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A B S T R A C T

Adversarial samples mostly aim at fooling machine learning (ML) models. They often involve minor pixel-based
perturbations that are imperceptible to human observers. In this work, adversarial samples should fool both
humans and ML models, which is important in two-stage decision processes. We perform changes on a higher
abstraction level so that a target sample exhibits properties of a desired sample. Technically, we contribute
by deriving a regularization scheme for autoencoders incorporating a classifier loss for smoothly interpolating
between wildly different samples. The realism and effectiveness of generated samples are confirmed with a
user study and other evaluations. Our experiments consider neural networks of four architectures, assessed on
MNIST, FashionMNIST, QuickDraw and CIFAR-10. Results show that our scheme leads to superior performance
compared to existing interpolation techniques: on average, other methods have an 11% higher failure rate when
producing a sample that is of any of two interpolated classes. Furthermore, our attacks work in both white-
and black-box settings.
. Introduction

Attacks based on adversarial samples (AS) are a key security threat
or machine learning (ML) models. The most common goal of ‘‘classic’’
S is to mislead the ML model while being invisible to a human
bserver [3]. Such samples are commonly produced through minimal
hanges of an ordinary, non-adversarial sample. Many methods to
chieve this goal have been proposed (for surveys, see [4–6]). The
cope of our paper is different: we aim to mislead the human as well
or only the human) by applying larger (and ‘‘visible’’) changes to our
S. This scenario has received much less attention [7,8]. It is highly
elevant in a two-stage decision process that involves both a human
nd an ML classifier. For instance, an online merchant might upload an
tem for sale to an online platform. The platform might employ artificial
ntelligence (AI) methods, such as ML models, to derive information
rom the image of such an item; e.g., for cars, it might compute a
rice estimate, or assign the car to a specific category.1 In turn, a
uman (i.e., a potential customer) might search the online platform –
hereby looking at the same input image provided to the ML model –
nd make a purchasing decision that might at least partially be based
n the image.2 A malicious merchant – i.e., an attacker – might aim
o simultaneously mislead (a) the ML model so that the item for sale
s assigned a more favorable category, and (b) the human to make
er buy the item. The attacker might walk a thin line between legally
ermissible nudging (common in marketing [9]) and illegal forms of

∗ Corresponding author.
E-mail addresses: johannes.schneider@uni.li (J. Schneider), giovanni.apruzzese@uni.li (G. Apruzzese).

1 E.g., for Mercedes Benz see https://group.mercedes-benz.com/careers/about-us/artificial-intelligence/for-nerds/pricing.html.
2 Of course, the user can use also other data sources to make her decision, but images tend to be the most relevant one [1,2].

deception. However, central to our work is that the attacker produces
samples analyzed by humans and AI and should mislead both. For
example, when selling a piece of clothing, an attacker might aim to
make it appear more fashionable and newer than it actually is so that an
AI classifies it as ‘‘looks new’’ and a human also judges it to be in good
condition. Similar examples are also plausible in other contexts, such
as sales of artwork or online dating, where people aim to attract the
interest of others by ‘‘enhancing their samples’’ or adjusting to current
trends, or appearing more like another artwork or a particular person,
i.e., slightly change their photo to look like their favorite movie star.

In this work, we aim to shift (by applying an adversarial per-
turbation) a given original sample towards a target sample chosen
by the attacker: the generated AS should be similar to the original
sample but exhibit properties of the target sample. In Table 1, we show
the four options that result from fooling: a human, an AI, both, or
none (in a classification context). Generally, we aim for an aligned
decision process between humans and AI. That is, if a human shows
some uncertainty on the class of a sample, so should the classifier
(and vice-versa). In other words, either the classifier and the human
are confused, or neither. Practically, we might still aim that only the
classifier predicts the wrong class, while the human at least shows
uncertainty about the correct class (and vice-versa).

To generate AS, we use an autoencoder (AE) with regularized latent
space. While regularization of latent spaces is common, we are among
214-2126/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
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Table 1
Cases in which AS aim to fool humans and/or AI.

Should be fooled? Human

Yes No

AI Yes This work Classic AS
No This work No fooling

the first (to the best of our knowledge) to explicitly aim at ensuring
a gradual interpolation between two samples that aims to be ‘‘class-
preserving’’: an interpolated sample (i.e., the AS) should appear to be
of the class of either (a) the original or of (b) the target sample. As we
will experimentally show, such a condition is commonly violated for
plain AE and other methods [10]. That is, interpolating between two
classes might yield samples of a third class that is undesirable by the
attacker. In short, we make the following contributions:

• We tackle an understudied problem: Generating AS that is per-
ceived similarly by a human and a classifier, so that the AS will
fool the human and potentially also the classifier.

• Proposing multiple regularization schemes for generating our
AS—supported by theoretical analyses. Our proposed schemes
outperform existing ones for regularizing latent spaces.

• Evaluating all of the above quantitatively, qualitatively, and with
a user study.

Furthermore, we also publicly release our source code.3

2. Problem statement

We assume an attacker with full knowledge4 of the targeted clas-
sifier 𝐶. For a sample 𝑋, the classifier’s logit layer 𝐿 outputs a value
𝐿(𝑌 |𝑋) for each class 𝑌 . These are turned into a probability 𝑝(𝑌 |𝑋)
(typically with a Softmax layer). We assume that a human 𝐻 can also
classify the sample by producing a probability 𝑝𝐻 (𝑌 |𝑋), which can
reflect the human’s ‘‘confidence’’ on sample 𝑋. The attacker also has
a dataset  = {(𝑋, 𝑌 )}, containing samples and labels5 that stem from
the data distribution used to train 𝐶.

Our goal is to create an adversarial sample 𝑋𝐴 (having class 𝑌𝐴)
that is constrained to be similar to an original sample 𝑋𝑂 (having class
𝑌𝑂) and a target sample 𝑋𝑇 (having class 𝑌𝑇 ); formally, we want that
𝑌𝐴 ∈ {𝑌𝑂 , 𝑌𝑇 }. Additionally, we pursue the following objectives that an
adversarial sample 𝑋𝐴 should fulfill:

(1) Similar probabilities for sample 𝑋𝐴 by both human and classifier :
𝑝(𝑌 |𝑋𝐴) ≈ 𝑝𝐻 (𝑌 |𝑋𝐴). That is, both the classifier and the human
should have roughly aligned judgment of the adversarial sam-
ple 𝑋𝐴. However, they might disagree when forced to make a
precise inference, i.e., choose a class. That is, it is possible that
argmax𝑌 𝑝(𝑌 |𝑋𝐴) ≠ argmax𝑌 𝑝𝐻 (𝑌 |𝑋𝐴).

(2) Being similar to both 𝑋𝑂 and 𝑋𝑇 , controllable by a parameter
𝑏: The adversarial sample 𝑋𝐴(𝑏) should be similar to 𝑋𝑂 and
𝑋𝑇 , e.g., as measured by the 𝐿1-norm or human judgment or
classifier outputs, and, classified as either the original or target
sample class, i.e., argmax𝑌 𝑝(𝑌 |𝑋𝐴(𝑏)) ∈ {𝑌𝑂 , 𝑌𝑇 }. The attacker
should be able to control the similarity by varying a parameter
𝑏 ∈ [0, 1], i.e. 𝑋𝐴(𝑏), where 𝑏 = 0 means 𝑋𝐴(0) = 𝑋𝑂 (i.e., the

3 Available at this anonymous archive: https://drive.google.com/file/d/
OHg8iNJmtycKk2DoG3-9LUXfy9oX4JPq/view?usp=sharing.

4 Such an assumption is becoming increasingly more realistic because
ultiple ML models are now open-source (e.g. [11,12]). However, we also

successfully) assess black-box scenarios by exploiting the transferability
roperty of AS [13].

