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Abstract—Pivoting is a technique used by cyber attackers to
exploit the privileges of compromised hosts in order to reach
their final target. Existing research on countering this menace is
only effective for pivoting activities spanning within the internal
network perimeter. When applying existing methods to include
external traffic, the detection algorithm produces overwhelming
entries, most of which unrelated to pivoting. We address this
problem by identifying the major characteristics that are specific
to potentially malicious pivoting. Our analysis combines human
expertise with machine learning and is based on the inspection
of real network traffic generated by a large organization. The
final goal is the reduction of the unacceptable amounts of false
positives generated by the state of the art methods. This paper
paves the way for future researches aimed at countering the
critical menace of illegitimate pivoting activities.

Index Terms—Pivoting, Lateral Movement, Machine Learning,
Flow Inspection, Intrusion Detection

I. INTRODUCTION

Despite the many advances in cybersecurity, the reality is

that existing systems are continuously breached. Motivated

attackers increasingly refine their strategies, and no enterprise

network can consider itself absolutely secure [1]. At the base

of many offensive campaigns is the technique of pivoting,

which allows attackers to exploit the privileges of compro-

mised hosts to reach their final target. As an example, consider

a network that can be accessed only through a VPN server:

by compromising this server, it is possible for an external

attacker to access every host in the given network. Detecting

these occurrences would prevent the attackers from expanding

their control in the target network (i.e., lateral movement)

to accomplish their objective. Hence, stopping the malicious

pivoting activities early in an attack campaign is of paramount

importance for the security of modern organizations.

Despite the critical role of pivoting detection, there is

limited prior work tackling this problem. To the best of our

knowledge, the only existing approach [2] is effective only for

pivoting activities that originate within a network. In fact, we

empirically apply this method on traffic coming from external

networks and found that over 99% of the “detected” pivoting

samples are not pivoting at all. This outlines a crucial problem

in state of the art, as pivoting activities can span over multiple

networks—which is especially true in recent times with an

increase of remote network accesses [3].

This paper addresses the issue of pivoting detection. We

provide a detailed study that serves as a basis to decrease

the amount of “false” pivoting activities detected by means

of the existing approach. We do not make any assumption on

the location or protocol involved for the pivoting activities,

and the only requirement is NetFlow analysis. To formalize

the scope of our work, we pose the following three research

questions which we shall answer:

1) Which phenomena are similar to pivoting?

2) Which NetFlow features are intrinsic to pivoting?

3) How to automatically reduce false positives?

Our proposal combines human expertise with machine learn-

ing methods. By manually inspecting the output of prior work

on real traffic data, we determine which ‘candidates’ represent

true pivoting activities. Then, we infer which traits are more

typical of true pivoting activities with respect to noisy results.

Finally, we combine our findings with machine learning to

identify features and feature combinations that are intrinsic to

true pivoting and the weight they should have in true pivoting

detection.

Our paper paves the way to more efficient and automatic

methods that can reliably detect pivoting occurring within

or originated beyond a given network. The remainder of

this paper is structured as follows. Section II compares this

paper with related works. Section III describes the application

scenario. Section IV presents our method. Section V is devoted

to the experimental evaluation, and conclusions are drawn in

Section VI.

II. RELATED WORK

Although many advanced cyberattacks exploit the technique

of pivoting (e.g., [4], [5]), we highlight the scarcity of pro-

posals that focus specifically on the detection of malicious

pivoting activities. Among the first efforts is the seminal work

by Valeur et al. [6], which leverages the correlation of alerts

generated by an Intrusion Detection System (IDS): the prob-

lem of this approach is that it requires the triggering of alerts

(as also done in [7]), whereas we operate on raw NetFlows [8].

A related area investigates malware propagation [9] by detect-

ing anomalous communication spikes, but their effectiveness

in large networks requires scenarios where hundreds of hosts

are involved – whereas typical pivoting activities span over

just a few selected devices. Some papers focus on pivoting

prevention by means of game-theory [10]–[12], but require the

complete restructuring of the entire network, and the attacker

may just deviate from the designed model to easily evade the

countermeasure. The proposal by Fawaz et al. [13] operates978-3-903176-32-4 ©2021 IFIP
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on host-based data (similarly to [14]), which are prone to

manipulation by an expert attacker that is already controlling

some devices in the target network. A relevant study is the one

in [15] where graph-analytics techniques are applied to detect

malicious logins on individual machines, which cannot be used

to model pivoting activities because they span over multiple
hosts. The works in [16], [17] conceptualize pivoting attacks

but do not propose any original detection approach. Finally,

pivoting attacks can be detected as a side effect, but only when

performed through specific services, such as RDP [18].

