Evading Botnet Detectors based on Flows and Random Forest with Adversarial Samples

Giovanni Apruzzese, Michele Colajanni

University of Modena and Reggio Emilia, Italy

CONTEXT: MACHINE LEARNING

The popularity of machine learning is skyrocketing.

Machine learning algorithms are effective...

...but how do they behave against adversarial attack

2

CONTEXT: <u>ADVERSARIAL ATTACKS</u>

Adversarial attacks involve the creation of <u>specific samples</u> with the goal of <u>thwarting</u> the machine learning algorithm.

Even **tiny perturbations** can **greatly affect** the prediction performance

- Rich research area within the image processing field...
- ...but comprehensive analyses from a cybersecurity perspective are <u>scarce</u>.

Jellyfish

Bathing tul

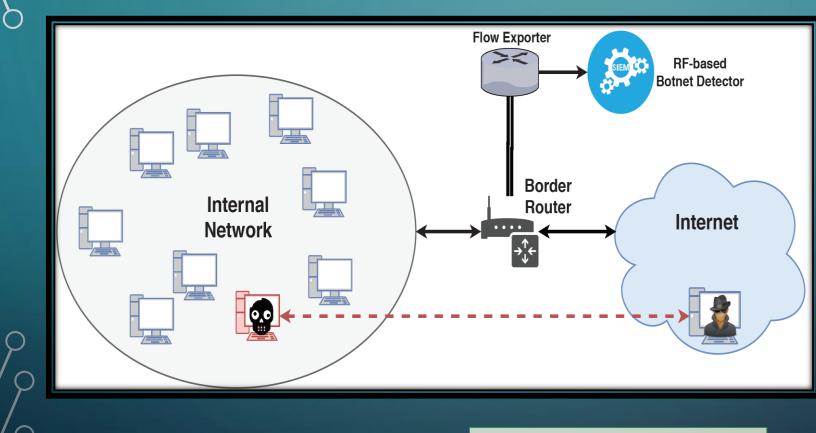
3

CONTRIBUTION & MOTIVATION

We present an <u>empirical evaluation</u> of adversarial attacks against a **flow-based botnet detector** that leverages the **random forest** algorithm.

	Flow-based	 Growing practice for network intrusion detection Several advantages w.r.t. traditional PCAP
D Q	Botnet detector	• Botnets still represent a dangerous threat
GIOVANNI APRUZZESE	Random Forest	 Considered as one of the best algorithms for network intrusion detection tasks

APPLICATION SCENARIO



Attacker Model

- <u>Goal</u>: evade the botnet detector
- Knowledge: Limited
- <u>Capabilities</u>: Limited
- <u>Strategy</u>: alter the bot(s) communications

GIOVANNI APRUZZESE

Realistic assumptions

5

EXPERIMENTS – OUTLINE

1. Develop a botnet detector with good performance

2. Generate **realistic** adversarial samples

3. Evaluate the detector against the generated adversarial samples

6

EXPERIMENTS – DATASET

CTU Dataset

- Public dataset of labelled network flows containing botnet traffic
- Dozens of internal hosts
- Over 20M of netflows, corresponding to more than 850M packets
- Realistic-use=case • Contains botnet traffic generated by multiple malware families:
 - Neris, Rbot, Virut, Menti, Murlo, NSIS.ay

EXPERIMENTS – BASELINE RESULTS

• We first train and test the botnet detector on the **unmodified samples**:

FP rate	FN rate	Precision	DR
0.0014	0.0472	0.9624	0.9528
< 0.0001	0.0015	0.9999	0.9985
0.0003	0.0525	0.9871	0.9475
0	0.0015	1	0.9967
0	0.0162	1	0.9838
< 0.0001	0.1557	0.9872	0.8443
	0.0014 < 0.0001	$\begin{array}{c cccc} 0.0014 & 0.0472 \\ < 0.0001 & 0.0015 \\ \hline 0.0003 & 0.0525 \\ \hline 0 & 0.0015 \\ \hline 0 & 0.0162 \end{array}$	$\begin{array}{c cccccc} 0.0014 & 0.0472 & 0.9624 \\ < 0.0001 & 0.0015 & 0.99999 \\ 0.0003 & 0.0525 & 0.9871 \\ 0 & 0.0015 & 1 \\ 0 & 0.0162 & 1 \end{array}$

• These results show that the detector obtains appreciable performance...