5 Labels are non-essential since the attacker can also use the classifier 𝐶 to
2

btain less accurate labels.
AS is equal to the original sample) and 𝑏 = 1 means 𝑋𝐴(1) = 𝑋𝑇
(i.e., the AS is equal to the target sample).

Thus, we aim at fulfilling objectives (1) and (2) with a function 𝑓 given
the above inputs and objectives that produce an adversarial sample
𝑋𝐴, i.e. 𝑋𝐴 = 𝑋𝐴(𝑏) ∶= 𝑓 (𝑋𝑂 , 𝑋𝑇 , 𝑌𝑂 , 𝑌𝑇 ,, 𝑏). Our attack occurs at
inference time, i.e., we do not tamper with the classifier 𝐶.

3. Background and related work

Our paper falls at the intersection of ML security and generative meth-
ds—both of which belong to the broad research domain of ‘‘adversarial
achine learning’’. In what follows, we summarize both of these areas

nd highlight the major differences of our paper with respect to prior
rt.

.1. Attacks against ML

The security of ML has been extensively scrutinized by recent liter-
ture (for surveys, we refer the reader to [4–6,14]). Among the most
iscussed threats to ML are the so-called ‘‘adversarial attacks’’ [15],
hich entail leveraging (small) perturbations that, when applied to
given sample, yield an adversarial sample (AS) that induces an

ncorrect response by the targeted ML model. In this paper, we focus
n attacks that occur at the inference-stage of the ML model (i.e., ‘‘eva-
ion’’ attacks). Prior work showed that such a vulnerability affects
oth ‘‘traditional’’ ML classifiers, as well as those based on deep neu-
al networks [16,17]. There is increasing evidence of AS successfully
ypassing even operational ML systems [18,19].

In this context, several works aimed at understanding or comparing
ifferences in human and machine perception [8,20–22]. The authors
f [8] also aimed to fool humans. They investigated whether AS transfer
o humans by matching the human visual system: humans were shown
for 3 s) the image and binary random masks and had to infer the class
f a sample. Our work has no time constraints and presents samples
n a typical decision setting rather than an artificially constrained
ne. Harrington et al. [22] identified biologically plausible robust
eatures through carefully crafted user studies, while Zhou and Fire-
tone [21] investigated whether humans could recognize AS generated
rom scratch. Such samples typically look very awkward for a human
ut still present similarities to samples of the class, as confirmed by the
tudy.

Harding et al. [23] investigated whether humans could better iden-
ify a targeted or non-targeted AS (focused only on fooling ML models).
alamati et al. [24] created AS to fool an ML model through a black-box
ptimization process, asking humans to select the most indistinguish-
ble samples. Mirsky et al. [25] aimed to fool humans and classifiers
or medical imagery. Their focus is on injecting or removing cancer
rom images, which effectively boils down to adding or removing a
ray-scale circular shape. Thus, there is no notion of a gradual change
etween classes or shift from one sample (original) to another (target):
heir AS are crafted so that any resemblance to the original sample is
ost.

.2. Generative methods

Techniques that can create samples such as generative adversarial
etworks [26] as well as (variational) AE have received a lot of atten-
ion. Both of these techniques can yield high-quality images, e.g., as
hown by NVAE [27] and StyleGAN-XL [28].

Moving within the latent space between two samples is a known
rocedure often employed in the context of eXplainable Artificial Intel-
igence (XAI) [29] to understand classifiers [30] or the latent space of
E. Some works aim to shape the latent space in a particular way. For

nstance, [10,31,32] focused on generating a convex latent distribution.
he motivation is that – in a convex space – any interpolation between

https://drive.google.com/file/d/1OHg8iNJmtycKk2DoG3-9LUXfy9oX4JPq/view?usp=sharing
https://drive.google.com/file/d/1OHg8iNJmtycKk2DoG3-9LUXfy9oX4JPq/view?usp=sharing
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Fig. 1. Outline of our approach. We employ a classifier loss for samples 𝑋𝐴(0) = 𝑋𝑂 , 𝑋𝐴(1) = 𝑋𝑇 and, possibly, 𝑋𝐴(𝑏) for some 𝑏, e.g. 𝑏 = 0.5. The classifier helps to regularize
the AE.
two points of the convex space must be itself in the convex space. Thus,
interpolations should not cross very sparse areas that yield poor re-
constructions, i.e., their goal is that the interpolation between any two
samples yields realistic samples. In our work, we have the additional
constraint (aside from achieving high-quality reconstructions) that the
interpolation between two samples of classes 𝑌𝑂 , 𝑌𝑇 should yield only
samples that are a mix of characteristics of these classes. In other words,
contrarily to us, [10,31,32] allow non-‘‘class preserving’’ transitions
from samples of class 𝑌𝑂 towards a class 𝑌 ′ ∉ {𝑌𝑂 , 𝑌𝑇 } and then towards
class 𝑌𝑇 , e.g., for digits with 𝑌𝑂 = ‘‘1’’ and 𝑌𝑇 = ‘‘3’’, this could be from
‘‘1’’ to ‘‘2’’ to ‘‘3’’, while we aim primarily for moving directly from
‘‘1’’ to ‘‘3’’. Specifically, the authors of [31] used ideas of a VAE-GAN
and a BEGAN, i.e., they added a discriminator in the form of a GAN
to an AE architecture. The work in [32] relied on generative models
based on normalizing flows, proposing a special norm to ensure smooth
linear interpolation. Finally, [10] used an adversarial regularizer for
their adversarial constrained AE Interpolation (ACAI): here, the AE is
trained to fool the critic so that it outputs that no interpolation took
place. In contrast to [10,31,32], our proposed scheme enforces that
the interpolated samples (i.e., the AS) exhibit characteristics of both
original and target samples since we aim to fool both the classifier and
the human. Adding a classifier loss to regularize an AE has been done
before (e.g., to optimize human-AI interaction [33]), but neither to craft
‘‘class-preserving’’ interpolations nor to generate AS.

Similarly to our work, the authors of [7] aimed at potentially fooling
humans and classifiers. They propose to either encode a sample directly
using an encoder of an AE or to encode a sample with a classifier using
activations of some upper layer, reconstruct it from the upper layer
and embed it again using an encoder (from an AE), yielding a latent
representation. The motivation is to strip away information irrelevant
to a classifier. In their work, they alter the original sample towards the
target sample up to some predefined level of distortion. The AS might
or might not fool a classifier and/or human. In our work, we apply a
regularized AE. We distort the original to the maximum extent to not
make the classifier mispredict or just as much to make it mispredict.
Practically, [7,10,31] face the problem that they might not lead to
samples that appear to be from a distinct class—as we show and discuss
in our evaluation and user study (the latter not being included in either
of [7,10,31]).
3

Neural style transfer (see [28,34,35]) allows separating content and
style, so that the style of one image can be transferred to that of
another, e.g., an image of a camera can be altered to appear like a
drawing of an artist. Thus, in typical scenarios of style transfer, images
appear very different from their original In contrast, we generally aim
not only at changing style but also at changing content and focus on
more subtle changes. However, there are certainly scenarios, where
changing either only style or only content might be the goal when
creating adversarial samples.

