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Abstract—Machine learning is increasingly adopted for a
wide array of applications, due to its promising results and
autonomous capabilities. However, recent research efforts
have shown that, especially within the image processing
field, these novel techniques are susceptible to adversarial
perturbations. In this paper, we present an analysis that
highlights and evaluates experimentally the fragility of
network intrusion detection systems based on machine
learning algorithms against adversarial attacks. In par-
ticular, our study involves a random forest classifier that
utilizes network flows to distinguish between botnet and
benign samples. Our results, derived from experiments
performed on a public real dataset of labelled network
flows, show that attackers can easily evade such defensive
mechanisms by applying slight and targeted modifications
to the network activity generated by their controlled bots.
These findings pave the way for future techniques that aim
to strengthen the performance of machine learning-based
network intrusion detection systems.

Index Terms—Adversarial samples, machine learning,
random forest, intrusion detection, flow inspection, botnet

I. INTRODUCTION

Machine learning algorithms are being integrated in

an ever increasing set of domains [1], such as image

processing, speech recognition, social-media marketing

and cybersecurity. Indeed, the appreciable results ob-

tained by these methods, alongside their autonomous

capabilities, led to their successful adoption for a wide

array of applications, supporting or even replacing human

operators in their tasks. Despite these promising achieve-

ments, several research papers [2]–[5] have shown that

these novel techniques are susceptible to adversarial

perturbations, which involve the manual or automatic

creation of adversarial samples that are specifically de-

signed to thwart the machine learning algorithm and

generate misclassifications. This vulnerability is espe-

cially relevant for the cybersecurity domain because the

implicit cost of undetected attacks is dramatically higher

than misclassifications in other fields, as it can lead to

the compromise of an entire organization [6]. Moreover,

in the cybersecurity field adversaries trying to evade

detection are highly skilled and motivated.

In this paper, we explore this problem from the per-

spective of a network intrusion detection system based on

machine learning algorithms. More specifically, we ana-

lyze and expose the fragility against adversarial attacks

of a botnet detector based on a random forest classifier

that inspects network flows1. Despite extensive research

efforts [7], botnets remain one of the most serious threats

to modern enterprises. Several research papers address

this issue by devising botnet detectors relying on machine

learning [8], involving both supervised (e.g.: [9]) and

unsupervised (e.g.: [10]) algorithms; however, the prob-

lem still persists [11]. Our study, evaluated on a public

dataset of labelled network flows collected from a real

large organization, shows that such detectors are easily

evaded by introducing tiny and targeted perturbations in

the malicious samples. The problem is further aggravated

by the fact that similar alterations can be introduced at

a very low cost for the adversary: they do not require to

change the communication scheme nor the control logic

of the botnet; can be easily introduced without the need

of deeper compromise and privilege escalation on the

infected bots; and the attacker does not need advanced

knowledge of the defensive scheme. Indeed, attackers can

evade detection with high probability just by introducing

slight changes in the network communications of the

controlled bots, such as inserting small delays or adding

a few bytes to the network packets. Our extensive ex-

perimental evaluation highlights a critical issue affecting

botnet detectors based on network flows and random

forest classifiers, and pave the way to future proposals

aiming at strengthening network intrusion detection sys-

tems relying on machine learning techniques.

The remainder of the paper is structured as follows.

Section II compares our study with related literature.

1Network Flow: https://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html978-1-5386-7659-2/18/$31.00 ©2018 European Union
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Section III describes the threat model considered in this

work. Section IV presents the details and results of the

experimental evaluation. Section V concludes the paper

with final remarks and outlines future work.