In summary, with respect to state of the art, our paper

focuses on the detection of pivoting activities occurring any-

where in a given network. Our proposal is based just on Net-

Flow inspection. By applying machine learning algorithms, we

aim to reduce the (unacceptably high) rate of false positives.

III. PIVOTING SCENARIOS

We describe the concept of pivoting activities and the

intuition of existing pivoting detection methods, which form

the base of our analysis.

A. Pivoting Activities

Pivoting leverages the idea of using machines with priv-

ileged characteristics (e.g., the entry point of a network,

or dedicated ACL) to “connect” two hosts that would be

otherwise unreachable. Pivoting activities involve three actors:

the source (S), the pivoter (P ), and the target (T ).

We provide an example in Figure 1, representing a typical

setting where an organization network is accessible from the

Internet through an entry point host. In this context, remote

users (Sb or Sm in Figure 1) can access the network by

“pivoting” on such a host (P in Figure 1), which serves as a

stepping stone to reach the organization’s internal services (Tx

in Figure 1). As a consequence, all communications between

the remote users (the source) go through the pivoter host,

which forwards them to the final target. This workflow is

reversed when the target sends its responses back to the

corresponding source. It is obvious that such activities are not

malicious by definition. On the contrary, in such a situation,

(legitimate) pivoting activities are “expected” to happen.

Pivoting activities can span over more than three hosts,

which would represent scenarios with multiple pivoters. With-

out loss of generality, in the remainder of this paper, we focus

only on pivoting activities involving three hosts, as all results

can be easily extended to cover cases with longer pivoting

chains.

B. Existing Pivoting Detection Algorithm

Apruzzese et al. [2] proposed an algorithm that leverage

temporal graph-analytics to detect pivoting by analyzing Net-

Flow records. This data-type captures high-level information

on the network communications between two hosts, such as the

start of the transmissions and their duration and the amount of

exchanged bytes or packets. At the base of this algorithm are

two main intuitions that are used to model pivoting activities:

(i) all communications between S and T must go through P ;

Organization
Internal Network (Tx)

Malicious
External host Sm

Benign
External host Sb

Entry-point
(pivoter, P)

Figure 1. Depiction of pivoting.

and (ii) P forwards the communications to T after receiving

the communications from S. Hence, by modeling this time

constraint as a function of ε, it is possible to model pivoting

activities as “pairs of NetFlows linking S with P , and P with

T , that are separated by at most ε time units”. By optimally

tuning ε, such formalization was applied in [2] to detect

pivoting activities occurring in an internal network, obtaining

perfect accuracy as all results were indeed related to pivoting

activities.

However, we claim that this approach is not feasible when

considering external traffic. In such circumstances, the pivoter

host would receive millions of incoming connections from

thousands of external hosts in very short time frames. As

a consequence, even by considering very small values of ε,

the algorithm would output a considerable number of false

pivoting activities.

C. Preliminary Findings

We validate the infeasibility of [2] by applying their al-

gorithm to a real use case. We consider real network traffic

data on the Masaryk University campus, consisting of 23 GB

of NetFlow data collected throughout one working day. The

traffic includes both external and internal hosts. We run the

existing algorithm on this data by setting ε = 1 second, and we

obtained 90 774 pivoting activities. After manual inspection,

we determined that only 13 of these were true pivoting

activities, with a false positive rate of over 99.99%.

Such result confirms the crucial problem at the base of

our work, which we address in the next sections. Given the

unreliability of the results, in the remainder of this paper, we

will refer to the output of the detection algorithm as “pivoting

candidates”.