4. Architecture and method

Our goal is to create an adversarial sample 𝑋𝐴(𝑏) in between an
original sample 𝑋𝑂 of class 𝑌𝑂 and a target sample 𝑋𝑇 of class 𝑌𝑇 .
To do so, we interpolate between both samples in a latent space
stemming from a regularized autoencoder 𝐴𝐸 = (𝐸,𝑅) with encoder
𝐸 and decoder 𝑅 trained on the given dataset . That is, for a given
interpolation coefficient 𝑏 ∈ [0, 1], we obtain the adversarial sample
𝑋𝐴(𝑏) as:

𝑋𝐴(𝑏) ∶= 𝑅(𝑏 ⋅ 𝐸(𝑋𝑂) + (1 − 𝑏) ⋅ 𝐸(𝑋𝑇 )) (1)

Generating high-quality samples 𝑋𝐴 with linear interpolation comes
with multiple challenges. First, samples might not be visually appeal-
ing because the latent space is non-convex. Second, the interpolation
between samples of the two classes 𝑌𝑂 , 𝑌𝑇 might yield a sample more
similar to another class 𝑌 ′ ∉ {𝑌𝑂 , 𝑌𝑇 }, which is against our needs and
problem statement. We address these problems by enforcing that, for a
given adversarial sample 𝑋𝐴, a classifier assigns non-zero outputs for
both classes 𝑌𝑂 , 𝑌𝑇 , i.e., the class of the original sample 𝑋𝑂 and the
class of the target sample 𝑋𝑇 . In the next section, we discuss variants
of our regularized AE in more detail, and then we elaborate on setting
the interpolation coefficient 𝑏. Fig. 1 shows the conceptual outline.

4.1. Regularizing the interpolation

We aim for a smooth transition between the original sample 𝑋𝑂
and the target sample 𝑋𝑇 both visually and in terms of classification,
i.e., from 𝑌𝑂 to 𝑌𝑇 . Thus, we add a loss term to the training objective
of the AE. We use a weighted loss 𝐿𝑇 𝑜𝑡 consisting of up to three loss
terms: (i) a reconstruction loss 𝐿 ; (ii) the cross-entropy loss of the
𝑅𝑒𝑐
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Fig. 2. An AE with optimal encoder ℎ = 𝑢1 ⋅ 𝑥 (and decoder) has lowest reconstruction loss, but it might be impossible or hard for a classifier to classify (autoencoded) samples
optimally. Adding a classifier loss of an optimal classifier, e.g., ℎ = 𝑢2 ⋅ 𝑥, allows trading reconstruction loss for better classification of autoencoded samples.
classifier 𝐿𝑂,𝑇 for 𝑋𝑂 and 𝑋𝑇 ; and (iii) a loss for an AS 𝑋𝐴(𝑏) resulting
from some interpolation coefficient 𝑏. Using a classifier loss seems
reasonable since we are concerned with how a classifier judges the
AS. The reconstruction loss 𝐿𝑅𝑒𝑐 is the standard loss as used for any
AE, i.e., the difference between the generated sample and the original
sample as measured by the L1-norm.

𝐿𝑅𝑒𝑐 ∶= ‖𝑅(𝐸(𝑋𝑂)) −𝑋𝑂‖1 + ‖𝑅(𝐸(𝑋𝑇 )) −𝑋𝑇 ‖1

The classifier loss 𝐿𝑂,𝑇 is given by the cross-entropy loss, i.e., the
logarithm of the predicted probability for the correct class:

𝐿𝑂,𝑇 ∶= − log 𝑝(𝑌𝑂|𝑋𝑂) − log 𝑝(𝑌𝑇 |𝑋𝑇 )

The loss 𝐿𝐴 for 𝑋𝐴(𝑏) is more intricate:

𝑛(𝑌 ′) ∶= min(𝑚𝑌 ′ ,
𝐿(𝑌 ′

|𝑋𝐴(𝑏))
max𝑌 |𝐿(𝑌 |𝑋𝐴(𝑏))|

)

𝐿𝐴 ∶= 𝑛(𝑌𝑂) + 𝑛(𝑌𝑇 ) (2)

The term 𝑛(𝑌 ′) resembles normalized logit-values. We found this to
work better than using the cross-entropy loss based on 𝑝(𝑌 |𝑋). The
cross-entropy loss is relatively large for completely wrong predictions,
i.e. | log 𝑝(𝑌 |𝑋)| becomes large for small 𝑝(𝑌 |𝑋). With the normalized
loss, the change is more gradual. We also perform class-dependent loss
clipping 𝑚𝑌 ′ for 𝑋𝐴. If 𝑋𝐴(𝑏) should be closer to 𝑋𝑂, i.e. for 𝑏 < 0.5,
the value for 𝑚𝑌𝑂 should be larger than that for 𝑚𝑌𝑇 to encourage 𝑋𝐴 to
be classified as 𝑌𝑂 and vice versa for 𝑏 > 0.5. For simplicity, we assess
a variant with only 𝑏 = 0.5 and one where 𝑏 ∈ {0.35, 0.5, 0.65}. The
weights 𝑚𝑌𝑂 , 𝑚𝑌𝐴 for some 𝑓, 𝑚 > 1 are defined as follows:

(𝑚𝑌𝑂 , 𝑚𝑌𝐴 ) ∶=

⎧

⎪

⎨

⎪

⎩

(𝑚∕𝑓, 𝑚 ⋅ 𝑓 ), for 𝑏 = 0.35
(𝑚,𝑚), for 𝑏 = 0.5
(𝑚 ⋅ 𝑓, 𝑚∕𝑓 ), for 𝑏 = 0.65

Thus, 𝑚 specifies the ‘‘base weight’’ of samples 𝑋𝐴 and 𝑓 states how
much the classifier should focus on either class when 𝑏 ≠ 0.5. Finally,
the total loss 𝐿𝑇 𝑜𝑡 is:

𝐿 ∶= (1 − 𝛼 − 𝛽)𝐿 + 𝛼𝐿 + 𝛽𝐿 (3)
4

𝑇 𝑜𝑡 𝑅𝑒𝑐 𝐶(𝑂,𝑋) 𝐴
4.2. Theoretical motivation for classifier loss

We provide rationale using a linear AE for employing a loss term
based on the classifier. In particular, we illustrate that a trade-off
between reconstruction loss and classifier loss can be unavoidable.

AE perform a transformation of inputs to a latent space and then
back to the original input space. This comes with information loss on
the original inputs because reconstructions are not identical to their
originals.

An AE aims to find an encoding vector 𝐸 and a reconstruction vector
𝑅, so that the reconstruction �̂� = 𝑅 ⋅ ℎ of the encoding ℎ = 𝐸 ⋅ 𝑋 is
minimal using the L2-loss:

min
𝐸,𝑅

‖𝑋 − 𝑅 ⋅ 𝐸 ⋅𝑋‖

2

The optimal solution which minimizes the reconstruction loss stems
from projecting onto the eigenvector space (as given by a Principal
Component Analysis—see [36]). Given that there is just a single latent
variable, the optimal solution for 𝑊 = 𝑅 ⋅𝐸 is the first eigenvector 𝑢1.
This is illustrated in Fig. 2 in the upper part with ℎ = 𝑢1 ⋅ 𝑥. However,
this does not allow separating classes perfectly using a linear classifier.
In contrast, the classifier loss is minimal if we use ℎ = 𝑢2 ⋅ 𝑥, since then
we can perfectly separate all samples, i.e., using ℎ > 0 to separate the
‘black’ dots/class from the ‘red’ ones, as depicted in the middle part in
Fig. 2 with ℎ = 𝑢2 ⋅ 𝑥 Thus, training the AE with a classifier loss for a
sample 𝑋 of class 𝑌 , i.e.,

min
𝑅,𝐸

‖𝑋 − 𝑅 ⋅ 𝐸 ⋅𝑋‖

2 −𝑤𝐶 log(𝑝(𝑌 |𝑅 ⋅ 𝐸 ⋅𝑋))

leads to an encoder 𝐸 = 𝑤1𝑢1 + 𝑤2𝑢2 for some weights 𝑤1, 𝑤2 that
depends on both 𝑢1 and 𝑢2 depending on the given weight 𝑤𝐶 of the
classifier loss. This implies a tradeoff between reconstruction error and
classification accuracy, as indicated in the lower part of Fig. 2.

