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Abstract—Classifiers based on Machine Learning are
vulnerable to adversarial attacks, which involve the creation
of malicious samples that are not classified correctly.
While this phenomenon has been extensively studied within
the image processing domain, comprehensive analyses are
scarce in the cybersecurity field. This is a critical problem
because cyber-detectors are being increasingly integrated
with machine learning methods, making them suitable
targets for skilled attackers leveraging adversarial samples
to evade detection. In this paper, we propose a thor-
ough analysis of realistic adversarial attacks performed
against network intrusion detection systems that focus
on identifying botnet traffic through machine learning
classifiers. Our large campaign of experiments involves the
most recent public datasets, representing multiple realistic
network scenarios. Moreover, we evaluate the impact of
these attacks against state-of-the-art detectors relying on
different machine learning algorithms, providing a clear
overview of this problem. The results outline the fragility
of these methods. Our study represent a stepping stone
for devising suitable countermeasures to the menace of
adversarial attacks against cyber-detectors.

Index Terms—Adversarial samples, machine learning,
intrusion detection, flow inspection, botnet

I. INTRODUCTION

A recent trend across multiple application domains,
including cybersecurity, is the adoption of machine
learning techniques. The appreciable results of these
methods are not limited to scientific research, as many
enterprises have started to integrate their commercial
products with these novel techniques [1], [2]. This
growing diffusion has led to question the reliability of
machine learning in adversarial settings, where specific
inputs are created with the explicit goal of subverting
the machine learning algorithms [3], [4]. While this
topic is extensively studied in domains such as computer
vision and text processing [5], it lacks thorough analyses
from a cybersecurity perspective [6]. In this paper, we
study adversarial perturbations in the context of network
intrusion detection systems (NIDS). Our objective is to

provide a comprehensive evaluation of the impact of
these malicious actions against state-of-the-art detectors
of botnets, due to their relevance in the current cyber-
security landscape [7]. More specifically, we perform an
extensive experimental campaign of realistic adversarial
attacks, involving different machine learning techniques
and multiple large datasets of network flows. Further-
more, we also evaluate the effects of some proposed
defensive mechanisms. Thus, our broad analysis captures
a multitude of scenarios that represent the heterogeneous
nature of modern networked systems. To the best of our
knowledge, this is the first paper that presents such a vast
range of novel experiments on this subject. The results
highlight the vulnerability of all the considered detectors
to adversarial samples, and the limitations of the analysed
defensive proposals. We are confident that our study will
benefit the cybersecurity field, by inducing more research
efforts to be focused on devising much needed effective
countermeasures against this critical threat.

The remainder of this paper is structured as follows.
Section II compares this paper with related work. In
Section III we describe the realistic application scenario
of our analysis. Section IV presents the testbed and
evaluation methodology. We devote Section V to the ex-
perimental results. Conclusions are drawn in Section VI.

II. RELATED WORK

Adversarial examples have been extensively studied
within the image processing field (e.g.: [4], [5], [8]), but
their evaluation in the cybersecurity domain is still an
open research problem [9]. This is the main motivation
behind our work, since a clear understanding of the im-
pact of adversarial attacks against cyber defence systems
based on machine learning is of crucial importance for
the development of modern cybersecurity technologies.

Related literature has mostly focused on analysing
the effects of these threats against malware and spam
detectors [10]–[15], but few papers address this problem
from a network intrusion detection perspective [16]. The978-1-7281-2522-0/19/$31.00 ©2019 European Union



authors of [17] present an analysis of attacks against
Network Intrusion Detection Systems (NIDS), but they
do not consider machine learning techniques. Other
works raise the awareness on this subject by proposing
mechanisms to evade machine learning-based NIDS,
but they do not provide any experimental evidence to
sustain their claims [18]. Previous work also include
research efforts [19], [20] based on the deprecated [21]
KDD-99 dataset1, and cannot be considered as a good
representation of modern large network environments.
Other papers only consider attack scenarios where the
adversary has extensive or perfect knowledge of the
detector, which is an unrealistic assumption in a true cy-
bersecurity context [22]–[24]. More recently, Apruzzese
et al. showed effective realistic adversarial attacks against
botnet detectors based on machine learning, but this work
only focused on a single dataset and consider a limited
subset of machine learning algorithms [16], [25].