II. RELATED WORK

This paper highlights and evaluates the fragility of a

flow-based botnet detector built on a random forest clas-

sifier against adversarial attacks. Therefore, we identify

two main areas of related work: network intrusion detec-
tion focused on botnets and based on machine learning;
and adversarial attacks against machine learning.
The scientific literature on network intrusion detection

has been applying techniques and algorithms borrowed

from the machine learning domain for several years [12],

and detection schemes involving machine learning have

been integrated to some extent even in many recent

cyberdefense platforms and commercial cybersecurity

products. Many machine learning algorithms have been

proposed to specifically address the problem of botnet

detection [6], ranging from supervised to unsupervised

techniques and even to deep learning. A meaningful and

direct comparison among different detection methods is

difficult to achieve due to known reasons [6]. However,

many research papers [13]–[16] adopt ensemble classi-

fiers based on random forests due to their appreciable

results, which have been empirically shown to outper-

form several other machine learning methods for network

intrusion detection tasks [17]. Among these, the authors

of [15] devised a network intrusion detection system

for identifying network traffic related to communications

between infected hosts and their Command and Control

infrastructure. This approach is based on the analysis

of network flows, rather than full network packets, and

applies a classifier based on random forests as suggested

by related literature. We remark that inspecting network

flows for network intrusion detection is a common prac-

tice (e.g.: [10], [18], [19]) because of the following

advantages with respect to full packet traces includ-

ing communication payloads: reduced privacy concerns;

smaller storage space and lower computational require-

ments; the pervasive adoption of end-to-end encryption

that prevents collection and analysis of the content of

network packets. These reasons motivated us to focus

our experiments on a flow-based botnet detector built

upon a random forest classifier as a relevant, realistic

and representative example of the best practices currently

adopted by network security researchers and industry.

The increasing pervasiveness of machine learning led

to question its performance in adversarial settings. Re-

cent research papers have mostly addressed this problem

from an image processing perspective [2], [4], [5], pro-

viding clear use-cases of adversarial attacks. However,

literature on evasion attempts against cybersecurity de-

tectors based on machine learning is more focused on

the theoretical vulnerabilities of these techniques rather

than showing and evaluating the actual effectiveness and

consequences of adversarial attacks [20], [21].

Among the few examples of documented adversarial

attacks against applications of machine learning to the

cybersecurity domain, we highlight: [3], which analyzes

the performance in adversarial settings of classifiers

based on Simple Vector Machines (SVM) and on Neural

Networks for malware detection in PDF files; [22], in

which the authors successfully evaded two recent PDF

malware classifiers based on either random forests or

SVM; and [16], where a random forest classifier devoted

to Domain Generation Algorithm (DGA) detection was

thwarted with adversarial samples created by a gener-

ative adversarial network (GAN). While some of these

papers involve evasion attempts towards random forest

classifiers, they do not focus on the analysis of network

flows, nor on the detection of botnets; moreover they do

not consider the effects of adversarial examples against

random-forest classifiers. To the best of our knowledge,

this is the first work that analyzes the fragility of a flow-

based botnet detector based on a random forest classifier

against realistic adversarial attacks.

III. SCENARIO

In this section we describe the realistic scenario and

threat model considered in our work. We begin by

modeling the target network, and then present the char-

acteristics and strategy of the attacker.

A. Defensive model

The defensive model is represented by a large enter-

prise network of over a thousand of internal hosts. At its

edge, the network presents a border router connected to

a network flow collector. Despite the existence of several

software products aimed at collecting network flows,

each presenting diverse characteristics and allowing to

capture different pieces of data, we assume that the

generated flows only contain the following essential

information:

• source and destination IP address;
• flow Start- and End-time (flow duration);
• source and destination ports;
• protocol;
• source and destination Type of Service (ToS);
• source and destination exchanged bytes;
• Total packets transmitted.
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The produced network flows are then inspected by a

botnet detector that relies on a random forest classifier

to distinguish between legitimate and botnet samples.

The classifier is trained to identify the malicious flows

produced by specific botnet variants.

B. Attacker model

We assume an attacker that has already established a

foothold in the internal network by compromising one or

more machines and deploying a bot that communicates

with a Command and Control infrastructure. We describe

the attacker model accordingly to the approach proposed

in [3].

1) Attacker Goal: The attacker aims to evade detec-
tion so that they can maintain access to the internal

network.

2) Attacker Knowledge: The attacker has partial

knowledge on the defenses adopted by the target net-

work. They know that network communications might

be monitored by a network intrusion detection system

based on supervised machine learning; however, they do

not possess knowledge on the algorithm itself (e.g.: they

do not know the parameters, the weights or the feature

set). We assume that the attacker knows that this detector

is trained over a dataset containing malicious flows

generated by the very same malware variant deployed

on the infected machines. Thus, the attacker is aware

that they need to quickly devise some countermeasure to

evade the botnet detector.