4.3. Determining the interpolation coefficient

For a trained AE, an attacker must still choose an appropriate 𝑏
to construct samples to his liking (see Eq. (1)). Such an operation
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Fig. 3. Illustration of interpolation outcomes and method Max/Min-Perturb. In between
two samples 𝑋𝑂 , 𝑋𝑇 , a reconstructed sample looks very different, potentially being of
a class different from 𝑌𝑂 , 𝑌𝑇 .

is necessary to allow an attacker her preferred similarity of 𝑋𝐴 with
𝑋𝑂 and 𝑋𝑇 . We propose three ways to determine the interpolation
coefficient 𝑏 that also cover the options from Table 1, where the goal
is to fool a human and a classifier. In other words, both a human
and a classifier should always believe that the sample 𝑋𝐴 is of either
class 𝑌𝑇 or 𝑌𝑂. However, in general, this might not hold since samples
might be poorly recognizable. This issue and two proposed methods are
illustrated in Fig. 3.

Let us explain our methods in detail (which depend on 𝑏).

• Max-perturb (MaP): representing the scenario wherein the clas-
sifier should give a correct prediction, but it should still be
uncertain about the true class. To this end, we maximize the
coefficient 𝑏 (large 𝑏 means being closer to the target sample),
while ensuring that the classifier recognizes the sample as being
of the original class, i.e., 𝑌𝑂. Formally:

𝑏𝑀𝑎𝑃 ∶= max
𝑏

(

(argmax
𝑌

𝑝(𝑌 |𝑋𝐴(𝑏))) = 𝑌𝑂
)

(4)

We solve for 𝑏𝑀𝑎𝑃 using simple binary search up to a pre-specified
precision of 𝜖 = 0.001 (see Algorithm 1).

• Min-perturb: representing the scenario wherein the classifier
should give a wrong prediction (with minimal changes). We
choose the minimal coefficient 𝑏 that causes the classifier to
classify a sample as 𝑌𝑇 . Note that Min-perturb is symmetrical to
the Max-perturb with the original and the target switched.

• Fixed: We use a fixed coefficient 𝑏 ∈ [0, 1].

We stress that, in all cases, the human should always be confused—
i.e., she should be uncertain of the true class of the generated AS (which
should be either 𝑌𝑂 or 𝑌𝑇 ).

Algorithm 1 Max-Perturb
Input: Target sample 𝑋𝑇 , original sample 𝑋𝑂, encoder 𝐸, decoder 𝑅,
classifier 𝐶𝑙
Output: Coefficient 𝑏𝑀𝑎𝑃 .
1: 𝑏0 ∶= 0; 𝑏1 = 1 {min/max value for linear interpolation coefficient}

2: 𝜖 ∶= 0.001 {Precision of interpolation coefficient}
3: while 𝑏1 − 𝑏0 > 𝜖 do
4: 𝑏𝑀𝑎𝑃 ∶= 𝑏0+𝑏1

2
5: 𝐸(𝑋𝐴) ∶= 𝑏𝑀𝑎𝑃 ⋅ 𝐸(𝑋𝑂) + (1 − 𝑏𝑀𝑎𝑃 ) ⋅ 𝐸(𝑋𝑇 ) {encoding of

adversarial sample}
6: 𝑋𝐴 ∶= 𝑅(𝐸(𝑋𝐴)) {(decoded) adversarial sample}
7: if (argmax𝑌 𝑝(𝑌 |𝑋𝐴)) = 𝑌𝑂 then 𝑏0 ∶= 𝑏𝑀𝑎𝑃
8: else 𝑏1 ∶= 𝑏𝑀𝑎𝑃
9: end while

10: return 𝑏𝑀𝑎𝑃

5. Evaluation

We now empirically evaluate our proposed method, and corre-
sponding attack. We focus on image classification using convolutional
5

neural networks (CNN). To determine the interpolation coefficient,
we use Max-perturb (if we do not explicitly state a fixed coefficient).
We first describe the goal (Section 5.1) of our experiments, and then
describe the testbed (Section 5.2). We then present our main results
(in Section 5.3, which also includes an ablation study), and conclude
by assessing the transferability of our AS (5.4). We also conduct a user
study, presented in the next section (Section 6).

5.1. Goal

Our goal is to interpolate (smoothly) between samples 𝑋𝑂 and
𝑋𝑇 of potentially different classes 𝑌𝑂 ≠ 𝑌𝑇 . In particular, we want
to ensure that an AS 𝑋𝐴 is of class 𝑌𝑂 or 𝑌𝑇 . While it is relatively
easy to create samples that show small differences to either 𝑋𝑂 or
𝑋𝐴, it is more challenging to generate a more uniform ‘‘mix’’ of both
samples, i.e., samples that could be either of the two classes 𝑌𝑂 , 𝑌𝑇 .
For this reason, we aim to evaluate an AS 𝑋𝐴(𝑏) for an interpolation
coefficient 𝑏 at the transition between the two classes, e.g., shortly
before switching from 𝑌𝑂 to 𝑌𝑇 or shortly after. The coefficient 𝑏𝑀𝑎𝑃
(Eq. (4)) from method Max-perturb fits this purpose. Both humans
and AI judge AS. Any existing metrics cannot perfectly capture human
judgment. Metrics used for generative models focus primarily on the
question of whether a sample stems from the training data distribution.
For example, the well-known Fréchet inception distance (FID) [37]
uses the 2-Wasserstein distance, which in many practical situations
boils down to comparing the mean and standard deviation of the
deepest layer of a neural network such as Inceptionv3. Such metrics
deliberately refrain from computing distances directly on raw pixels,
since generated samples being very different from training samples (but
still belonging to the training distribution) can be seen as a positive
aspect indicating that the model can generate truly novel samples.
Novelty is a necessary condition for creativity [38]. In contrast, in our
case, the generated sample 𝑋𝐴(𝑏𝑀𝑎𝑃 ) is constrained to be similar to
both 𝑋𝑂 and 𝑋𝑇 for both a human observer and a classifier. As such,
differences in pixels play a more profound role. Therefore, we use the
𝐿2-norm and measure the distance from 𝑋𝐴(𝑏𝑀𝑎𝑃 ) to 𝑋𝑂 as well as to
𝑋𝑇 .

𝑑𝐴 ∶= ‖𝑋𝐴 −𝑋𝑂‖ + ‖𝑋𝐴 −𝑋𝑇 ‖ (5)

The 𝐿2-norm can be treated as a proxy for measuring the visual
similarity for both humans and AI. Nonetheless, as a supplementary
form of validation, we also perform a user study to better assess the
human perception of the AS generated with our method.

To measure the ‘confusion’ of the classifier, we compute the output
probabilities for the two desired classes 𝑌𝑂 , 𝑌𝑇 as given by the SoftMax
layer.

𝑝(𝑌𝑂 , 𝑌𝑇 ) ∶= 𝑝(𝑌𝑂|𝑋𝐴(𝑏𝑀𝑎𝑃 )) + 𝑝(𝑌𝑇 |𝑋𝐴(𝑏𝑀𝑎𝑃 ))

Thus, by definition the measure 𝑝(𝑌𝑂 , 𝑌𝑇 ) is in [0, 1]. Ideally, it is 1,
indicating that only the two interpolated classes are relevant for any
interpolated samples. We are also interested in whether the AS yield
a class distinct from 𝑌𝑂 , 𝑌𝑇 for some 𝑏 ∈ [0, 1]. Technically, this can
be done by checking all 𝑏 ∈ [0, 1]. However, this is tedious. We check
only 𝑋𝐴(𝑏), i.e., one 𝑏, that is likely of neither of the two classes 𝑌𝑂 , 𝑌𝑇 .
We use the observation illustrated in Fig. 3 that the transition is smooth
and continuously changing between 𝑋𝑂 and 𝑋𝑇 , i.e., 𝑋𝐴(𝑏) is classified
as 𝑌𝑂 for 𝑏 close to 0 and as 𝑌𝑇 for 𝑏 close to 1. For 𝑏 neither small nor
large, there is largest uncertainty. This is also indicated in Fig. 3. Max-
perturb gives 𝑏𝑀𝑎𝑃 , i.e. the largest 𝑏, which yields a sample 𝑋𝐴(𝑏𝑀𝑎𝑃 )
classified as 𝑌𝑂. Thus, if we investigate the class of 𝑋𝐴(𝑏𝑀𝑎𝑃 + 𝜖) for
a small 𝜖, i.e., we use 𝜖 = 0.0025, then we are likely observing a class
different from 𝑌𝑂 and 𝑌𝑇 . By definition of 𝑏𝑀𝑎𝑃 (Eq. (4)), 𝑋𝐴(𝑏𝑀𝑎𝑃 + 𝜖)
cannot be of class 𝑌𝑂, but only of 𝑌𝑇 or any other class distinct from
𝑌𝑂. If we observe 𝑌𝑇 , then a change to another class 𝑌 ′ ∉ {𝑌𝑂 , 𝑌𝑇 } for
larger 𝑏 is less likely, since 𝑋𝐴 gets closer to 𝑋𝑇 in a gradual manner.