To the best of our knowledge, this is the first paper that
presents an extensive evaluation of realistic adversarial
attacks performed against botnet detectors based on mul-
tiple machine learning algorithms, which are deployed in
different, recent and heterogeneous network scenarios.
Thus, the present study portrays a much needed and
representative overview of the current state-of-the-art of
machine learning botnet detectors in adversarial settings.

III. APPLICATION SCENARIO

To conduct a meaningful evaluation of the impact of
realistic adversarial attacks, it is necessary to describe
the characteristics of the considered network environment
and of the considered attacker.

A. Scenario

We assume a realistic network scenario of a medium-
large organization comprising up to hundreds of devices
that generate large amounts of daily traffic (>10GB/day).
We also assume that the network perimeter is monitored
by a flow-based2 NIDS that adopts a supervised machine
learning algorithm to detect traces of botnet activities.
We remark that analysing network flows instead of raw
traffic packets is a growing and successful practice for
NIDS, due to the reduced resources needed for their
storage and computation, as well as reduced privacy
concerns [26], [27] with respect to deep inspection of
full packet traces. We assume that some machines within
the network are infected by a botnet-related malware
(for example through a zero-day attack, successfull spear

1KDD99 Dataset: https://www.unb.ca/cic/datasets/nsl.html
2NetFlow: https://www.cisco.com/c/en/us/products/ios-nx-os-

software/ios-netflow

phishing attempts, or insider threats) that communicates
with an external Command and Control (CnC) server.

B. Attacker Model

We describe the model of the considered attacker by
following the guidelines proposed in related literature [9],
outlining their goal, knowledge, capabilities and strategy.

1) Attacker Goal: The attacker aims to evade the
botnet detector in order to maintain access to the network
and perform additional malicious activities (e.g.: [28]).

2) Attacker Knowledge: The attacker is aware that the
target organization adopts some defensive mechanisms
that analyze network traffic through supervised machine
learning algorithms; he also assumes that the training set
may contain some malware samples with similar charac-
teristics to the one used to infect the compromised hosts.
However, the attacker has no complete knowledge of the
dataset used to train the machine learning algorithm,
of the the feature set, and of the classifier’s internal
parameters and configuration. We remark that these are
realistic assumptions for any commercial cybersecurity
appliance.

3) Attacker Capabilities: The attacker can issue com-
mands to the infected machines through the CnC server.
However, he does not have direct access to the detec-
tor, this includes both read and write operations. For
example, he cannot use the detector as an “oracle” [3]
by submitting certain inputs and reading the respective
outputs.

4) Attacker Strategy: The attacker attempts to evade
detection by performing an integrity attack [9]. More
specifically, he modifies the (malicious) network com-
munications generated by the infected devices and the
corresponding CnC server. These alterations need to keep
the internal logic of the employed piece of malware
intact, as their sole purpose is to make the (malicious)
samples different from the ones that have possibly been
used to train the detector; furthermore, they need to be
stealthy enough to avoid triggering detection through
other defensive mechanisms [29]. Possible perturbations
include small increments to the length of the communi-
cations, or the insertion of some pieces of junk data in
the transmitted packets.

We highlight that our assumptions portray a realistic
scenario: models that involve attackers with perfect (or
near-perfect) knowledge are unrealistic, as the NIDS is
usually protected by multiple layers of defenses. Adver-
saries that have possess such confidential information
– or that have direct access to the detector – are also
capable of launching attacks of higher magnitude that
are out of the scope of this paper. Also adversaries that
are able to generate a brand new malware characterized



by different communication patterns between bots and
CnC will still be able to evade detection. Hence we
focus on the wide majority of attackers that leverage and
customize common malware toolkits.

