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GOAL

Changing the way research on Network 
Intrusion Detection (NID) based on Machine 

Learning (ML) is carried out.
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Intrusion Detection (NID) based on Machine 

Learning (ML) is carried out.

WHY?

In research (20 years ago)…
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GOAL

Changing the way research on Network 
Intrusion Detection (NID) based on Machine 

Learning (ML) is carried out.

WHY?

[9] M. De Shon. “Information Security Analysis as Data Fusion.” In IEEE International Conference on Information Fusion, 2019
[50] D. Ucci et al. “Near-real-time Anomaly Detection in Encrypted Traffic using Machine Learning Techniques”. IEEE Symposium Series on Computational Intelligence, 2021

…in practice (in 2020s)
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(Meanwhile, in Computer Vision…)

2014

Source: Nicholas Carlini, “A crisis in adversarial machine learning” Art of Robustness, 2022.

2017

2022

Hey, I have a new algorithm to generate synthetic images!
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Lack of an ‘‘Universal’’ Dataset
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giovanni.apruzzese@uni.li…BUT WHY SO?

Lack of an ‘‘Universal’’ Dataset

The focus is on the ML model

1. Propose a “new” solution

2. Choose a given metric

3. Show that you “outperform” the state-of-the-art

Instead, we address another shortcoming…

…what about the rest?
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Deployment of ML in NIDS must account for 
several factors before developing any ML model

What we do: (1) Practical Factors
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What we do: (1) Practical Factors – cont’d
The “value” of an ML model can be seen as a function of five factors:

1. System Infrastructure
(how does the ML model interact with the overarching system?)
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What we do: (1) Practical Factors – cont’d
The “value” of an ML model can be seen as a function of five factors:

1. System Infrastructure
(how does the ML model interact with the overarching system?)

2. Preprocessing
(what data is passed as input to the ML model?)

3. Data Availability
(how much data is required to train the ML model?)

[75] G. Apruzzese et al. “The role of machine learning in cybersecurity.” ACM Digital Threats: Research and Practice, 2022.
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2. Preprocessing
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What we do: (1) Practical Factors – cont’d
The “value” of an ML model can be seen as a function of five factors:

1. System Infrastructure 
(how does the ML model interact with the overarching system?)

2. Preprocessing
(what data is passed as input to the ML model?)

3. Data Availability 
(how much data is required to train the ML model?)

4. Hardware
(what platform is expected to run the ML model?)

5. Unpredictability
(how to deal with the concept drift?)

[75] G. Apruzzese et al. “The role of machine learning in cybersecurity.” ACM Digital Threats: Research and Practice, 2022.
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What we do: (2) Research Guidelines
How can researchers meet the needs of practitioners?

1. System Infrastructure 
→ Provide a schematic!

[8] D. Arp et al. “Dos and don’ts of machine learning in computer security.” In USENIX Security Symp., 2022.

(Some of our guidelines do overlap with those of Arp et al. [8])
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What we do: (2) Research Guidelines
How can researchers meet the needs of practitioners?

1. System Infrastructure
→ Provide a schematic!

2. Preprocessing
→ Report which tools

3. Data Availability 
→ Consider different amounts of training data

[8] D. Arp et al. “Dos and don’ts of machine learning in computer security.” In USENIX Security Symp., 2022.

(Some of our guidelines do overlap with those of Arp et al. [8])
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→ Provide a schematic!

2. Preprocessing
→ Report which tools

3. Data Availability 
→ Consider different amounts of training data
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What we do: (2) Research Guidelines
How can researchers meet the needs of practitioners?

1. System Infrastructure 
→ Provide a schematic!

2. Preprocessing
→ Report which tools

3. Data Availability 
→ Consider different amounts of training data

4. Hardware
→ Report the specifications of the evaluation platform

5. Unpredictability
→ Assess as many “likely” operational scenarios as possible

[8] D. Arp et al. “Dos and don’ts of machine learning in computer security.” In USENIX Security Symp., 2022.

(Some of our guidelines do overlap with those of Arp et al. [8])
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What we do: (3) State-of-the-Art?
How does the SotA “comply” with our recommendations?

Venues: S&P, EuroS&P, SEC, NDSS, 
CCS, AsiaCCS, RAID, DIMVA, ACSAC.
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What we do: (3) State-of-the-Art?
How does the SotA “comply” with our recommendations?

All papers consider “open-world” scenarios

 No paper changes the preprocessing tool

Venues: S&P, EuroS&P, SEC, NDSS, 
CCS, AsiaCCS, RAID, DIMVA, ACSAC.
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What we do: (4) Practitioners’ opinion – A 

Factor Not important Important Crucial

System Infrastructure

Preprocessing

Data Availability

Hardware

Unpredictability

User study with 12 practitioners with hands-on experience on ML and NID, 
who are acquainted with research and work in renown security companies.