EXPERIMENTS – GENERATING ADVERSARIAL SAMPLES

Goal: generate adversarial samples by introducing <u>small</u> modifications into the malicious flow samples

Procedure:

- 1. Create one *malicious* dataset for each malware family
- 2. For each malicious dataset, generate multiple adversarial datasets:
 - a) Select several groups of features
 - b) For each group, increase the values of its features through multiple steps

EXPERIMENTS – GENERATING ADVERSARIAL SAMPLES

	Group 4	Group	Altered features	tes Tot pkts	
	1a 1b	1a	Duration (s)	+1	
		1b	Src_bytes	+2 +5	
	2a D	1c	Dst_bytes	+10	
	$\begin{array}{c c} 2c & C \\ 2e & S_1 \end{array}$		Tot_pkts	+15	
	2d Sr 2f D	2a	Duration, Src_bytes	3 +20	
	Duratio	2b	Duration, Dst_bytes	$\frac{3}{3}$ +30	
-	3b Duratio	2c	Duration, Tot_pkts	$\frac{2}{4}$ +50	
	3dSrc_byt4aDuration, Sr	2e	Src_bytes, Tot_pkts	$\frac{4 + 100}{}$	
		2d	Src_bytes, Dst_bytes		
		2f	Dst_bytes, Tot_pkts		
	• With the I	3a	Duration, Src_bytes, Dst_bytes	all its	
APL	durations a	3b	Duration, Src_bytes, Tot_pkts		
EXAMPLE		3c	Duration, Dst_bytes, Tot_pkts		
	• The advers	3d	Src_bytes, Dst_bytes, Tot_pkts	its durations,	10
	outgoing b	4a	Duration, Src_bytes, Dst_bytes, Tot_pkts		

EXPERIMENTS – ADVERSARIAL ATTACKS RESULTS

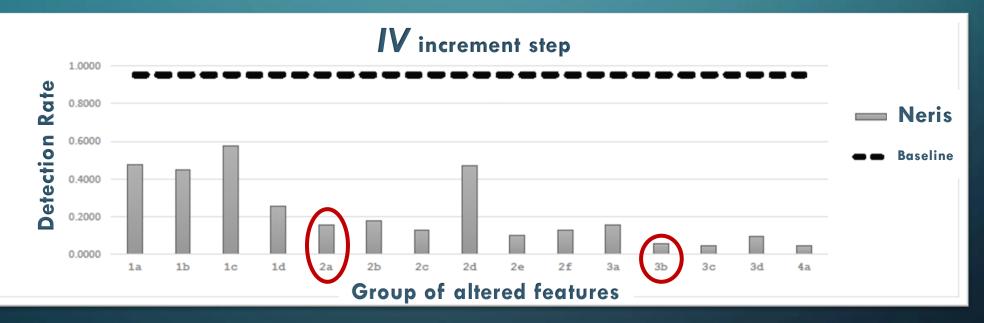
• ...but the situation changes when tested against the **adversarial samples**:



11

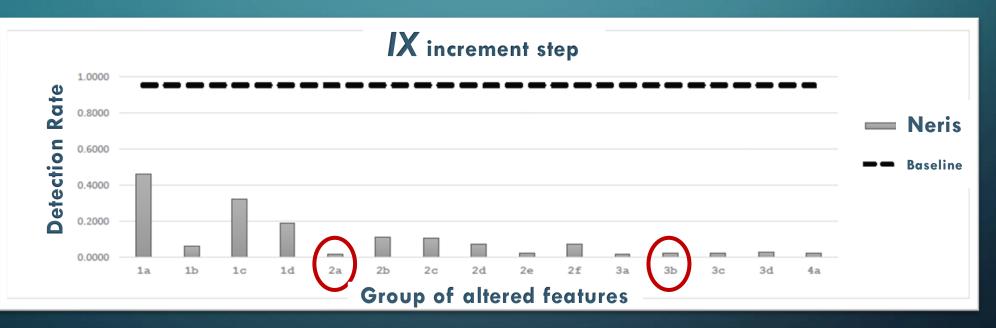
EXPERIMENTS – ADVERSARIAL ATTACKS RESULTS

• ...and it only gets worse...



EXPERIMENTS – ADVERSARIAL ATTACKS RESULTS

• ...and worse:



CONCLUSION

- The adoption of machine learning algorithms is constantly growing.
- These techniques need to be evaluated against adversarial attacks, especially from a <u>cybersecurity perspective</u>.
- We expose the fragility against adversarial perturbations of *flow-based botnet detectors* relying on the *random forest* algorithm.

Extensive experimental evaluation shows that the **detection rate** of a similar detector drops to values **lower than 1%** just by introducing <u>small and targeted</u> <u>modifications</u> to the network communications of the infected machine.

CONCLUSION – POSSIBLE SOLUTIONS

• Re-training with adversarial samples (Adversarial Learning)

Requires the **availability** and **mainteance** of a <u>realistic</u> adversarial dataset

• Use different features that cannot be modified by the attacker

Decreases the performance of the detector against unmodified samples

GIOVANNI APRUZZESE

15

Evading botnet detectors based on flows and Random Forest with adversarial samples

Giovanni Apruzzese

PhD. Student University of Modena, Italy giovanni.apruzzese@unimore.it

FOLLOW UP: HARDENING RANDOM FOREST DETECTORS THROUGH DISTILLATION

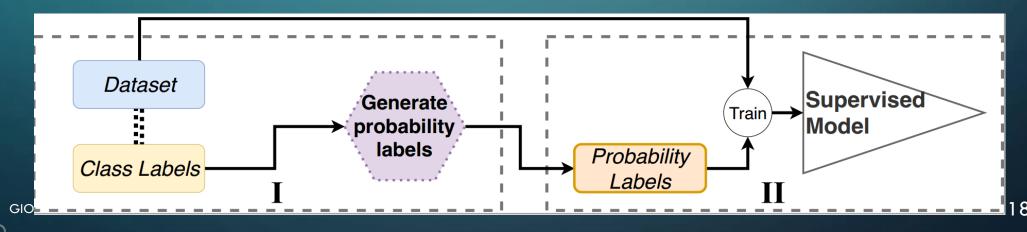
- Cyber Detectors employing rigid classification criteria may be more vulnerable to subtle adversarial perturbations.
- Existing detectors are trained through *class labels* that separate samples in disjointed categories.
- The cyber domain is intrinsically fuzzy, and a sample may present characteristics belonging to different categories.

We aim to introduce some degree of flexibility and uncertainty by using *probability labels*

PROBLEM ANALYSIS

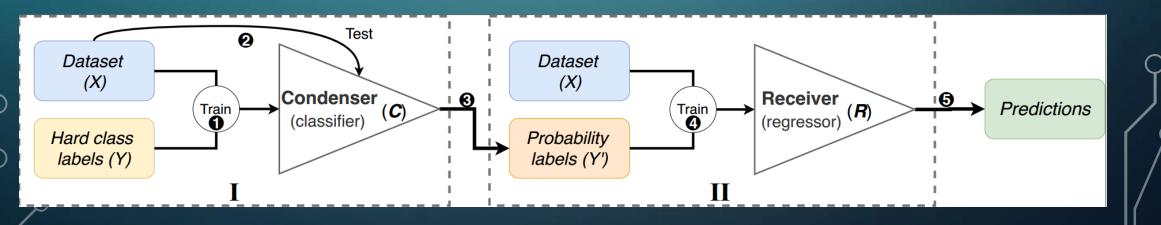
• In the cyber domain, probability labels are not readily available.