IV. EVALUATION METHODOLOGY

Conducting a thorough evaluation of machine
learning-based NIDS in realistic adversarial settings is
a complex procedure. Here, we present the datasets and
the algorithms used to develop the considered detectors.
Then we describe the methods used to generate the
adversarial attacks and to measure their effectiveness on
these detectors; finally, we assess the effectiveness of
feature removal as a defense against adversarial attacks.

A. Testbed description

In our evaluation we rely on 4 recent, public and
labelled datasets of network traffic that include commu-
nications generated by botnet-related pieces of malware:
CTU-133 [30], IDS20174 [21], CIC-IDS20185 [21],
UNB-CA Botnet6 [31]. As these datasets involve dif-
ferent types of attacks, we only consider those portions
that include botnet-related traffic. Some of these datasets
are readily available in netflow format; for those that only
include raw packet data, we generate the corresponding
flows through Argus7. We summarize the meaningful
metrics of each dataset in Table I, which reports the total
amount of packets, internal hosts, flows and number of
botnet families included. We exclude those families that
present less than 100 samples, as their scarcity may lead
to the creation of training sets that would generate poor
detection results [25], [31], [32]. We can observe that the
considered datasets are a valid representation of medium-
to-large network scenarios.

Table I: Datasets metrics.

Dataset Packets Devices Botnet
Flows

Legitimate
Flows

Botnet
Families

CTU-13 855 866 143 150 443 906 19 199 170 6
IDS2017 5 776 888 111 1 966 189 067 1

CIC-IDS2018 13 486 990 450 283 429 760 824 1
UNB-CA Botnet 14 502 782 369 238 415 345 113 10

Our experiments involve multiple botnet detectors,
each based on a different machine learning classifier
among the following: Random Forest (RF), Decision
Trees (DT), AdaBoost (AB), Multi-Layer Perceptron
(MLP), K-Nearest Neighbor (KNN), Gradient Boosting
(GB), Linear Regression (LR), Support Vector Machines

3CTU-13 Dataset: https://www.stratosphereips.org/datasets-ctu13
4IDS2017: https://www.unb.ca/cic/datasets/ids-2017.html
5CIC-IDS2018: https://www.unb.ca/cic/datasets/ids-2018.html
6Botnet dataset: https://www.unb.ca/cic/datasets/botnet.html
7Argus software: https://qosient.com/argus/argusnetflow.shtml

(SVM), Naive Bayes (NB), ExtraTrees (ET), Bagging
(Bag), Stochastic Gradient Descent Linear Classifier
(SGD). We focus on these algorithms since previous
work demonstrate their applicability to the task of iden-
tifying botnet traffic [6], [32]–[34]. As each dataset
may include multiple botnet families, we develop our
detectors by training every classifier on each individual
botnet family per dataset. This is motivated by the fact
that machine learning methods tend to perform better
when they address a specific problem (that is, a specific
botnet family) rather than being used as a catch-all solu-
tion [25], [32], [34]. More formally, let A be the number
of considered machine learning algorithms (i.e., A = 12),
let D be the number of involved datasets (D = 4), and let
Di

f the number of botnet families included in dataset Di

(0 < i ≤ D); then, we devise a total of C = A·
∑D

i=1 D
i
f

detectors (in our case, C = 216). We develop such a
large amount of detectors in order to gauge how different
machine learning classifiers, trained in different network
environments, respond against adversarial attacks.