3) Attacker Capabilities: We assume that the attacker
does not have full control on the infected machines.

The attacker is limited to issuing commands to the

bots through the Command and Control infrastructure,

possibly modifying their behavior. Finally, we assume

that the attacker cannot interact with the detector in any

way.

4) Attacker Strategy: To avoid detection, the attacker
leverages their limited knowledge and capabilities to

produce a targeted exploratory integrity attack [3]. More
specifically, they insert some slight modifications in the

communication sequences between bots and their Com-

mand and Control. The purpose is inducing the botnet de-

tector to misclassify the network flows generated by bot

communications due to their different characteristics with

respect to the malicious flows contained in the training

dataset. These alterations include slight increases of flow

duration, exchanged bytes and exchanged packets. We
remark that similar modifications can be applied without

interfering with the application logic of the bots, which

can continue to operate as designed by the attacker.

IV. EVALUATION

For our original experiments, we evaluate the per-

formance of a flow-based botnet detector relying on a

random forest classifier in adversarial settings. We begin

by describing the experimental environment, and then

illustrate the results of our experiments.

A. Experimental Setup

We first present the dataset used as baseline for our
analyses; then, we outline the characteristics of the ran-

dom forest classifier. Finally we explain the methodology
used to reproduce a realistic adversarial setting.

1) Dataset: Our analyses are based on the CTU
Dataset [23], a public and labeled dataset collected
in a real and large organization and containing both

legitimate and botnet traffic. This dataset includes over

20M network flows corresponding to over 850M pack-

ets, and spans over several days. The netflow data is

generated with Argus2 and, besides the basic netflow

information provided in Section III-A, contains three

additional fields: flow direction; state of the connection;
flow label. The labels categorize each flow into four

classes: normal and background, corresponding to be-
nign samples; botnet and CnC-channel, corresponding to
malicious samples. The dataset is split into 13 different
traces, each containing the network traffic generated by

a specific botnet variant, along with the legitimate traffic

produced by the monitored network. The overall number

of malware variants included in the dataset is 7: Neris,
Rbot, Virut, Menti, Sogou, Murlo, NSIS.ay. Some

meaningful metrics of the dataset are summarized in

Table I.

Table I: CTU Dataset metrics [23].

Trace Packets Netflows Malicious flows Benign Flows Malware
1 71, 971, 482 2, 824, 637 40, 959 2, 783, 677 Neris

2 71, 851, 300 1, 808, 122 20, 941 1, 787, 181 Neris

3 167, 730, 395 4, 710, 638 26, 822 4, 683, 816 Rbot

4 62, 089, 135 1, 121, 076 1, 808 1, 119, 268 Rbot

5 4, 481, 167 129, 832 901 128, 931 Virut

6 38, 764, 357 558, 919 4, 630 554, 289 Menti

7 7, 467, 139 114, 077 63 114, 014 Sogou

8 155, 207, 799 2, 954, 230 6, 126 2, 948, 104 Murlo

9 115, 415, 321 2, 753, 884 184, 979 2, 568, 905 Neris

10 90, 389, 782 1, 309, 791 106, 352 1, 203, 439 Rbot

11 6, 337, 202 107, 251 8, 164 99, 087 Rbot

12 13, 212, 268 325, 471 2, 168 323, 303 NSIS.ay

13 50, 888, 256 1, 925, 149 39, 993 1, 885, 156 Virut

2) Classifier: We evaluate a machine learning classi-
fier based on random forests. The features used by the

classifier are based on the feature set used in [9], which

exhibits good detection performance on the same dataset

used in this paper. We experimentally verified that – for

this particular scenario – our classifier produces better

2Argus software: http://nsmwiki.org/Argus

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2022 at 22:30:27 UTC from IEEE Xplore.  Restrictions apply. 



results by expanding the feature set with the following

information:

• source/destination IP address type: it can be either
internal or external;

• connection state: included in the dataset;
• flow direction: included in the dataset.