1∉{𝑌𝑂 ,𝑌𝑇 } ∶=

{

1, if argmax𝑌 𝑝(𝑌 |𝑋𝐴(𝑏)) ≠ 𝑌𝑇

0, otherwise
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Table 2
Ablation Study. Results for distance to the 𝑋𝑂 , 𝑋𝑇 are mixed, but for other measures
egularizing with a classifier yields significant improvements. Bold results are best per
ataset, italic is second best.
Data Method 1∉{𝑌𝑂 ,𝑌𝑇 } 𝑝(𝑌𝑂 , 𝑌𝑇 ) 𝑑𝐴

Qu.D. Vanilla AE 0.3±0.01 0.64±0.0 53.06±0.7
Qu.D. ACAI 0.37±0.0 0.62±0.0 50.69±0.0
Qu.D. AE w. O,T 0.21±0.0 0.71±0.0 52.0±0.0
Qu.D. AE w. O,T,M 0.18±0.0 0.75±0.0 52.93±0.0
Qu.D. AE w. O,T,𝑀3 0.15±0.0 0.78±0.0 53.07±0.0

MNI. Vanilla AE 0.23±0.01 0.71±0.0 48.11±0.65
MNI. ACAI 0.17±0.01 0.78±0.01 51.72±0.76
MNI. AE w. O,T 0.16±0.01 0.77±0.01 48.56±0.8
MNI. AE w. O,T,M 0.15±0.01 0.78±0.01 48.61±0.73
MNI. AE w. O,T,𝑀3 0.14±0.0 0.8±0.0 49.26±1.23

Fash. Vanilla AE 0.28±0.01 0.66±0.01 42.36±0.12
Fash. ACAI 0.31±0.03 0.61±0.04 49.12±5.65
Fash. AE w. O,T 0.17±0.0 0.75±0.0 42.31±0.39
Fash. AE w. O,T,M 0.15±0.0 0.78±0.0 42.77±0.35
Fash. AE w. O,T,𝑀3 0.15±0.01 0.79±0.0 42.42±0.36

CIFAR-10 Vanilla AE 0.39±0.0 0.49±0.01 99.57±0.01
CIFAR-10 ACAI 0.4±0.0 0.45±0.01 102.93±0.34
CIFAR-10 AE w. O,T 0.29±0.01 0.55±0.01 101.78±0.2
CIFAR-10 AE w. O,T,M 0.31±0.0 0.55±0.0 99.97±0.34
CIFAR-10 AE w. O,T,𝑀3 0.34±0.02 0.48±0.01 109.52±0.1

5.2. Testbed

Classifiers: We employ four standard classifiers that capture a
iverse set of design options to assess the generation of AS themselves,
.e., a ResNet-10 (Res-10) [39], a MobileNet [40] variant with 11 layers
alled MOB-11, and two variants of VGG [41], i.e., VGG-8 and VGG-
1. We used a VGG-11 for the model 𝐶 to attack. For the encoder,

we used a VGG-8 and for the decoder, a standard architecture with
deconv layers [42]. For details on networks, we refer the reader to
our source code. We use the trained AE to construct AS using Max-
Perturb on classifiers {VGG-8, VGG-11, Res-10, MOB-11} to investigate
transferability.

Datasets: We employ four datasets: Fashion-MNIST (Fashion) [43],
MNIST [44], CIFAR-10 [45], and a subset of 10 classes of Google’s
QuickDraw dataset.6 The use of fashion items as found in the Fashion
dataset and artwork, i.e., human sketches as captured by QuickDraw
has been motivated in the introduction. MNIST supports comparison
since it is commonly used in related works, e.g., [10]. For Quickdraw,
we used the first ten classes beginning with 𝐴, and for each, the first 9k
samples for training and 1k for testing, giving a total of 100k samples.
Fashion consists of 70k 28 × 28 images of clothing stemming from 10
lasses. MNIST of 60k digits objects; CIFAR-10 of 60k colored objects
f size 32 × 32 of 10 classes; The Quickdraw dataset consists of 100k

samples of human sketches of 10 object classes. For all datasets, 10k
samples are used for testing.

Preprocessing: We scaled all images to 32 × 32, performed stan-
dardization, and autoencoded all images using a separately trained
(Vanilla) plain AE to ‘‘smoothen’’ outliers, i.e., isolated data points in
areas of low density that differ strongly from other samples. Gener-
ative models fail in areas with low sample density. Our work is no
exception to this rule. Thus, we acknowledge that transforming very
rare samples is difficult for our method as we also discuss later. For
MNIST, autoencoding makes very little difference since AE tend to
reconstruct all samples almost perfectly. For Fashion it has little impact
for somewhat common samples, but it helps for outliers, e.g., clothes
with a seemingly random dotted pattern cannot be reconstructed well
and are transformed into more common samples through the separate
AE. For such outliers, reconstructions tend to be poor. Thus, they would

6 https://github.com/googlecreativelab/quickdraw-dataset.
6

e

add significant noise to our evaluation, which we aim to avoid. For
CIFAR-10 the impact is most profound, since reconstructions for diverse
colored objects are difficult given only 50k images. For testing, we
permuted the 10k test data of each dataset, and used 5k samples as
𝑋𝑂 and the other 5k as targets 𝑋𝑇 , which resulted in 5k samples 𝑋𝐴
obtaining 𝑏 for each pair (𝑋𝑂 , 𝑋𝑇 ) using method Max-perturb.

Training: We trained on NVIDIA RTX 2080Ti on Ubuntu 20.04
using Pytorch 1.11 and Python 3.9. AE are trained using the Adam opti-
mizer for 160 epochs with batchsize of 128. The classifiers use SGD for
64 epochs starting from a learning rate of 0.1 that was decayed twice
by 0.1. We did 3 runs for each reported number, e.g., we trained all
networks (classifiers, encoders, decoders) 3 times. We show both aver-
ages and standard deviations. The baseline performance on each dataset
matches roughly the state-of-the-art of these classifiers without data
augmentation, e.g., for VGG-8, we achieved a mean accuracy of about
99% on MNIST and for Fashion above 90% and for Quickdraw about
83%. For CIFAR-10, it was lower due to the autoencoding, i.e., about
50% rather than around 80% for VGG-8 without data augmentation.
For ACAI [10], we used the same AE, and as the discriminator the same
encoder as in the AE.7 Trained AE: We trained a Vanilla AE using only
he reconstruction loss, i.e. 𝛼 = 𝛽 = 0 in Eq. (3). We trained an AE
E w. O,T using a classifier loss only for 𝑋𝐴(0) = 𝑋𝑂 and 𝑋𝐴(1) = 𝑏,

.e., 𝛼 = 0.2, 𝛽 = 0 in Eq. (3), an AE w. O,T,M, i.e. 𝛼 = 𝛽 = 0.2, where
stands for also using a classifier loss for interpolation 𝑏 = .5 and,

inally, AE w. O,T,𝑀3, i.e. 𝛼 = 𝛽 = 0.2, where 𝑀3 stands for choosing
niformly at random a 𝑏 ∈ {0.35, 0.5, 0.65} for each batch and applied
hen for each pair (𝑋𝑂 , 𝑋𝐴). For 𝑓 , we used 1.5, and for 𝑚 = 0.2. We
laborate more on the choice of parameters in the discussion.