Each detector is trained, validated and evaluated indi-
vidually. To train each classifier, we adopt sets of features
used by related literature on flow-based classifiers [16],
[27], [35]. We use 80% of the available malicious
samples of each individual botnet family for training,
and the remaining 20% for testing; benign samples
are randomly chosen to compose sets with a benign-
to-malicious samples ratio of 90:10. After performing
multiple grid-search operations to determine its optimal
configuration settings, each classifier is validated through
3-fold cross validation. We measure the performance of
each detector through the Precision, Detection Rate (DR,
or Recall) and F1-score, which are computed as follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1-score = 2 ∗ Precision ∗DR

Precision+DR

where TP (FP ) denotes true (false) positives, and FN
denotes false negatives. We consider a positive to be a
malicious sample. Those detectors that obtain a score
lower than 0.9 for any of these metrics are discarded,
as such values are inadequate for NIDS deployed in real
contexts.

B. Devising realistic adversarial attacks

To reproduce and gauge the effects of the adversarial
attacks described in Section III-B4, we generate datasets
of adversarial samples with the following procedure. For
each detector (which is related to a specific botnet family
in a given dataset), we consider all its corresponding
malicious samples and randomly modify the values of



up to 4 different features: flow duration, sent bytes,
received bytes, exchanged packets; the alterations in-
volve small increments of [1..120] for flow duration (in
seconds), and [1..1024] for the remaining features. To
maintain consistency, we also update the corresponding
derived features (e.g.: bytes per second). The obtained
adversarial datasets (which include only the manipulated
malicious samples) are then used to test each classifier.
The effectiveness of these attacks is measured through
the following Attack Severity (AS) score:

AS = 1− DR(after the attack)
DR(before the attack)

(1)

Higher (lower) values of AS imply attacks in which
greater (lower) amounts of adversarial samples have
evaded detection.

C. Countermeasure: feature removal

A possible strategy to counter adversarial attacks is
to nullify the effects of modifications applied to a given
feature by excluding it. Hence, to defend against a wide
ragne of adversarial attacks a defender could ignore
all the features that can be easily manipulated by the
attacker [14] without modifying the logic of the botnet
family. However, this procedure might have detrimental
effects on the performance of the detectors in non-
adversarial settings, for example by triggering more false
alarms. We evaluate the quality of this countermeasure
by comparing the performance of each classifier in the
absence of attacks before and after the application of this
technique. That is, we re-train and re-test each classifier
with feature sets that do not include the flow duration,
sent bytes, received bytes, exchanged packets, as well
as all the corresponding derived features.

V. EXPERIMENTAL RESULTS

The experimental evaluation has a threefold objective:
1) confirm that the proposed detectors exhibit appre-

ciable performance in non-adversarial settings;
2) evaluate the impact of our evasion attacks by test-

ing these detectors against the adversarial samples;
3) assess the effectiveness of the considered counter-

measure.
The following subsections present the results of our
large experimental campaign by addressing each of these
points.

A. Performance in non-adversarial settings

We begin by determining which detectors reach a
performance that complies with real-world requirements.
Thus, we train and test the 12 machine learning ap-
proaches considered in this paper against the malware

Table II: Performance in non-adversarial settings.

Dataset F1-Score
(std. dev.)

Precision
(std. dev.)

Recall
(std. dev.)

CTU-13
0.957

(0.029)
0.958

(0.031)
0.956

(0.028)

IDS2017
0.996

(0.002)
0.999

(0.001)
0.993

(0.003)

CIC-IDS2018
0.999

(< 0.001)
0.999

(< 0.001)
0.999

(< 0.001)

UNB-CA Botnet
0.991

(0.017)
0.992

(0.021)
0.991

(0.017)

Average 0.986
(0.011)

0.987
(0.012)

0.985
(0.011)

families included in the 4 reference datasets, as described
in Section IV-A.

To avoid a negative bias caused by ML approaches
that are not suitable for the detection of a given botnet
family or that do not perform well on a given dataset,
results of Table II only consider the subset of all possible
detectors that achieve appreciable performance for the
considered detection task. The inclusion criteria is for
all performance metrics (F1-Score, Precision and Recall)
to be equal or above 0.9. By applying this inclusion
score we selected a total of 145 different detectors: 54
detectors for the CTU-13 dataset, 8 for IDS2017, 8
for CIC-IDS2018 and 75 for UNB-CA Botnet. We
can observe that several (≈20%) detectors do not achieve
suitable performance scores. This is motivated by the fact
that some classifiers may not be appropriate for the given
network environment.