We report in Table II the list and type of features

considered by our classifier.

Table II: Features used by the random forest classifier.

# Feature Name Feature Type
1,2 source/destination IP address type Boolean

3,4 source/destination port Numerical

5 flow direction Boolean

6 connection state Categorical

7 duration (seconds) Numerical

8 protocol Categorical

9,10 source/destination ToS Numerical

11,12 outgoing/incoming bytes Numerical

13 total transmitted packets Numerical

14 total transmitted bytes Numerical

15 bytes per second Numerical

16 bytes per packet Numerical

17 packets per second Numerical

18 ratio of outgoing/incoming bytes Numerical

To allow easier reproduction of our experiment, we

report the attributes and parameters of the classifier

in Table III, where F denotes the number of features

provided as input.

Table III: Attributes of the random forest classifier

Attribute name Value
Number of estimators 10

Quality function Gini

Features for best split
√
F

Random state 0

This classifier is trained on the CTU Dataset. More

specifically, we create 7 instances of the same classifier,

and we train each instance to recognize the malicious

network flows generated by a single botnet variant. This

design choice is motivated by the fact that machine learn-

ing classifiers yield superior results when they focus on

a specific problem instead of being used as a “catch-all”

solution [6]. Thus, for each instance of the classifier we

create a training dataset containing benign and malicious

samples with a 20 : 1 ratio. In particular, the malicious
samples represent ~80% of the botnet flows generated

by a single malware variant; benign samples are chosen

randomly among the complete set of legitimate network

flows. We validate each instance through 10-fold cross

validation; the average number of malicious samples used

to train each instance of the classifier is included in

Table IV.

Table IV: Amount of malicious flows in the training

datasets of each instance of the classifier.

Instance Malware Malicious flows
in Training set

1 Neris 197, 611
2 Rbot 115, 209
3 Virut 32, 766
4 Menti 3, 709
5 Sogou 57
6 Murlo 4, 952
7 NSIS.ay 1, 712

To provide a baseline for our experiments, we present

in Table V the performance of our classifiers. These

results are obtained when each classifier is tested against

a dataset containing the malicious flows generated by its

specific malware variant, along with legitimate network

flows. For each instance of the classifier, we report the

most accepted evaluation metrics in the machine learning

field: the rate of false positives (FP ) and false negatives
(FN ); the precision and detection rate (DR, or recall),
which are computed as follows:

Precision =
TP

TP + FP
DR =

TP

TP + FN

Where TP denotes true positives. For the sake of clarity,
we consider a “positive” to be a malicious sample.

Table V: Baseline performance for each instance of the

classifier.

Malware FP rate FN rate Precision DR
Neris 0.0014 0.0472 0.9624 0.9528
Rbot < 0.0001 0.0015 0.9999 0.9985
Virut 0.0003 0.0525 0.9871 0.9475
Menti 0 0.0015 1 0.9967
Sogou 0 0.8571 1 0.1429
Murlo 0 0.0162 1 0.9838

NSIS.ay < 0.0001 0.1557 0.9872 0.8443

These results denote that our botnet detector obtains

appreciable performance under “normal” circumstances,

as each classifier exhibits low FP and FN rates, while

retaining high precision and recall scores. The only ex-

ception is the instance devoted to the Sogou botnet, due

to the limited sample size available (of only 63 malicious
flows) which hinders the training process. Therefore, we

exclude this instance from the evaluation.

3) Adversarial samples generation: To generate real-
istic adversarial samples we produce multiple adversarial

datasets by manipulating combinations of up to 4 features

of the original malicious flows. The altered features are:
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the duration of the flows; the total number of transmitted

packets; the number of outgoing(Src) or incoming(Dst)

bytes. We remark that an attacker can easily increase

flow duration by introducing a small latency, while the

number of bytes and packets can be increased just by

adding random, junk data. Hence all these modifications

can be applied automatically without altering the logic

of the bots.
The groups of altered features are shown in Table VI.