.3. Results: Ablation study and comparison

In our ablation study, we compare against a Vanilla AE and ACAI
10]. ACAI is similar to our work in that it regularizes an AE using
nterpolated samples using a GAN, while we regularize with a classifier.

e propose and assess multiple variants that might also be beneficial
n other setting such as that of ACAI.
Quantitative Results. Table 2 shows quantitative results of our

blation study.
First, with respect to distance to the original and target sample,

.e. 𝑑𝐴, no method clearly outperforms. The poor performance of ACAI
n Fashion can likely be attributed to a failure in GAN training, i.e., the
tandard deviation for ACAI for the Fashion dataset is fairly large.
owever, even if we remove benchmark results for failed GAN training
f ACAI, the average is not the best for the distance. Regularizing with
classifier (AE w. O,T (M/𝑀3)) clearly outperforms other methods in

erms of producing samples of one of the two considered classes 𝑌𝑂
nd 𝑌𝑇 , i.e., the metrics 1∉{𝑌𝑂 ,𝑌𝑇 } and 𝑝(𝑌𝑂 , 𝑌𝑇 ) are better compared to
CAI and Vanilla AE. This is evident from the low standard deviations

mostly < 0.05), and it is also confirmed by a T-test yielding p-values
1𝑒−3. This holds irrespective of the exact regularization, which

onfirms the effectiveness of our method. For example, other methods
ail on average across all four datasets 30% more often to produce a
ample that is classified as any of two interpolated classes (1∉{𝑌𝑂 ,𝑌𝑇 }).
ne can also observe a trade-off for classifier regulation-based methods.
erforming better on the distance 𝑑𝐴 yields worse performance on the
ther two metrics and vice-versa. This phenomenon raises the question
f whether regularizing only the original and the target sample (i.e., the
implest approach) is the best option. Furthermore, for CIFAR-10 the
istance 𝑑𝐴 for AE w. O,T,𝑀3 is large, i.e., images appear distorted. This
s because the classifier giving feedback to the reconstruction model has
ower accuracy, i.e., a large loss (compared to the other datasets). Thus,
he classifier weight 𝛼 seems very influential. To better understand the

7 Our implementation is based on https://gist.github.com/kylemcdonald/
8ca989584b3b0e6526c0a737ed412f0.

https://github.com/googlecreativelab/quickdraw-dataset
https://gist.github.com/kylemcdonald/e8ca989584b3b0e6526c0a737ed412f0
https://gist.github.com/kylemcdonald/e8ca989584b3b0e6526c0a737ed412f0
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Fig. 4. AS for MNIST for fixed interpolation coefficients 𝑏 ∈ {0.35, 0.5, 0.65}. Red encircled digits highlight difficult to recognize digits and digits appearing from a class different
from the original and target.
Table 3
Sensitivity. Strength of regularization (𝛼) is more important than method used.

Dataset Method 1∉{𝑌𝑂 ,𝑌𝑇 } 𝑝(𝑌𝑂 , 𝑌𝑇 ) 𝑑𝐴

FashionM. AE w. CL(O,T), 𝛼 = 0.2 0.23±0.01 0.7±0.01 42.1±0.32
FashionM. AE w. CL(O,T), 𝛼 = 0.4 0.17±0.0 0.75±0.0 42.31±0.39
FashionM. AE w. CL(O,T), 𝛼 = 0.8 0.13±0.0 0.79±0.01 43.88±0.37
FashionM. AE w. CL(O,T,𝑀3) 0.15±0.01 0.79±0.0 42.42±0.36

QuickDraw AE w. CL(O,T), 𝛼 = 0.2 0.24±0.0 0.68±0.01 52.79±0.83
QuickDraw AE w. CL(O,T), 𝛼 = 0.4 0.22±0.0 0.69±0.01 52.71±0.71
QuickDraw AE w. CL(O,T), 𝛼 = 0.8 0.14±0.01 0.76±0.02 53.13±0.13
QuickDraw AE w. CL(O,T,𝑀3) 0.15±0.0 0.78±0.0 53.07±0.0

MNIST AE w. CL(O,T), 𝛼 = 0.2 0.19±0.0 0.74±0.0 48.44±0.73
MNIST AE w. CL(O,T), 𝛼 = 0.4 0.16±0.01 0.77±0.01 48.56±0.8
MNIST AE w. CL(O,T), 𝛼 = 0.8 0.07±0.01 0.85±0.01 49.76±1.01
MNIST AE w. CL(O,T,𝑀3) 0.14±0.0 0.8±0.0 49.26±1.23

CIFAR-10 AE w. CL(O,T), 𝛼 = 0.2 0.34±0.0 0.52±0.0 99.07±0.13
CIFAR-10 AE w. CL(O,T), 𝛼 = 0.4 0.29±0.01 0.55±0.01 101.78±0.03
CIFAR-10 AE w. CL(O,T), 𝛼 = 0.8 0.28±0.0 0.57±0.0 108.53±0.16
CIFAR-10 AE w. O,T,𝑀3 0.34±0.02 0.48±0.01 109.52±0.1

relevance of 𝛼, we varied 𝛼 for the simplest method, i.e., AE w. O,T,
and found that the achieved trade-offs are comparable to those using
classifier loss for AS. The quantitative results of such analysis are in
Table 3.

From Table 3 it becomes apparent that the exact regularization
scheme for the classifier is not relevant, but the strength 𝛼 has a pro-
found impact on the trade-off between distance 𝑑𝐴 and other metrics.
Thus, the simplest scheme using only a classifier loss for the 𝑋𝐴(0) = 𝑋𝑂
and 𝑋𝐴(1) = 𝑋𝑇 suffices. Regularizing samples in the middle is not
clearly beneficial. One reason could be that a fixed 𝑏 is a too restrictive
constraint, i.e., the transition between two classes does not always
occur at 𝑏 = 0.5 (it might occur for significantly larger or smaller
values). For CIFAR-10 we see that a large 𝛼 = 0.8 can have an adverse
effect leading to a large distance 𝑑𝐴, while a small 𝛼 = 0.2 is beneficial,
i.e., leading to the lowest distance 𝑑𝐴 (even lower than for the Vanilla
AE in Table 2). The issue with large 𝛼 for CIFAR-10 is that since
7

the classifier performance is not as good on CIFAR-10 compared to
other datasets (i.e., it has large losses for samples), the classifier loss
has a very strong impact on the total loss. This can lead to artifacts.
Put differently, the parameter 𝛼 is sensitive to classifier performance.
Artifacts due to classifier loss in combination with AE have also been
observed in other contexts, e.g., in the field of explainability [42].

Qualitative Results. Figs. 4 and 5 show qualitative outcomes for
MNIST and Fashion (QuickDraw and CIFAR-10 samples are in Ap-
pendix).

We discuss MNIST first (Fig. 4). Vanilla AE tends to create difficult
to recognize digits or wrong classes. For example, the leftmost sample
for Vanilla AE in the third row is difficult to recognize (i.e., a 0, 2, and
6 all seem possible). The sample in the middle in the last row appears
more like a 5 than either a 0 or 8, i.e., it is of the wrong class. ACAI
tends to create more recognizable figures but interpolation between
two classes might still yield non-desirable classes. Using a classifier loss
generally yields better results. However, between the classifier loss-
based methods there is no clear winner. The outcome appears to be
more dependent on the total regularization strength as discussed in
the (quantitative) ablation study. Generally, for small weights (for the
classifier loss), our method might also create samples that are hard
to recognize or appear to be of a different class, but this happens
significantly less often as also indicated by the quantitative evaluation.
For large weights for the classifier loss, AS rarely appear to be of an
incorrect class, but might still be poorly recognizable. Furthermore, for
large weights, they appear fairly different from the original.