Aggregated experimental results obtained by the 145
selected detectors are outlined in Table II.

In this table, rows indicate a specific dataset, while
columns represent the value of F1-Score, Precision and
Recall metrics. Each cell contains the average value
of a given metric, together with its standard deviation
enclosed in parentheses. We can see that the selected de-
tectors achieve good detection performance, comparable
to state-of-the-art solutions and consistent with results
achieved in related work [16], [32], [33].

Besides average and standard deviation, we also pro-
vide a graphical depiction of the considered performance
metrics through the boxplot diagrams shown in Fig-
ure 1, representing the distribution of the results for each
dataset. This figure includes four different diagrams, one
for each dataset. Each diagram shows three boxplots, rep-
resenting the results for F1-Score, Precision and Recall,
respectively. Boxplots show that the performance of all
algorithms are comparable and consistently good across
all datasets. Results are particularly promising for the
CIC-IDS2018 dataset, where all the detectors achieve
a F1-score that is very near to 1. We highlight that in
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Fig. 1: Distribution of F1-Score, Precision and Recall for
all detectors and all datasets.

previous work similar results led authors to conclude that
ML-based detectors can be successfully applied to real
network environments [32], [33], but that these previous
work did not account for adversarial attacks.

The 145 detectors included in this evaluation represent
our baseline for the subsequent experiments, and thus
will be subject to the adversarial attacks and defenses
based on feature removal.

B. Adversarial Attacks evaluation

We now evaluate the performance of our baseline de-
tectors in the considered adversarial setting. We generate
the adversarial datasets and test all the 145 detectors
against adversarial attacks by following the procedure
explained in Section IV-B. Aggregated experimental re-
sults are outlined in Table III. This table compares, for
each dataset, the average (and standard deviation) Recall
of the baseline detectors with the Recall obtained on
the adversarial samples. We focus on the Recall metric
since it reflects the number of malicious samples that
the detector is able to identify. The last column of
Table III shows the Attack Severity (see Equation 1),
which expresses the effectiveness of adversarial attacks
in reducing the Recall of a detector.

From Table III, it is clear that even the simple but
realistic adversarial samples considered in our experi-
mental evaluation manage to cause a significant drop
in the Recall of ML-based cyber detectors. A more

Table III: Effects of the adversarial attacks.

Dataset
Recall

baseline
(std. dev)

Recall
adversarial
(std. dev)

Attack
Severity
(std. dev)

CTU-13
0.956

(0.028)
0.372

(0.112)
0.609

(0.110)

IDS2017
0.993

(0.003)
0.656

(0.102)
0.327

(0.103)

CIC-IDS2018
0.999

(< 0.001)
0.564

(0.112)
0.436

(0.112)

UNB-CA Botnet
0.991

(0.017)
0.588

(0.218)
0.328

(0.212)

Average 0.985
(0.011)

0.545
(0.136)

0.425
(0.134)

reflective comparison of the effects of adversarial per-
turbations on the Recall for all classifiers of each dataset
is proposed in Figure 2. For each dataset, the first
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Fig. 2: Comparison between the distributions of the
Recall metric in the non-adversarial (baseline) and ad-
versarial (attack) scenarios for all datasets.

boxplot represents the distribution of the Recall across
all detectors in non-adversarial settings, while the second
boxplot shows results for the same metric in case of
adversarial attacks. From these boxplots we can see that
the detrimental effects of adversarial samples change
significantly for different datasets and detectors. As an
example, for the UNB-CA Botnet dataset the Recall
of the more resilient ML-detector (based on the MLP
algorithm) falls from 0.932 to 0.597, while the Recall
for the most impacted ML-detector (based on SVM)
for the same dataset falls from 0.914 to 0.198. The



Attack Severity is even worse for the CTU-13 dataset:
in this case the Recall for the less affected ML-detection
algorithm (based on RF) drops from 0.967 to 0.439. The
effects of adversarial attacks against different datasets
is summarized in Figure 3, which compares the Attack
Severities for all detectors across all datasets.