IV. METHODOLOGY

We aim to answer the three research questions posed in

Section I. We do so by looking at the resulting pivoting

candidates produced after the application of the algorithm

in [2] and using expert knowledge to determine which of

these pivoting candidates are actually pivoting. Then, we

inspect the true pivoting activities, and we try to discern

which characteristics captured by network flows could be used

to differentiate them from the false positives. This protocol

is typical in cybersecurity-related analyses [19]. Let us first

summarize our implementation of the algorithm.
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The NetFlow collector of the considered network is set

to produce only unidirectional flows. Hence, we had to

convert these data into their bidirectional version (which is

an assumption of [2]). To accomplish this task we rely on

nfdump1. Only the flows with the duration and the number

of transferred packets and bytes in both directions bigger

than 0 are considered. We consider, in this work, pivoting

activities must have bidirectional communications, i.e., T has

to respond to S. Finally, we reorder the flows according to

their timestamp. We do not apply any additional filtering;

therefore, communications over all protocols and port numbers

are considered.

The pivoting candidate detection follows the algorithm from

[2]. Each flow f with a timestamp t is checked against all

the flows with the timestamp between t and t + ε, where ε
is the maximal command propagation delay tolerated by the

detection algorithm, in our case 1 second. This produces a set

of flow pairs. Then, each pair of flows (f1, f2) is considered

as a pivoting candidate if:

• the destination IP address of f1 is also the source IP

address of f2,

• destination IP address of f2 is not the source IP address

of f1,

• protocol and destination ports are the same for both f1
and f2.

The last criteria on the same protocol and destination ports

are motivated by the expectation that the same service, e.g.,

SSH, is used in S to P and P to T connections.

The execution of such implementation of the algorithm

yields 90 774 pivoting candidates.

A. Discovery of phenomena similar to pivoting

To answer the first research question, we need to inspect the

pivoting candidates and identify which candidates represent

potential pivoting activity and which represent other events.

We will use manual inspection of the candidates and expert

knowledge of network traffic and the environment. The manual

inspection is going to be highly situational and may rely on

the insider’s knowledge of the network.

The first features we are going to investigate are the destina-

tion ports and protocols, which are the same in both flows that

form a pivoting candidate. This would allow us to associate

pivoting candidates with network services and applications.

We expect to see potentially interesting samples on TCP ports

22 (SSH), 23 (Telnet), and 3389 (RDP), which are mostly

used for both benign and malicious remote access to network

hosts. Some network applications may display similar behavior

as pivoting, such as an SMTP during receiving and relaying

an email. In case we encounter pivoting candidates using such

ports and services, we will investigate if it is a suspicious

behavior or a common behavior of such a service.

The second feature we are going to inspect is the IP

addresses involved in a candidate event. Namely, we are

interested in the location of the actors, e.g., if it is in the

1https://github.com/phaag/nfdump

private or public network of an organization or elsewhere the

Internet. Our assumption is the true pivoting does not involve

all the actors from the same network. The prime example of

true pivoting involves a source from the Internet, pivot in the

public network of an organization, and target inside such a

network, as presented in Section III. Thus, we will check

the locations of the actors and inspect the directions of the

suspected pivoting activities.

B. Manually identifying intrinsic features

The discovery of phenomena similar to pivoting should

eliminate candidates that are explainable as a different activity

than pivoting but does not improve our understanding of

pivoting. In the next step, and to answer the second research

question, we need to identify the features of pivoting activity

that can be inferred from the candidates but are not reflected

in the existing detection method.

We will investigate the features discussed in the previous

subsection, this time with respect to the candidates appearing

to be true pivoting activities, such as the candidates with the

expected services and actor’s location. Subsequently, we will

count the occurrences of each IP address in the candidates

to check for frequent talkers and isolated events. Frequent

actors and their combinations may suggest a common non-

pivoting activity, and, thus, true pivoting is expected to be more

likely found in isolated events, i.e., candidates with rather a

unique set of actors. Finally, an interesting feature to focus

on is the volume and the duration of the transferred data. If a

true pivoting propagates a command or data, it should display

similar NetFlow features, such as the number of bytes and

packets transferred and the duration of the flow.

Our experiences and expectation in identifying suspected

pivoting activities suggest the following critical features:

• S, P, T Count are the numbers of pivoting candidates

that share the same S, P , or T (e.g., the pivot count of

a candidate X is the number of candidates in which the

pivot’s IP address is the same as in X, including X).