As an example, adversarial samples belonging to group

1a alter only the flow duration, while samples of group
3c include modifications to the duration, dst bytes and
tot packets features. For each group, every feature is
increased through 9 increment steps; the steps are fixed
for all the possible combinations. Thus, we produce a

total of 135 adversarial datasets samples from the original

set of malicious network flows3. We report in Table VII

the relationship between each step and the corresponding

feature increments (Duration is measured in seconds).
As an example, the adversarial dataset obtained with

the VI step of group 1b has the all values of its flow
outgoing bytes increased by 128; on the contrary, the
adversarial dataset obtained with the II step of group

3c has the all values of its flow duration, incoming

bytes and total packets increased by 2. We remark that
these perturbations can be achieved easily and resemble a

realistic scenario: an excessive increase to the amount of

exchanged data may trigger detection by other defensive

mechanisms [19], whereas increasing the duration of

each flow above 120 seconds may exceed the duration

limits of the flow collector (e.g.: [24]).

Table VI: Groups of altered features.

Group Altered features

1a Duration (s)
1b Src bytes
1c Dst bytes
1d Tot pkts
2a Duration, Src bytes
2b Duration, Dst bytes
2c Duration, Tot pkts
2e Src bytes, Tot pkts
2d Src bytes, Dst bytes
2f Dst bytes, Tot pkts
3a Duration, Src bytes, Dst bytes
3b Duration, Src bytes, Tot pkts
3c Duration, Dst bytes, Tot pkts
3d Src bytes, Dst bytes, Tot pkts
4a Duration, Src bytes, Dst bytes, Tot pkts

B. Results
We evaluate the botnet detector with the crafted ad-

versarial samples. We remark that each instance of the

315(combinations of up to 4 features) ∗ 9(steps) = 135

Table VII: Increment steps of each feature for generating

realistic adversarial samples.

Step Duration Src bytes Dst bytes Tot pkts
I +1 +1 +1 +1

II +2 +2 +2 +2
III +5 +8 +8 +5
IV +10 +16 +16 +10
V +15 +64 +64 +15

VI +30 +128 +128 +20
VII +45 +256 +256 +30

VIII +60 +512 +512 +50
IX +120 +1024 +1024 +100

classifier is tested only with the adversarial samples of its

corresponding malware variant. Since we are interested

in determining how many adversarial samples are classi-

fied as negatives, we base our evaluation on the detection
rate (DR). The results of the evaluation are presented
in Tables VIII, where each table reports the detection

rates obtained by a specific instance of the classifier.

In every table, columns designate the group of altered
features (described in Table VI), whereas rows represent
the increment steps (described in Table VII). Detection
rates below 50% are denoted with a gray background,

while those below 10% are written in bold. The baseline

detection rate is provided in the caption of each table.

Consider as an example Table VIIIb, which refers

to the detection rate for the Rbot botnet variant. The

baseline detection rate is 0.9985, however the result of
column 1d and row I shows that the attacker only has
to increase the duration of network communications by

just 1 second to cause a drop of the detection rate from
0.9985 to a clearly unacceptable 0.1922. To reduce the
detection rate below 1% an attacker only has to add 128
bytes of useless data and generate additional 20 network
packets, as shown by the value 0.0094 in column 2e and
row VI.
As expected, we observe that the performance tends

to decrease for higher increment steps and for groups of

multiple altered features. Intuitively, higher increments

of multiple features imply larger modifications to the

adversarial samples with respect to the original sam-

ples, which negatively impact the performance of the

botnet detector. However, we highlight that even small

perturbations cause a severe drop to the detection rate:

for example, the results in the second row of column

3b in all Tables VIII show that by simply increasing

the Duration, Src Bytes and Tot Pkts by 2 units, it is
possible to evade all instances with a good confidence

(~60% to ~98%).

To provide a more intuitive representation of these

results, we report in Figures 1 the results obtained by
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Table VIII: Detection rates on the adversarial datasets obtained by each instance of the classifier.