CTU-13 UNB-CA Botnet IDS2017 CIC-IDS2018
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Fig. 3: Comparison of the distribution of Attack Severity
for all the detectors among the 4 different datasets.

We remark that none of the tested 145 detectors that
exhibited good performance in the non-adversarial set-
tings is able to maintain F1-Score, Precision and Recall
above 0.9 while analyzing adversarial samples. Hence
despite good classification results achieved in previous
papers, it is clear that adversarial samples represent a
huge menace for real-world applications of ML-detectors
to the problem of botnet detection.

C. Countermeasure effectiveness
Next, we assess the effectiveness of defensive strate-

gies based on feature removal. To this purpose, we train
the 145 ML-detectors by only considering features that
are not affected by our adversarial attacks, as described in
Section IV-C, and evaluate their F1-Score, Precision and
Recall. Experimental results are summarized in Table IV.

By comparing Tables II and IV it is clear that feature
removal causes a considerable reduction in the average
detection performance. To also compare the distribution
of F1-Score, Precision and Recall of the different detec-
tors across all datasets we propose the boxplot diagrams
of Figure 4, that can be directly compared with Figure 1.

Table IV: Detection results for ML detectors with feature
removal.

Dataset F1-Score
(std. dev.)

Precision
(std. dev.)

Recall
(std. dev.)

CTU-13
0.803

(0.092)
0.810

(0.089)
0.799

(0.101)

IDS2017
0.503

(0.304)
0.777

(0.388)
0.596

(0.306)

CIC-IDS2018
0.859

(0.164)
0.814

(0.212)
0.942

(0.128)

UNB-CA Botnet
0.691

(0.276)
0.645

(0.285)
0.808

(0.209)

Average 0.714
(0.209)

0.761
(0.2235)

0.786
(0.186)
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Fig. 4: Distribution of F1-Score, Precision and Recall
using feature removal for all detectors and all datasets.

We can observe a significant decrease for all the
considered metrics. In particular, we highlight that the
lower Precision leads to a relevant number of false
positives, which are extremely undesirable for modern
cyber defence platforms. This reduction in quality is
explained by the fact that the removed features have a
meaningful impact to the underlying mechanisms of the
baseline detectors; thus, their exclusion causes an im-
portant performance drop, with most detectors obtaining
scores that are well below acceptable in real contexts.
We can conclude that despite its ability to nullify the
considered attack scenario, similar defensive strategies
are inefficient and their application is discouraged in
actual production environments. These results further
motivate the need for novel defensive approaches that



are both effective and applicable to modern network
scenarios.

We conclude this section by presenting the results
obtained by the 5 best detectors for each dataset in
non adversarial settings, which are provided in Tables V
through VIII.

These tables show the average performance of each
considered algorithm throughout all the steps performed
in our experimental evaluation (baseline, attack and
defense). The purpose of these tables is to highlight
how even algorithms that achieve near-perfect results
in non-adversarial settings can be heavily affected by
such simple evasion mechanisms. Moreover, after the
application of feature removal, only three algorithms (RF,
AB and MLP) are able to achieve acceptable values of
F1-Score, Precision and Recall, but only when applied
to the CIC-IDS2018 dataset.

