.g., Table 7b)
reports the results of the single trial in which the
samples are assumed to have temporal dependencies.
“Open World” : cTu13in Tables 8GTcsin Tables 10,
NB15in Tables 12pF-NB15 in Tables 14¢iCIDS17 in
Tables 16. Each of these tables considers the twofold
perspective of “unknown' attacks and “adversarial’
attacks. For the former, which assume detectors using
the Complete feature set, we report tipe (on the
‘unknown' samples), but also thier (indeed, by
excluding one class fronT, the performance on
the benign samples can also change). For the latter,
which assume the Essential feature set, we report the

tpr on the ‘original’ NetFlows (which can vary from
the one in the ‘open world’ scenario because such
samples are a subset of E) and on the ‘adversarial’
NetFlows. Each of these tables contains two subta-
bles, one for the ‘static’ (e.g., Table 8a) and one for
the ‘temporal’ (e.g., Table 8b) dependency case.

We do not report the results of BMD in any of these
tables because they are identical to BD: if a malicious
sample ‘evades’ the BD, then it will logically also evade
BMD (whereas benign samples are not analyzed by the
multi-class classifier of BMD).

During our experiments, we observed that (especially
when the size of T is huge) detectors based on LR tend to
classify every sample as benign: in these cases we report
a 0 for both tpr and fpr (the detector is clearly unusable).

F.2. Attack Identification (multiclass)

Next, we focus on the classification performance on the
malicious samples. Such performance is measured via the
Acc, which is computed for the MD and BMD detectors
and only by taking into account the malicious samples
(for the case of MD, because these detectors also analyze
benign samples). These values are computed only for the
“closed world” settings, because any ‘unknown’ attack
is—by definition—misclassified (and the same can be said
for the adversarial attacks). All such results are reported
in five tables (one per dataset): ctu13 in Table 17, cTcs in
Table 18, nB15 in Table 20, ur-nB15 in Table 20, ctcIpsi7
in Table 21. All such tables include the Acc for both the
Essential and Complete feature set, in both the static and
temporal dependency scenarios.

F.3. Runtime Performance (high-end platform)

We report the runtime of all our ML models on the high-
end platform. The runtime for the temporal and static
dependency scenarios is always the same.

Training. We provide five tables, one per dataset:
ctul3 in Table 22, cTcs in Table 23, nB15 in Table 24,
ur-NB15 in Table 25, cicipsi7 in Table 26. In these
tables we report both the actual time (in seconds)
and the standard deviation across all our trials. The
training time of ED is the sum of the training times for
all the classifiers that compose the ensemble—which
is the same for both ED-v and ED-o. The training time
of ED-s is always superior because it also requires
training the stacked classifier.

Testing. We provide five tables, one per dataset:
ctul3 in Table 27, cTcs in Table 28, nB15 in Table 29,
ur-NB15 in Table 30, cicipsi7 in Table 31. In these
tables we report only the actual time (in seconds),
because variations were almost imperceptible. The
testing time of ED is the sum of the testing times for
all the classifiers that compose the ensemble—which
is the same for both ED-v and ED-o0. The testing time
of ED-s is not necessarily superior than those of ED
because the stacked component can take a decision
immediately.

In all cases, the runtime for BMD is (almost) equivalent
to the sum of BD and MD.

27

F.4. Runtime Performance (other platforms)

We report the computational runtime of all our ML models
as measured on the other hardware platforms. We do this
on a single dataset, GTCs, because it was the only one that
could be processed by (most) of our machines. Indeed, the
Raspberry Pi4 was not able to run any of our experiments
(aside from those using the Limited data availability), due
to a lack of available RAM memory. Such phenomenon
motivated us to create a dedicated Virtual Machine (the
low-end platform) having a computational power similar
to a Raspberry Pi4, but with significantly more RAM—
enabling the development of ML models trained on ctcs.

We report all such results in Tables 32, which contains
four subtables—each dedicated to a specific platform.
These experiments are repeated 10 times and we report
the average training and testing time.

	Introduction
	Background and Problem Statement
	Network Intrusion Detection Systems
	Machine Learning and NIDS
	ML-NIDS in Research
	Skepticism of ML-NIDS Practitioners

	Practical Deployment of ML in NID
	Business Perspective of ML for NID
	Deployment Challenges of ML for NID
	Factors affecting the real value of ML in NID

	Pragmatic Assessment of ML-NIDS
	Development Requirements
	Likely Operational Scenarios
	Closed and Open World
	Static and Temporal Data Dependency
	Naive and Adaptive Adversaries

	Unbiased and Statistically Validated Results
	Experiment: the importance of CPU specs

	State-of-the-Art (in Research)
	Methodology (literature review)
	Major Findings (and our interpretation)
	Practitioners' Opinion

	Demonstration of a Pragmatic Assessment
	Experimental Setup
	Main Results (Quantitative Analysis)
	Baseline Performance
	Detection of unknown attacks
	Adversarial Robustness
	Runtime

	Practical Considerations

	Discussion and Related Work
	Challenges of Pragmatic Assessments
	Reflections and Recommendations
	Related Work

	Conclusion
	References
	Appendix A: Additional Background and Use-cases
	NetFlow-based analyses (and tools)
	Supervised vs Unsupervised ML
	An use-case of (supervised) ML in NID
	A `practically redundant' ML-NIDS

	Appendix B: Survey with Practitioners
	Selection of Participants
	Survey Design
	Organization
	Questions

	Analysis and Feedback

	Appendix C: Complementary Analyses
	State of Research (in 2022)
	NID datasets: practitioners' opinion
	Comparison with a closely related work
	Pragmatic Assessments for other IDS

	Appendix D: Experiments: Configuration Settings
	Public Datasets
	Hardware specifications
	Data Availability
	Feature sets
	Design of the ML Pipelines
	Selected ML Algorithms

	Appendix E: Experiments: Operational Scenarios
	Dependencies and Repetitions
	Adaptive ``adversarial'' Attacks
	Performance Evaluation
	Training
	Inference
	Adversarial Robustness
	Reiterate and finalize

	Appendix F: Experiments: Benchmark Results
	Detection Performance (binary)
	Attack Identification (multiclass)
	Runtime Performance (high-end platform)
	Runtime Performance (other platforms)