• S, P, T Locations is the label given to IP addresses

that describes their location with respect to the monitored

network. The ’Private’ tag is assigned to privately routed

IP addresses in the network (e.g., 10.0.0.0/8), the tag

“Public” or “Internal” is given to publicly addressable IP

addresses of the monitored network (e.g., 147.251.0.0/16

for Masaryk University network), and the tag “External”

is given to all the other IP addresses.

• Duration, In/Out Packets, In/Out Bytes, Flows ratios
are the ratios of the biflow feature values. The value of

each feature in the first biflow (source to pivot) is divided

by the value in the second flow (from pivot to target).

C. Automatically identifying intrinsic features

Our research here is to move the time-consuming prac-

tices towards a generalizable machine learning approach. The

contextually meaningful features that we identify are being

examined with statistical correlation and Principal Component

Analysis (PCA) methods. Using the Kaiser criterion, we will
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select the principal components with eigenvalue > 1 and set

the number of principal components needed to identify true

pivoting. The eigenvectors of the principal components will

illustrate the weight of the candidate features in the process.

Further, the Pearson linear correlation coefficient calculates

the covariance of two vectors and divides them by the product

of their standard deviations ρx,y = cov(x,y)
σxσy

. The result is

a number ranging from −1 ≤ ρx,y ≤ 1, which represents

the strength and direction of the correlation between the

two vectors. By determining the Pearson correlation between

attributes and the label, we can better understand which

individual features may be indicative of suspected true pivoting

flows.

V. EXPERIMENTAL RESULTS

Herein, we present the results of the experiment. First, we

comment on the measurements and candidate detection. The

findings of manual inspection of pivoting candidates follow.

Subsequently, we present the results of principal component

analysis and comment on feature correlation.

A. Pivoting Candidate Detection

The experiment took place in the campus network of

Masaryk University that uses NetFlow probes located at vari-

ous observation points. The hosts in the campus network use

mostly public IP addresses (/16 IPv4 and /48 IPv6 range),

but certain infrastructures are addressed by private IPv4 range

accessible only from within the campus network. We used the

NetFlow [8] data from a probe located near a server segment,

where we expect to capture the most interesting examples of

pivoting, namely the pivoting from public to private IP range

and vice versa with servers as pivots. The network traffic of

personal computers connected to the university’s VPN and Wi-

Fi is also visible to the NetFlow probe and, thus, we also have

a chance to inspect the behavior of personal computers in the

network.

B. Investigation of Pivoting Candidates

The HTTP(S) traffic is dominant and deserves further inves-

tigation. We found 133 pivoting candidates on SSH, which is

one of the services we expected to display pivoting characteris-

tics that could be malicious and is worth detailed investigation.

Unfortunately, no pivoting candidates were found with the

TCP port 3389, on which the RDP service is running. Probably

there were no RDP servers active in the monitored network

segment at the time of the measurement. The other destination

ports indicate legitimate traffic that is similar to pivoting. The

discussion on particular ports and services follows. We did

not find any pivots that would enable pivoting on more ports

simultaneously. We only found ten cases in which the pivoting

candidates differed only in the protocol used; the actors used

port 51413 over both TCP and UDP.

A large portion of pivoting candidates was observed on

ports that would indicate explainable, benign network traffic

that only resembles pivoting and, thus, could be considered as

false positives. First, we observed a number of pivoting-like

Table I
TRUE AND FALSE POSITIVE PIVOTING CANDIDATES.