VI. CONCLUSIONS

The application of machine learning algorithms to
cybersecurity must face the problem posed by adversarial
attacks. In this paper, we provide a thorough analysis
of adversarial perturbations from a Network Intrusion
Detection perspective. We evaluate the impact of real-
istic adversarial attacks against multiple state-of-the-art
botnet detectors, based on different machine learning
algorithms. Additionally, we study the effects of feature
removal, which is a known defense against adversarial
attacks. All experiments leverage several recent and pub-
lic datasets of network flows, which represent realistic
network environments. To the best of our knowledge,
the present work is the first to analyze this threat by con-
sidering such a large amount of algorithms and datasets.
The results highlight the high effectiveness of adversarial
samples against all of the considered classifiers, and that
feature removal is not a sufficient defense. Our contribu-
tion paves the way for the development of much needed
defensive approaches that can improve the robustness of
machine learning detectors in adversarial scenarios.
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G. Giacinto, and F. Roli, “Evasion attacks against machine
learning at test time,” in Springer Joint Europ. Conf. Mach. Learn.
and Knowl. Discov. Databases, Sept. 2013, pp. 387–402.

[11] B. Biggio, G. Fumera, and F. Roli, “Pattern recognition systems
under attack: Design issues and research challenges,” Int. J.
Pattern Recogn. Artif. Intel., vol. 28, no. 07, p. 1460002, 2014.

[12] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in Proc. ACM Workshop Secur.
and Artif. Intell., Oct. 2011, pp. 43–58.

[13] Z. Abaid, M. A. Kaafar, and S. Jha, “Quantifying the impact of
adversarial evasion attacks on machine learning based android
malware classifiers,” in Proc. IEEE Int. Symp. Netw. Comput.
Appl., Oct. 2017, pp. 1–10.

[14] F. Zhang, P. P. Chan, B. Biggio, D. S. Yeung, and F. Roli,
“Adversarial feature selection against evasion attacks,” IEEE T.
Cybernetics, vol. 46, no. 3, pp. 766–777, 2016.

[15] A. Demontis, P. Russu, B. Biggio, G. Fumera, and F. Roli, “On
security and sparsity of linear classifiers for adversarial settings,”
in Proc. Springer Joint. Int. Workshops Statist. Tech. Pattern
Recognit. and Struct. Syntactic Pattern Recognit., Nov. 2016, pp.
322–332.

[16] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti,
“Addressing adversarial attacks against security systems based
on machine learning,” in Proc. IEEE Int. Conf. Cyber Conflicts,
May 2019, pp. 1–18.

[17] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against
intrusion detection systems: Taxonomy, solutions and open is-
sues,” Elsevier Inform. Sciences, vol. 239, pp. 201–225, 2013.

[18] J. Gardiner and S. Nagaraja, “On the security of machine learning
in malware c&c detection: A survey,” ACM Comput. Surv.,
vol. 49, no. 3, p. 59, 2016.

[19] Z. Lin, Y. Shi, and Z. Xue, “Idsgan: Generative adversarial
networks for attack generation against intrusion detection,” arXiv
1809.02077, 2018.

[20] T. S. Sethi and M. Kantardzic, “Data driven exploratory attacks
on black box classifiers in adversarial domains,” Elsevier Neuro-
computing, vol. 289, pp. 129–143, 2018.

[21] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in Proc. Springer Int. Conf. Inf. Syst. Secur.
Privacy, Jan. 2018, pp. 108–116.

[22] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Deceiving end-to-end deep learning malware detectors
using adversarial examples,” arXiv:1802.04528, 2018.

[23] J. Clements, Y. Yang, A. Sharma, H. Hu, and Y. Lao, “Rallying
adversarial techniques against deep learning for network security,”
arXiv:1903.11688, 2019.

[24] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading
deep learning for malware detection in executables,” in Proc.
IEEE Europ. Conf. Sign. Proc., Sep. 2018, pp. 533–537.