Neris 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.7368 0.6664 0.6471 0.5927 0.4717 0.4454 0.6504 0.6070 0.5190 0.5090 0.4091 0.4875 0.4941 0.4715 0.4617
II 0.5792 0.6220 0.6396 0.4532 0.2877 0.2612 0.2243 0.5884 0.3466 0.3558 0.2413 0.1433 0.1564 0.3220 0.1436

III 0.4864 0.5036 0.5788 0.3192 0.1733 0.1996 0.1775 0.5106 0.1348 0.1723 0.1674 0.0788 0.0989 0.1299 0.0620
IV 0.4773 0.4495 0.5739 0.2534 0.1556 0.1760 0.1281 0.4728 0.0971 0.1253 0.1550 0.0541 0.0417 0.0945 0.0415
V 0.4749 0.2251 0.5712 0.2497 0.0614 0.1743 0.1209 0.2238 0.0571 0.1475 0.0680 0.0394 0.0416 0.0506 0.0385

VI 0.4695 0.1407 0.5584 0.2447 0.0332 0.1767 0.1220 0.1312 0.0502 0.1179 0.0293 0.0364 0.0404 0.0425 0.0345
VII 0.4685 0.1009 0.5173 0.2409 0.0586 0.2002 0.1184 0.1579 0.0381 0.0993 0.0538 0.0333 0.0354 0.0363 0.0325

VIII 0.4656 0.0825 0.4057 0.2346 0.0481 0.1631 0.1142 0.0911 0.0332 0.0824 0.0239 0.0726 0.0321 0.0315 0.0309
IX 0.4650 0.0611 0.3265 0.1899 0.0199 0.1119 0.1061 0.0768 0.0272 0.0726 0.0211 0.0223 0.0261 0.0276 0.0253

(a) Detection rates of the Neris instance of the classifier (Baseline DR: 0.9528).

Rbot 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.9918 0.8456 0.8457 0.1922 0.8208 0.8208 0.1867 0.8418 0.1751 0.1754 0.8197 0.0203 0.0204 0.1751 0.0202
II 0.9917 0.8410 0.8420 0.1899 0.8182 0.8191 0.1846 0.8379 0.1538 0.1546 0.8157 0.0182 0.0185 0.0253 0.0182

III 0.9846 0.8080 0.8157 0.1896 0.8033 0.8139 0.1845 0.8079 0.0188 0.0192 0.8031 0.0175 0.0175 0.0178 0.0173
IV 0.9848 0.8082 0.8131 0.1896 0.8028 0.8030 0.1840 0.8059 0.0175 0.0179 0.8026 0.0169 0.0168 0.0172 0.0056
V 0.9852 0.8049 0.8116 0.1892 0.8118 0.7898 0.1831 0.7911 0.0168 0.0166 0.2391 0.0169 0.0028 0.0160 0.0046

VI 0.9853 0.8027 0.7979 0.1892 0.8004 0.2392 0.1835 0.7902 0.0094 0.0141 0.2386 0.0054 0.0015 0.0146 0.0036
VII 0.9850 0.8024 0.7944 0.1892 0.2419 0.2388 0.1834 0.7896 0.0073 0.0139 0.2377 0.0050 0.0015 0.0121 0.0014

VIII 0.9850 0.8023 0.7904 0.1891 0.8003 0.2479 0.1834 0.7852 0.0025 0.0136 0.2373 0.0098 0.0031 0.0049 0.0013
IX 0.9847 0.8022 0.7856 0.1888 0.8003 0.2377 0.1834 0.7856 0.0017 0.0045 0.2380 0.0024 0.0013 0.0047 0.0012

(b) Detection rates of the Rbot instance of the classifier (Baseline DR: 0.9985).

Virut 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.6412 0.7175 0.7433 0.7326 0.6095 0.6122 0.2400 0.7072 0.6334 0.1488 0.2556 0.0789 0.0747 0.1376 0.0740
II 0.6115 0.7000 0.7275 0.6825 0.3345 0.3321 0.5607 0.1938 0.0922 0.0874 0.0700 0.0516 0.0549 0.0740 0.0500

III 0.6048 0.1319 0.1876 0.5815 0.0600 0.0530 0.5458 0.1215 0.4844 0.0664 0.0541 0.0397 0.0401 0.0528 0.0371
IV 0.6009 0.1097 0.1824 0.5628 0.0449 0.0506 0.5410 0.1099 0.0915 0.0492 0.0463 0.0353 0.0361 0.0476 0.0353
V 0.5898 0.0696 0.1616 0.5560 0.0364 0.0430 0.5398 0.0692 0.0392 0.0421 0.0343 0.0332 0.0329 0.0367 0.0316