For Fashion (Fig. 5) reconstructions between classes is more de-
manding. We highlighted samples that are well-recognizable and con-
tain characteristics of both the original and the target. For example, the
shoe in the first row contains the handle (of the handbag) but is still
well-recognizable as a shoe. Similarly, the combination of shirts and T-
shirts highlights that the sleeves are still visible though small, and the
upper part (covering shoulders) appear more pronounced. Most meth-
ods struggle when combining very diverse objects such as a boot and
a pant (fourth row). Such a task is very challenging. The highlighted
sample illustrates that key elements of the boot are preserved, while
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Table 4
Transferability. Using Max-perturb on a trained AE w. O,T,𝑀3 yields effective AS.
Attacked model Metric VGG-8(trained w. AE) VGG-11 MOB-11 Res-10

Fashion
1∉{𝑌𝑂 ,𝑌𝑇 } 0.15±0.01 0.16±0.0 0.22±0.0 0.21±0.01
𝑝(𝑌𝑂 , 𝑌𝑇 ) 0.79±0.0 0.77±0.01 0.71±0.0 0.78±0.01
𝑑𝐴 42.42±0.36 42.46±0.36 42.46±0.44 42.43±0.45

QuickDraw
1∉{𝑌𝑂 ,𝑌𝑇 } 0.15±0.0 0.21±0.0 0.28±0.01 0.22±0.0
𝑝(𝑌𝑂 , 𝑌𝑇 ) 0.78±0.0 0.71±0.0 0.63±0.01 0.78±0.01
𝑑𝐴 53.07±0.0 53.46±0.78 52.92±0.79 53.31±0.72

MNIST
1∉{𝑌𝑂 ,𝑌𝑇 } 0.14±0.0 0.14±0.0 0.15±0.0 0.16±0.0
𝑝(𝑌𝑂 , 𝑌𝑇 ) 0.8±0.0 0.79±0.0 0.79±0.01 0.81±0.0
𝑑𝐴 49.26±1.23 48.77±0.53 48.71±0.53 48.68±0.49

CIFAR-10
1∉{𝑌𝑂 ,𝑌𝑇 } 0.34±0.02 0.34±0.0 0.39±0.01 0.4±0.0
𝑝(𝑌𝑂 , 𝑌𝑇 ) 0.48±0.01 0.48±0.01 0.43±0.01 0.59±0.01
𝑑𝐴 109.52±0.1 109.83±0.32 110.32±0.07 109.55±0.14
Fig. 5. AS for fashion for fixed interpolation coefficient 𝑏 ∈ {0.35, 0.5, 0.65}. Green encircled samples have aspects of both the original and target and are well-recognizable.
relevant attributes such as the separation between legs are also visible
for the pants. Overall, we find that our methods do not only lead to
quantitatively better results but also qualitatively.

5.4. Results: Transferability

The construction of AS is a two-step process: Training an AE, then
generating an AS 𝑋𝐴(𝑏) by choosing an appropriate 𝑏. For transferabil-
ity, we assume that the generator 𝐴𝐸 regularized using a classifier 𝐶 is
fixed. When creating an AS to fool a classifier 𝐶 ′, we allow searching for
𝑏 using black-box access to 𝐶 ′, i.e., we only obtain the predicted class by
𝐶 ′, but no other information such as gradients or output probabilities.
This is motivated by our exemplary scenario, where a user uploads
information to a webpage. The information is first analyzed by an AI.
The user might view the outcome and decide to cancel the process,
e.g., for online sales one might preview a sales ad and decide to edit or
delete it before it is judged by a human. Table 4 shows that our attack
is effective across multiple architectures. For MNIST models appear to
behave similarly, however, note the small standard deviation, i.e., there
are significant differences between the models. The largest challenges
for transfer arose for the QuickDraw dataset. Here the differences
between the model used for training (white-box access) and others are
most profound, especially, when looking at metric 1∉{𝑌𝑂 ,𝑌𝑇 } (0.15 vs.
0.21–0.28), i.e., that a sample 𝑋𝐴 differs form the two preferred classes.
We explain this with the increased complexity of the dataset that also
yields fairly low classifier accuracy compared to the other dataset and,
possibly, larger differences between models.
8

6. User study

To assess the effectiveness of our proposal on humans, we conduct
a user study on Amazon Mechanical Turk (AMT). The purpose of this
study is to answer two research questions (RQ):

RQ1: Are real humans fooled/confused when analyzing the AS crafted
with our method?

RQ2: Can real humans identify the original and target samples that
were used to yield a given AS?

6.1. Survey

To answer our RQ, we create a survey containing 46 sets of 3
questions, in which we ask AMT workers to provide their opinion
on the images generated through our method on the MNIST dataset.
Specifically, each set revolves around a specific adversarial sample
𝑋𝐴 generated using Max-Perturb from samples 𝑋𝑂 , 𝑋𝑇 . An exemplary
representation of a set of questions is in Fig. 6.

In the first question of each set, we show only 𝑋𝐴 (i.e., S in Fig. 6)
and ask whether the digit shown in 𝑋𝐴 represents the number of class
𝑌𝑂, or the number of class 𝑌𝑇 ; the user can respond on a scale between
1 and 7 (where 1 means that they are confident that it is class 𝑌𝑂, and
7 means that it is class 𝑌𝑇 , whereas 4 means undecided). In the second
and third questions, we show the user an image with the adversarial
sample 𝑋 , alongside two samples from class 𝑌 (i.e., A1 and A2 in
𝐴 𝑂
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Fig. 6. Question in user study. Here, the AS 𝑋𝐴 (called 𝑆) was generated via
Max-Perturb by interpolating A2 (original) and B2 (target).

Fig. 6) and two samples from class 𝑌𝑇 (i.e., B1 and B2 in Fig. 6); only
one between A1 and A2, and between B1 and B2, represents the true
original/target sample used to generate 𝑋𝐴. Then, we ask whether 𝑋𝐴
is more similar to A1 or to A2 (second question); and whether 𝑋𝐴 is
more similar to B1 or B2 (third question). For both of these questions,
the user can answer on a scale between 1 and 4 (where 1 means that
𝑋𝐴 is more similar to A/B1, and 4 that it is more similar to A/B2).8
The 46 AS were chosen randomly from all the AS generated via the
Max_perturb technique. Our survey was filled by 32 AMT workers with
a hit rate of over 95% to ensure better reliability; on average, a single
worker took 15 min to finish the survey.

6.2. Findings

We report the results of our user study in Fig. 7. Here, the left plot
shows the distribution of the means for the first question (reflecting
RQ1); whereas the right plot shows the distribution of the means for
the second and third questions (reflecting RQ2).

From these results, we derive the following conclusions.
RQ1: humans appear to be very confused. The average was 4.4 (std:

1.275). Thus, users judged AS neither as being more similar to the
original or target but saw elements of both in them. That is, a T-Test
yielded that with 𝑝 < 1𝑒−5 the mean is larger than 2 and smaller than
6. There is a slight preference for the original, but it is not significant.
This is somewhat expected since samples due to max-perturb should
still be classified as the original but are right at the boundary.

RQ2: humans inferred the correct original/target. The average is 2.84
for A (std: 0.51) and 2.86 for B (std: 0.43). Although there was some
uncertainty, a T-test shows that users picked the wrong original/target
sample better than guessing, i.e., the mean is different from 2.5 (𝑝 <
1𝑒−5).