Table V: CTU-13 top5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9694 0.9722 0.9668 0.4390 0.5461 0.8564 0.8498 0.8641
AB 0.9722 0.9748 0.9696 0.4074 0.5803 0.8446 0.8487 0.8410

MLP 0.9458 0.9454 0.9462 0.3141 0.7261 0.7235 0.7734 0.6886
KNN 0.9296 0.9273 0.9320 0.2982 0.6806 0.6992 0.7265 0.6767
Bag 0.9745 0.9799 0.9693 0.4007 0.5869 0.8477 0.8516 0.8442

Table VI: IDS2017 top5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

AB 0.9972 1 0.9945 0.7455 0.2504 0.7172 0.9779 0.5663
MLP 0.9959 0.9972 0.9945 0.5991 0.3975 0.7169 0.9344 0.5816
KNN 0.9959 1 0.9918 0.5512 0.4442 0.4292 0.2764 0.9591
ET 0.9972 1 0.9945 0.7333 0.2626 0.7456 1 0.5943
GB 0.9945 1 0.9891 0.7221 0.2699 0.7476 1 0.5969

Table VII: CIC-IDS2018 top5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9999 0.9999 0.9999 0.5965 0.4034 0.9822 0.9653 0.9996
AB 0.9997 0.9999 0.9996 0.5632 0.4365 0.9709 0.9969 0.9463

MLP 0.9997 0.9999 0.9995 0.7123 0.2873 0.9696 0.9939 0.9465
KNN 0.9998 0.9999 0.9998 0.4866 0.5132 0.8225 0.7564 0.9012
ET 0.9999 0.9999 0.9999 0.6023 0.3976 0.9822 0.9653 0.9996

Table VIII: UNB-CA Botnet top5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9974 0.9997 0.9951 0.6856 0.3110 0.8912 0.8584 0.9283
KNN 0.9496 0.9479 0.9516 0.6167 0.3507 0.8144 0.7555 0.8871
ET 0.9993 0.9999 0.9987 0.6831 0.3160 0.8897 0.8544 0.9294

MLP 0.9215 0.9113 0.9321 0.5978 0.2756 0.7393 0.6779 0.8325
AB 0.9955 0.9971 0.9939 0.6840 0.3118 0.8926 0.8595 0.9303

[25] G. Apruzzese and M. Colajanni, “Evading botnet detectors based
on flows and random forest with adversarial samples,” in Proc.
IEEE Int. Symp. Netw. Comput. Appl., Oct. 2018, pp. 1–8.

[26] G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and
A. Guido, “Identifying malicious hosts involved in periodic
communications,” in Proc. IEEE Int. Symp. Netw. Comput. Appl.,
Oct. 2017, pp. 1–8.

[27] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet
detection using supervised machine learning,” in IEEE Int. Conf.
Comput., Netw. and Commun., Feb. 2014, pp. 797–801.

[28] G. Apruzzese, F. Pierazzi, M. Colajanni, and M. Marchetti,
“Detection and threat prioritization of pivoting attacks in large
networks,” IEEE T. Emerg. Top. Com., 2017.

[29] F. Pierazzi, G. Apruzzese, M. Colajanni, A. Guido, and
M. Marchetti, “Scalable architecture for online prioritisation of
cyber threats,” in Proc. IEEE Int. Conf. Cyber Conflicts, May
2017, pp. 1–18.

[30] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” Elsevier Comp. Secur.,
vol. 45, pp. 100–123, 2014.

[31] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani,
“Towards effective feature selection in machine learning-based
botnet detection approaches,” in Proc. IEEE Conf. Comm. Netw.
Secur., Oct. 2014.

[32] B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E. Brown,

and M. Veeraraghavan, “A comparison of machine learning
approaches to detect botnet traffic,” in Proc. IEEE Int. Joint Conf.
Neur. Netw., Jul. 2018, pp. 1–8.

[33] M. Stevanovic and J. M. Pedersen, “An analysis of network traffic
classification for botnet detection,” in Proc. IEEE Int. Conf. Cyber
Situat. Awar., Data Analyt., Assessment, Jun. 2015, pp. 1–8.

[34] F. V. Alejandre, N. C. Cortés, and E. A. Anaya, “Feature selection
to detect botnets using machine learning algorithms,” in Proc.
IEEE Int. Conf. Elect. Commun. Comp., Feb. 2017, pp. 1–7.
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