VI 0.5834 0.0546 0.1612 0.5519 0.0297 0.0339 0.5340 0.0552 0.0348 0.0376 0.0313 0.0295 0.0278 0.0317 0.0261
VII 0.5704 0.0498 0.1407 0.5488 0.0263 0.0269 0.5315 0.0500 0.0297 0.0347 0.0333 0.0229 0.0245 0.0283 0.0222

VIII 0.7052 0.0365 0.0772 0.5418 0.0210 0.0248 0.5285 0.0376 0.0211 0.0267 0.0204 0.0143 0.0167 0.0235 0.0178
IX 0.6999 0.0316 0.0563 0.5294 0.0155 0.0156 0.5199 0.0304 0.0128 0.0171 0.0161 0.0098 0.0101 0.0173 0.0118

(c) Detection rates of the Virut instance of the classifier (Baseline DR: 0.9475).

Menti 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.5852 0.0445 0.0434 0.8903 0.0358 0.0380 0.4300 0.0434 0.8219 0.7872 0.0380 0.4235 0.4278 0.4289 0.0347
II 0.9870 0.0445 0.0434 0.7524 0.0337 0.0380 0.8284 0.0380 0.4267 0.3985 0.0315 0.4311 0.4365 0.4278 0.4311

III 0.9870 0.0380 0.0380 0.7524 0.0054 0.0293 0.7904 0.0380 0.3540 0.3985 0.0054 0.3985 0.0597 0.3540 0.0597
IV 0.9870 0.0380 0.0380 0.7524 0.0054 0.0228 0.4517 0.0271 0.3540 0.3985 0.0033 0.0597 0.0000 0.3540 0.0000
V 0.9870 0.0000 0.0380 0.7524 0.0000 0.0000 0.4517 0.0000 0.3540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VI 0.9870 0.0000 0.0098 0.7524 0.0000 0.0000 0.4517 0.0000 0.3540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VII 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VIII 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IX 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(d) Detection rates of the Menti instance of the classifier (Baseline DR: 0.9967).

Murlo 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.2247 0.2221 0.2204 0.9694 0.2221 0.2247 0.2119 0.2204 0.2085 0.2094 0.2213 0.1974 0.1966 0.2051 0.1957
II 0.2170 0.2221 0.2204 0.9651 0.2153 0.2153 0.2085 0.2170 0.0570 0.2068 0.2077 0.0604 0.2060 0.0502 0.0545

III 0.2034 0.2170 0.2196 0.9302 0.1787 0.1779 0.0289 0.2119 0.0340 0.1660 0.1864 0.0221 0.0306 0.0315 0.0332
IV 0.0536 0.2085 0.2136 0.9115 0.0289 0.0264 0.0196 0.2043 0.0196 0.1583 0.0315 0.0196 0.0196 0.0196 0.0196
V 0.0511 0.2017 0.2043 0.9106 0.0187 0.0196 0.0187 0.1957 0.0187 0.1685 0.0187 0.0187 0.0187 0.0187 0.0187

VI 0.0434 0.1923 0.1966 0.9106 0.0187 0.0187 0.0187 0.0340 0.0187 0.1779 0.0187 0.0187 0.0281 0.0187 0.0187
VII 0.0434 0.0357 0.0357 0.9098 0.0187 0.0187 0.0179 0.0196 0.0179 0.1702 0.0187 0.0179 0.0179 0.0179 0.0179

VIII 0.0417 0.0187 0.0298 0.9064 0.0179 0.0289 0.0128 0.0289 0.0162 0.1660 0.0289 0.0153 0.0153 0.0170 0.0170
IX 0.0409 0.0179 0.0315 0.9047 0.0128 0.0289 0.0077 0.0281 0.0128 0.0136 0.0213 0.0077 0.0077 0.0136 0.0085

(e) Detection rates of the Murlo instance of the classifier (Baseline DR: 0.9838).