→ We devise an original solution that is built upon two phases:
 I. Generation of probability labels from hard class labels;
 II. Deployment of a supervised model trained with the generated probability labels to perform the cyber detection.



APPLICATION TO THE RANDOM FOREST ALGORITHM

- The initial phase is performed through a random forest classifier (Condenser).
 - We first train this classifier with the hard-class labels.
 - We leverage the intrinsic property of the random forest algorithm of being an ensemble method: we generate the probability vectors by considering the <u>percentage of estimators that</u> <u>predicted a particular result</u>.
- In the second phase, the probability vectors are used as training labels for a random forest regressor (**Receiver**).



RESULTS IN NON-ADVERSARIAL SETTINGS

Table VI: Baseline vs. Distilled model performance.

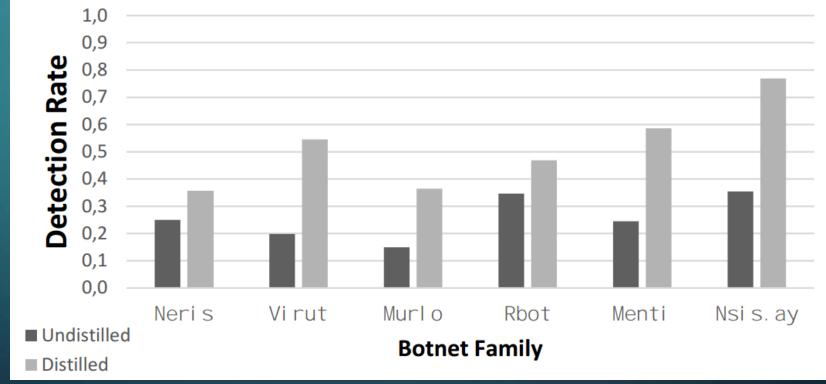
Botnet	Instance type	F1-Score	Precision	Recall	FPR	TNR	FNR
Neris	Undistilled	0.9577	0.9615	0.9540	0.0015	0.9985	0.0461
	Distilled	0.9651	0.9671	0.9632	0.0013	0.9987	0.0368
Virut	Undistilled	0.9682	0.9876	0.9496	0.0002	0.9998	0.0504
VIIIL	Distilled	0.9753	0.9876	0.9633	0.0002	0.9998	0.0367
Murlo	Undistilled	0.9932	1	0.9866	0	1	0.0134
	Distilled	0.9968	1	0.9937	0	1	0.0063
Rbot	Undistilled	0.9994	0.9999	0.9999	< 0.0001	1	0.0010
	Distilled	0.9995	0.9999	0.9990	< 0.0001	1	0.0010
Menti	Undistilled	0.9984	1	0.9969	0	1	0.0031
	Distilled	0.9979	0.9997	0.9969	< 0.0001	1	0.0031
NSIS.ay	Undistilled	0.9213	0.9925	0.8596	< 0.0001	1	0.1404
	Distilled	0.9273	0.9784	0.8812	0.0001	0.9999	0.1188
Average	Undistilled	0.9729	0.9774	0.9684	0.0005	0.9995	0.0315
	Distilled	0.9777	0.9804	0.9751	0.0004	0.9996	0.0249

GIOVANNI A

20

RESULTS IN ADVERSARIAL SETTINGS

Average Detection Rate (botnet family)



21

CONCLUSION

- Detection models based on machine learning have features that are too sensitive to adversarial perturbations.
- The proposed solution allows to develop detectors that:
 - achieve <u>same or better detection performance</u> than existing algorithms in non-adversarial scenarios;
 - with improved robustness against adversarial attacks.
- There is still space for researches that aim to further improve the detection rates.