False positives
HTTP(S) 70,312
other services - DNS, SMTP, NTP 12,714
p2p - BitTorrent, VoIP, online gaming 7,615
SSH 120

True pivoting SSH 13
Total 90,774

events in which known servers acted as pivots. Namely, in the

DNS and SMTP traffic, we can see traffic patterns similar to

pivoting. In DNS, a server receives a request from a client,

and if an appropriate record is not found at the server, the

server queries a different server. In SMTP, a server receives

an email from a client and relays it to a different server. Both

activities are very similar to pivoting and are correctly detected

by the detection method. However, they are very common, and

no suspicious candidates were found. Thus, we can proclaim

such candidates as benign. Second, we found a number of

candidates in which only the personal computers served as

pivots. Most often, we found a pivoting-like activity on ports

associated with BitTorrent and online gaming. In such cases,

a host running a BitTorrent client or an online game initiates

and receives a lot of connections at the same time, which

may be detected as pivoting. The NetFlow characteristics

of such activities are very similar to pivoting. However, no

suspicious candidates were found, and the candidates may

be proclaimed as false positives. The same also applies to

VoIP, instant messaging, NTP, and other services based on

p2p communication, which were also detected, but mostly

with only a few candidates or pivots. The NAT traversal on

UDP port 4500 enables the host connected to VPN to use

p2p or VoIP and, thus, should be mentioned here as well.

Finally, we identified a number of pivoting candidates and

corresponding ports that are not easily explainable, mostly

because the port number, e.g., 15001, is not well known. In

such cases, often only one pivot and a few hosts in the campus

network were involved in such traffic patterns, and, thus, it is

most likely a legitimate network service. Some of the pivots

were identified as back-up servers, cloud management servers,

and other legitimate services. Such candidates can also be

proclaimed as benign or false positives.

When analyzing pivoting candidates that used TCP port 22

(SSH), we identified seven distinct pivots, 3 benign and 4

suspicious. Each benign pivot initiated a connection with only

one other known host, e.g., a back-up machine or a GitHub

repository. Such connections appeared throughout the day and

were often long-term. Thus, any incoming connection (e.g., a

one-time brute-force password attack from the Internet) to a

suspected pivot could cause the detection algorithm to connect

it to a long-term activity and regard both flows as pivoting. The

true pivots either appeared to be pivoting a connection from

the Internet via the campus network to another host on the

Internet or from the campus network via a host on the Internet

to the campus network. We found 13 pivoting candidates with

4 unique pivots like this and used them as examples of true
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pivoting. We can infer a heuristic out of these observations -

a true pivoting activity is the one in which the pivot and the

remaining actors are from different parts of the network (e.g.,

internal network and the Internet).

The candidates using HTTP(S) seem to be mostly benign

and can be explained as common benign behavior of the

protocol. The actors, namely pivots and targets, are mostly

well-known HTTP(S) servers from the campus network or

world-wide. However, due to the prevalence of HTTP(S)

traffic in today’s network and its popularity among users and

attackers, it is not reasonable to declare it all as benign.

Malicious pivoting activity may use HTTP(S) ports either in

relation to a web-based attack or as the primary choice of

an attacker when bypassing firewalls. Thus, we recommend

further investigation as future work, possibly using an auto-

mated method due to the number of candidates. Further, the

extended NetFlow monitoring with HTTP header parsing [20]

or TLS analysis [21] might be helpful in identifying true or

even suspicious pivoting.

C. Feature Correlation for Suspicious Flows

The linear correlation between numerical features and the

suspicious label was measured to investigate if any individual

attributes are possibly related to whether a flow is suspicious or

not. Figure 2 shows the absolute value of Pearson measure-

ments for a selection of attributes, representing the strength

of correlation between each individual attribute and the label.

Target and pivot counts as well as Duration12 show a strong

correlation, though these are the only notable examples. All

other numerical attributes have very weak correlations similar

to InPackets23 and OutBytesRatio. It must be noted, though,

that it is not expected that the individual attributes would

have strong linear relationships to the label. The categorical

attributes may also play a critical role in predicting suspicious

flows. There should also exist relationships between groups of

attributes that more strongly relate to a flow being suspicious.

PCA can give a deeper understanding of the overall feature

space by finding such relationships.

D. Principal Component Analysis

We used the SSH pivoting candidates and processed them

using the Principal Component Analysis (PCA). This is a

known machine learning method that is appreciated for the

analysis of network traffic [19], [22].

Out of all the port numbers and services, the SSH can-

didates were the most suitable for investigating which are

false positives and which could be true pivoting (benign or

malicious). Out of 133 candidates, 13 were marked as True

and the remaining 120 as False, following the investigation

discussed previously. We run PCA using the features listed in

Section IV-B and the “suspicious” flag as the target.