“How important is this factor?”
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o Preprocessing is the most relevant

o Hardware is the least relevant

What we do: (4) Practitioners’ opinion – A 

Factor Not important Important Crucial

System Infrastructure 9% 27% 64%

Preprocessing 0% 9% 91%

Data Availability 9% 18% 73%

Hardware 9% 64% 27%

Unpredictability 9% 18% 73%

User study with 12 practitioners with hands-on experience on ML and NID, 
who are acquainted with research and work in renown security companies.

“How important is this factor?”
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What we do: (4) Practitioners’ opinion – B 

Column (Issue) Not very
Problematic

Problematic
(but OK)

Very 
problematic

Poor Hardware

Poor Runtime

Poor Adaptive atk.

Poor Stat. Sign.

Poor Data Availab.

Poor Pub. Data

User study with 12 practitioners with hands-on experience on ML and NID, 
who are acquainted with research and work in renown security companies.

“How problematic is it that…”
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What we do: (4) Practitioners’ opinion – B 

Column (Issue) Not very
Problematic

Problematic
(but OK)

Very 
problematic

Poor Hardware 25% 75% 0%

Poor Runtime 0% 75% 25%

Poor Adaptive atk. 8% 67% 25%

Poor Stat. Sign. 0% 10% 90%

Poor Data Availab. 16% 42% 42%

Poor Pub. Data 0% 41% 59%

User study with 12 practitioners with hands-on experience on ML and NID, 
who are acquainted with research and work in renown security companies.

“How problematic is it that…”
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What we do: (5) Pragmatic Assessment
We showcase how to apply all our guidelines in research.

We do so by re-assessing existing methods for Netflow classification.
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What we do: (5) Pragmatic Assessment
We showcase how to apply all our guidelines in research.
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We evaluate all of the above in: (i) open-world, (ii) closed-world, and (iii) adversarial settings.
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What we do: (5) Pragmatic Assessment
We showcase how to apply all our guidelines in research.

We do so by re-assessing existing methods for Netflow classification.

We consider:

o 5 well-known public datasets (from diverse network enviroments)

• Each generated with a different NetFlow tool

o 4 amounts of data availability (from 100s to 80% of total dataset)

o 2 feature sets (“large” and “small”)

o 6 ML pipelines (single classifiers, ensembles, and even a cascade)

o 4 ML algorithms (no deep learning!)

o 6 Hardware platforms (from a Raspberry Pi4B to an HPC)

We evaluate all of the above in: (i) open-world, (ii) closed-world, and (iii) adversarial settings.

We consider random split and temporal splits.
o We repeat all the random splits 100 times (to compute statistically significant results)

We measure the true positive rate, false positive rate, inference time, training time.
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What we do: (5) Pragmatic Assessment
We showcase how to apply all our guidelines in research.

We do so by re-assessing existing methods for Netflow classification.

We consider:

o 5 well-known public datasets (from diverse network enviroments)

• Each generated with a different NetFlow tool

o 4 amounts of data availability (from 100s to 80% of total dataset)

o 2 feature sets (“large” and “small”)

o 6 ML pipelines (single classifiers, ensembles, and even a cascade)

o 4 ML algorithms (no deep learning!)

o 6 Hardware platforms (from a Raspberry Pi4B to an HPC)

We evaluate all of the above in: (i) open-world, (ii) closed-world, and (iii) adversarial settings.

We consider random split and temporal splits.
o We repeat all the random splits 100 times (to compute statistically significant results)

We measure the true positive rate, false positive rate, inference time, training time.

(Source code available at https://github.com/hihey54/pragmaticAssessment)
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Let’s talk about Hardware…

Hardware is largely neglected in past research.
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Let’s talk about Hardware…

Hardware is largely neglected in past research.

• Some do not provide any hardware specs

• Interestingly, some report the runtime without specifying the hardware…

• Most papers report incomplete hardware specs
• Some stated (in 2018) “the CPU is an Intel Core i5”

[A] https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_processors
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Let’s talk about Hardware…

Hardware is largely neglected in past research.

• Some do not provide any hardware specs

• Interestingly, some report the runtime without specifying the hardware…

• Most papers report incomplete hardware specs
• Some stated (in 2018) “the CPU is an Intel Core i5”

[A] https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_processors

Reporting the complete specifications can 
determine the “winner” among 2+ ML methods
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REMARK

We do a massive re-assessment, but not all 
research must do all of what we suggest
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TAKEAWAY

We want to see our research have a 
better impact to the (practical) real world.

In our user-study with practitioners, we asked a final question:

“In general, do you think that research papers facilitate the practitioners’ job in 
determining the real value of the proposed ML methods?”

o 92% are “uncertain”

o 8% are “left with more questions than answers after reading a research paper”

mailto:giovanni.apruzzese@uni.li
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