7. Discussion and future work

We investigated regularizing an AE with a classifier using multiple
variants. Our evaluation yielded that while regularizing with a classifier
is highly beneficial, none of the investigated variants clearly outper-
forms (see Table 2). Overall, using a classifier loss for AS somewhere
in between 𝑋𝑂 , 𝑋𝑇 , e.g. for 𝑏 = 0.5, yielded no clear gain, but added
significant complexity, i.e., hyperparameters 𝛽, 𝑓 , 𝑚 in addition to 𝛼.
In the course of writing the paper, we also investigated various other
hyperparameter settings, e.g., increasing 𝛼 and 𝛽 ∈ [0.05, 0.8] (the
weight of the classifier losses), 𝑚 ∈ [0.05, 1] (the maximal loss per
sample) and 𝑓 ∈ [1, 3] (the weight of the classifier loss for 𝑏 ∈
{0.35, 0.65}). All yielded qualitatively similar effects, i.e., they increase
reconstruction loss but yield better classifiable AS—such a trade-off
can be unavoidable as shown in our theoretical treatment. Even with
significant tuning, the benefits of the more complex schemes across all
datasets were not consistently very large. Thus, the simplest scheme
with a single hyperparameter (𝛼) specifying the weight of the classifier
loss, i.e., controlling the trade-off between reconstruction loss and
classifiability of samples, is likely preferable in practice or at least
as a starting point. We also found that 𝛼 is sensitive to classifier

8 We randomized: the original/target is shown randomly on the left or right;
the correct answer is randomly placed at the first or second position, i.e., 𝐴1
or 𝐴2 (and 𝐵1 or 𝐵2, respectively).
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Fig. 7. Results of our user-study. The left plot reflects RQ1, whereas the right plot
reflects RQ2. Participants could identify original and target samples significantly better
than chance. They were also successfully misled by the AS generated by Max-Perturb.

performance, i.e., for poor classifiers with high loss 𝛼 should be rather
small, since otherwise the influence of the classifier on the generated
samples is too large. Aside from this, future work might build on our
ideas. For example, we argued that fixing 𝛽 ∈ {0.35, 0.5, 0.65} might be
too restrictive. Potentially, selecting 𝑏 in a more flexible way, i.e., using
the method Max-perturb and using 𝑏 over a continuous range might
yield better outcomes (although our preliminary tests did not point in
this direction).

High resolution images:We thoroughly evaluated our approach on
multiple datasets. Still, one might wonder how well it generalizes to
other scenarios, e.g., high resolution images. Our approach primarily
relies on altering the objective function and is not depending on the
architecture of the AE. Thus, we might use a more complex and data-
hungry architecture like NVAE [27] and train it with our objective
function on ImageNet. However, even in this NIPS paper [27] the
authors only trained on 32 × 32 colored images, which took 1700
GPU hours.9 Training on full ImageNet (256 × 256 × 3) would require
more than 100.000 GPU hours. To the best of our knowledge, most
architectures are scalable, e.g., a ResNet works well on MNIST and
ImageNet.10 We propose altering the objective, which is in general less
sensitive than architectural modifications, e.g., L2-regularization works
on essentially any CNN architecture and dataset. Given the current
energy crises and European governments calling to save energy, it is
debatable to what extent an evaluation that very likely does not yield
new insights but would cost a lot of energy should be undertaken.
While we have evaluated on multiple datasets and multiple classifiers,
we acknowledge that for applications requiring high resolution images
the amount of computation can be very large due to the training (and
regularization) of generative models like NVAE. Note that in practice,
an attacker must also get ‘‘data’’ either for training from scratch or fine-
tuning a model. Thus, working with smaller datasets is appealing for an
attacker as well.

Limiting interpolations: Put simply, some interpolations might
be irrelevant to an attacker. Reducing regularization to AS of a few
selected classes might yield better results. One might prioritize the
original and target samples, e.g., by choosing them more frequently
during training of the AE.

Traditional attacks: Our approach seeks to generate samples that
potentially fool both a classifier and a human in a joint optimization
process. Alternatively, samples are produced that fool humans and then
altered so that a classifier is fooled as well based on traditional adver-
sarial attacks. Using traditional adversarial attacks in combination with
other image manipulation techniques has strengths and weaknesses.
For example, we acknowledge that our method struggles if the original
or target sample stem from low density areas, i.e., few similar points

9 70 h on 24 16-GB V100 GPUs as stated in the official repo https://github.
com/NVlabs/NVAE.

10 Also the reviewers at NIPS came to this conclusion when judging and
accepting the NVAE paper.

https://github.com/NVlabs/NVAE
https://github.com/NVlabs/NVAE
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Fig. 8. QuickDraw samples for AE w. O,T,𝑀3.
exist in the dataset. In such a case an AE is likely unable to produce
good samples. A disadvantage of classical attacks is that an image with
imperceptible perturbation might be disguised as being unrealistic,
i.e., a clear fraud attempt. Our motivation is to ensure samples that
might occur in reality or are at least deemed possible. A fraud attempt
is a crime (intent to deceive) and puts an attacker at risk. We allow
an attacker to control the level of deceit. That is, an attacker can
aim for less pronounced changes as in marketing, where an image is
altered ranging from minor polishing (i.e., the object might look like
𝑋𝐴 under some conditions in reality) to extreme manipulation. As such,
the impact is also different ranging from legally ok (though morally
unacceptable) to fraud. The attacker can control manipulation strength
by adjusting parameter 𝛽. The exact choice depends on the attacker’s
risk appetite. A small 𝑏 means staying similar to the original, and thus,
the adversarial sample has a low risk of being judged as a ‘‘criminal’’
manipulation. Choosing a large 𝑏 means being close to the target (but
more dissimilar to the original) and also having a higher risk of being
accused of illegal changes. Finally, our approach is also convenient for
an attacker: He/she only has to provide a target image rather than
manual image editing. Furthermore, an end-to-end process targeting
both the human and the classifier in one joint optimization procedure
might lead to better outcomes. To this end, our work is only a first step.

Other security concerns: We assess transferability assuming black-
box access to the attacked model. Black-box access allows generating
AS, e.g., using surrogate models [13]. Thus, it is a known security risk,
and naive, frequent access can be risky for an attacker since every
access might leave a digital trace. In future work, one can minimize
the number of black box accesses. From a security standpoint, any
offense can be turned into a defense; in our case, by using the well-
known adversarial training technique [46,47]. Many papers propose to
first attack an ML model, and then use the successful attacks to harden
such an ML model (e.g., [48]). Such property also allows our method to
be applicable as a defense: in such cases, the ‘white-box’ assumption is
relaxed because the defender has full control of their own ML system.
Finally, we observe that the underlying principles of our method are
agnostic of the data-type, and hence applicable also to DL applications
for other domains (e.g., malware detection [49]).
10
8. Conclusions

Secure AI is a critical factor for AI’s successful and beneficial de-
ployment. We analyzed potential security issues that can arise when
decision-making is a collaborative process involving humans and deep
learning systems. Such hybrid processes are likely to flourish as AI
adoption increases. Our adversarial samples stemming from carefully
crafted interpolation of regularized latent spaces often exhibit more or
less recognizable differences to a given original sample while simulta-
neously showing similarities to a target sample—as confirmed by our
user study and other evaluation.
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Appendix. Quickdraw (qualitative results)

We report in Figs. 8–13 the images generated on QuickDraw and
CIFAR-10. For CIFAR-10 results are less visually appealing across all
methods which could be overcome with a much larger computation
budget paired with a much larger dataset as elaborated in our dis-
cussion. For CIFAR-10 ACAI sometimes fails to reconstruct meaningful
samples due to the GAN architecture, which might not always success-
fully train. AE w. O,T,𝑀3 tends to lead to somewhat crispier images
than Vanilla AE on CIFAR-10.
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Fig. 9. QuickDraw samples for Vanilla AE.

Fig. 10. QuickDraw samples for ACAI.
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Fig. 11. CIFAR-10 samples for AE w. O,T,𝑀3.

Fig. 12. CIFAR-10 samples for Vanilla AE.
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Fig. 13. CIFAR-10 samples for ACAI.
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