Using the cumulative proportion, we determine the amount

of variance that the principal components explain. With future

analyses in mind, we want to have at least 90% of the variance

2Duration of the candidate’s first flow.
3InPackets value of the candidate’s second flow.

0 0.2 0.4 0.6 0.8

Duration1

OutBytesRatio

InPackets2

PivotCount

TargetCount

Figure 2. Bar Chart Showing Pearson Linear Correlation Coefficient Between
Suspicious Label and Attributes.

explained, which corresponds to five principal components.

Similarly, using the Kaiser criterion (selecting principal com-

ponents with eigenvalues > 1), we get the same result. The

eigenvalues and eigenvectors are presented in Table II.

PCA shows several interesting associations of principal

components with features. The most apparent is the positive

association with “Internal” S and T and “External” pivot in

the first vector. The second vector shows negative associations

for the combination of “External” S and T and “Internal” P ,

which suggests that both combinations are interesting. There

is also a strong negative association with “count” features,

namely with P count and T count. The “ratio” features did

not show any strong associations except for a few values in

the second and third vector. However, that might be caused

by the low number of true positive candidates we were able

to collect. Nevertheless, the “location” and “count” features

turned out to be highly interesting.

VI. CONCLUSIONS

Accurate detection of pivoting activities is of paramount

importance to protect modern network environments. Existing

proposals work only under specific circumstances and cannot

be reliably applied in realistic settings, generating overwhelm-

ing numbers of false positives. This paper addresses this

issue. We perform a comprehensive analysis of the results

obtained by applying state of the art methods, with the goal

of identifying a practical and effective way to automatically

reduce the number of false pivoting detections. We do so by

formulating and answering three research questions.

First, we focus on networking activities that are similar to

pivoting and may raise false positive alerts. It was shown

above that various p2p networking (e.g., BitTorrent) and

several common protocols (e.g., SMTP, DNS) display similar

characteristics as pivoting and also represent the vast majority

of the detected candidates. True pivoting occurs only with the

SSH traffic. Unfortunately, we did not observe any Telnet or

RDP traffic that could also include pivoting. Then, we focus

on identifying the unique traits exhibited by true pivoting

activities. We show that the most significant traits include the

location (e.g., inside or outside the monitored network) and
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Table II
EIGENVALUES AND EIGENVECTORS OF PRINCIPAL COMPONENTS.

Eigenvalues
Eigenvalue 4.15755 2.36467 2.00138 1.36928 1.07673 0.86379
Proportion 0.34646 0.19706 0.16678 0.11411 0.08973 0.07198
Cummulative 0.34646 0.54352 0.7103 0.82441 0.91413 0.98612

Eigenvectors
S location=Internal 0.4271 -0.2369 0.0053 0.2051 0.1684 -0.155
S count -0.2547 -0.3806 -0.005 0.1136 0.3858 0.3973
P location=External 0.4271 -0.2369 0.0053 0.2051 0.1684 -0.155
P count -0.4106 -0.0511 0.0033 0.3107 0.3059 -0.2268
T location=Internal 0.4271 -0.2369 0.0053 0.2051 0.1684 -0.155
T count -0.3988 -0.0586 0.0035 0.3204 0.3281 -0.269
Duration ratio -0.068 0.2496 0.0036 0.5616 -0.4721 -0.3759
In Packets ratio -0.0811 -0.285 -0.6018 -0.0888 -0.1743 -0.113
Out Packets ratio -0.145 -0.4729 0.342 -0.1523 -0.2855 -0.182
In Bytes ratio -0.0787 -0.2516 -0.6247 -0.079 -0.1436 -0.1146
Out Bytes ratio -0.1482 -0.461 0.3611 -0.1522 -0.2767 -0.1846
Flows ratio 0.0029 -0.1943 -0.0049 0.5346 -0.3646 0.6418

the uniqueness of the actors (i.e., how often they appear in

the detected candidates). Finally, to facilitate the reduction of

false positives, we apply PCA to automatically infer the true

pivoting features.

Our findings pave the way to future work, where we aim

to create an efficient detector of pivoting candidates. Such a

detector would allow the development of more refined methods

to counter the threat posed by malicious pivoting activities to

modern organizations.
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