NSIS.ay 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.8004 0.8026 0.8333 0.5768 0.7785 0.8026 0.6228 0.8114 0.5263 0.5482 0.7873 0.5921 0.6096 0.5329 0.6031
II 0.7610 0.7632 0.8246 0.5307 0.6601 0.7171 0.4298 0.7237 0.4561 0.4934 0.5570 0.3399 0.3750 0.4605 0.3465

III 0.7061 0.5504 0.7456 0.4364 0.4561 0.6382 0.2895 0.5132 0.3377 0.4013 0.4715 0.2259 0.2544 0.3421 0.2346
IV 0.6842 0.5241 0.7149 0.3640 0.3838 0.5417 0.2303 0.4715 0.2632 0.3070 0.3904 0.2237 0.2215 0.2303 0.2281
V 0.6689 0.4342 0.6184 0.3465 0.3575 0.5088 0.2193 0.4539 0.2346 0.2346 0.3333 0.2346 0.2061 0.2039 0.2193

VI 0.6272 0.3662 0.5614 0.3311 0.2873 0.3618 0.1886 0.3947 0.2149 0.2083 0.3136 0.1908 0.1623 0.1732 0.1667
VII 0.6118 0.3289 0.4956 0.3268 0.2675 0.3816 0.1513 0.3004 0.2018 0.1864 0.3092 0.1579 0.1272 0.1535 0.1382

VIII 0.6053 0.3048 0.4232 0.2917 0.2719 0.3443 0.1228 0.2741 0.1776 0.1425 0.2325 0.1294 0.0833 0.0877 0.0614
IX 0.5724 0.2895 0.2873 0.2763 0.2610 0.1974 0.0811 0.2478 0.1557 0.1294 0.1886 0.0570 0.0373 0.0702 0.0351

(f) Detection rates of the NSIS.ay instance of the classifier (Baseline DR: 0.8443).

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2022 at 22:30:27 UTC from IEEE Xplore.  Restrictions apply. 



a single instance of the classifier for three different

increment steps. In every figure, histograms represent

the detection rates for each group of altered features,

and the dotted horizontal line represents the baseline

detection rate. For space limitations, we only represent

results of the classifier for the Neris botnet. This choice

is motivated by its higher number of malicious samples

with respect to all other bot variants, thus leading to a

more representative training dataset. Moreover we only

include the I, IV and IX steps. From Figure 1a we

notice that even the very small perturbations of the

first increment step (combinations of: one second, one

byte, one packet) reduce the detection rate of more than

20%, and up to 50% for some feature groups. On the

other hand, the greater (but still realistic) perturbations

reported in Figure 1b and Figure 1c cause almost all

adversarial samples to be classified as benign flows, with

detection rates always below 60% and even below 10%
in most cases.

These results demonstrate the fragility of random

forest classifiers to adversarial examples, and evidence

the great problem posed by adversarial attacks against

these types of security technologies.

V. CONCLUSIONS

Machine learning techniques are being increasingly

integrated into cybersecurity-related defensive platforms.

However, these novel algorithms are susceptible to ad-

versarial settings, in which attackers avoid detection by

introducing tiny modifications in their malicious samples.

In this paper, we explore this issue from a network

intrusion detection perspective. More specifically, we

highlight the fragility of a flow-based botnet detector

that relies on a random forest classifier. We perform

extensive original experiments by leveraging a public

dataset of labeled network flows, which is used as base

for the creation of realistic adversarial samples in our

evaluation. Our analysis shows that attackers can easily

thwart such detection schemes by slightly modifying the

network communication patterns of their controlled bots

in ways that do not alter their logic and do not limit their

activities. As an example, for some malware families

increasing the duration of network communications by

just 1 second causes the detection rate to drop from
over 99% to less than 20%. Moreover in many cases
it is possible to easily produce adversarial samples that

cause a detection rate below 1%. These results evidence
a critical vulnerability of machine learning applied to

cybersecurity, and pave the way for future improvements

aimed at making these techniques more secure.

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends,
perspectives, and prospects,” Science, 2015.

[2] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial set-
tings,” in Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016.

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
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