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ABSTRACT

Many domains now leverage the benefits of Machine Learn-
ing (ML), which promises solutions that can autonomously learn to
solve complex tasks by training over some data. Unfortunately, in
cyberthreat detection, high-quality data is hard to come by. More-
over, for some specific applications of ML, such data must be la-
beled by human operators. Many works “assume” that labeling is
tough/challenging/costly in cyberthreat detection, thereby propos-
ing solutions to address such a hurdle. Yet, we found no work that
specifically addresses the process of labeling from the viewpoint of
ML security practitioners. This is a problem: to this date, it is still
mostly unknown how labeling is done in practice—thereby prevent-
ing one from pinpointing “what is needed” in the real world.

In this paper, we take the first step to build a bridge between aca-
demic research and security practice in the context of data labeling.
First, we reach out to five subject matter experts and carry out open
interviews to identify pain points in their labeling routines. Then,
by using our findings as a scaffold, we conduct a user study with
13 practitioners from large security companies, and ask detailed
questions on subjects such as active learning, costs of labeling, and
revision of labels. Finally, we perform proof-of-concept experiments
addressing labeling-related aspects in cyberthreat detection that are
sometimes overlooked in research. Altogether, our contributions
and recommendations serve as a stepping stone to future endeav-
ors aimed at improving the quality and robustness of ML-driven
security systems. We release our resources.

KEYWORDS

Labeling, ML, Practitioners, User Study, Cyberthreat Detection

1 INTRODUCTION

The never-ending advancements of Artificial Intelligence (AI) in
research are in plain sight [32, 34], and Machine Learning (ML)
techniques are now becoming increasingly integrated also in op-
erational information systems. Among the plethora of domains in
which ML has found a real-world application (e.g., [3, 54]), the one
of computer security – and, in particular, cyberthreat detection
– stands out [7]. On the one hand, by ‘training’ ML models over
some data, it is possible to develop ML-based systems that can mit-
igate the threat of zero-day attacks—which cannot be countered
via conventional signature-based methods [21]. On the other hand,
obtaining the data required to devise such data-driven solutions is
challenging—especially from an organizational perspective [9].

Indeed, it is well-known that “there is not such a thing as a
foolproof system” [14], therefore it is understandable that even
ML-powered defenses may fail to detect all attacks. However, while
some misclassifications may not raise serious security concerns,
others may conceal signs of sophisticated attacks (e.g., [25, 36]),
which can lead to an entire organization becoming compromised [7].
Simultaneously, security analysts are often overwhelmed by the

excessive amount of false alarms that are raised by data-driven de-
tectors [4]. The sheer reality is that the development of ML models
ready for operational cybersecurity requires the collection of data
points that pertain to the specific environment1 being monitored [9].

Such a peculiarity hence prevents a reliable ‘transfer’ of ML mod-
els between different environments [10, 15, 19], which intrinsically
hinders the advancement (both in research and practice) of ML for
security applications.2 To give an idea, some security companies
revealed [7] that deployment of an ML-powered detector required
almost one month of data collection (and extensive fine-tuning)
done in their customers’ network—which are operations that must
be performed manually and under the responsibility of the security
company. Tomake things worse, the process of “obtaining a suitable
training dataset” may not only entail the ‘collection’ of the data but
also its ‘annotation’: in other words, there is a need to associate
each data-point to a given label that is used during the training
phase of the ML model to guide its learning [31]. Such a procedure
– required for supervised ML methods – necessitates a human who
carefully assigns every sample in a dataset to its ground truth.

Due to these reasons, in the security domain, it is now acknowl-
edged that “[data] labeling is expensive” [9, 27], and abundant
efforts have attempted to address this issue. For instance, many
papers discuss ways to ‘optimize’ the labeling process (e.g., by
proposing active learning strategies [49]), or ‘decrease the cost’
of labeling (e.g., by assigning coarse labels [59]); others seek to
reduce the amount of ‘labeled instances’ required to develop profi-
cient ML models (e.g., few-shot learning [61]). Finally, some works
(e.g., [47]) advise that ‘unsupervised’ ML methods are more appro-
priate for cyberthreat detection, due to the absence of a labeling
requirement [21]. However, despite a rich literature on this subject,
we asked ourselves: “How prohibitive is labeling in practice?”
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Fig. 1: Overview (and contributions) of our paper.

1The requirement for environment-specific data is in stark contrast with many other
applications of ML [9]. For instance, in visual object recognition, “a cat will always be
a cat” and “a dog will always be a dog”; in contrast, in cybersecurity, an IP address (or
an URL) can be ‘benign’ for one organization, and ‘malicious’ for another one.
2The ML-based solutions proposed in many papers – despite showing near-perfect
accuracy – have never seen the light of realistic deployment [8]. As a matter of fact,
security practitioners see ML (and especially research papers [8]) with skepticism [20].
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Perhaps surprisingly, we were unable to find any work that
specifically investigated the labeling problem in itself. To the best
of our knowledge, most existing work assumed that labeling is
costly, but no work studied how this process is carried out from
an organizational perspective. The only evidence we were able to
find was the 2016 paper by Miller et al. [43], which estimated that
security companies may have a labeling budget of 80 samples per
day. However, the security landscape has changed significantly
since 2016 [7], and (some) companies now do have labeling duties.
Hence, in this paper, we seek to investigate the problem of data
labeling from the viewpoint of security practitioners—with a focus
on ML applications for cyberthreat detection.
Contributions. We seek to build a bridge between academic
research and industrial practice in the context of data labeling for
cybersecurity. To this purpose, after positioning our paper within
existing literature (§2), we make the following contributions (Fig. 1):
• As a first step, we carry out interviewswith five security prac-

titioners having experience in ML development (§3). After qual-
itatively analyzing the responses, we highlight the challenges
associated with data labeling, including pain points, costs, and
time expenditures. Intriguingly, we found that even practitioners
cannot estimate the costs of labeling.

• By using our interviews as a scaffold, we conduct a user study
with security experts from 13 different companies (§4). Our
semi-structured questionnaire delves deeper into the subject of
data labeling, and our quantitative analyses reveal how various
security companies address this problem for real-world projects.
Interestingly, 31% had never heard of the term “active learning”,
and some stated that it leads to overconfidence.

• To validate some of our previous findings, we perform technical

experiments focused on some labeling aspects overlooked

in research (§5). Specifically, we showcase the importance of
repeated evaluations in cases of scarce labeled data; the effects of
mislabeling; and the pros-and-cons of active learning methods—
which can reach plateaus with no practical benefits at all.

After discussing our study (§6), we coalesce all of our novel findings
into a set of recommendations and takeaways (§7) useful to
improve the state-of-the-art (for both research and practice). Finally,
for scientific reproducibility and to pave the way for future work,
we publicly release all our resources [1].

2 BACKGROUND AND MOTIVATION

We summarize some well-known cybersecurity labeling strate-
gies (§2.1), and then compare our paper against related work (§2.2).

2.1 Labeling Strategies (in research)

The starting point of any application of machine learning is data,
whose role is developing a given ML model, which will then be
used to analyze ‘unseen’ samples. In the context of cyberthreat
detection, such training datamust be provided with some reference
information (i.e., a ‘label’) used to distinguish benign frommalicious
samples. 3 Obtaining such reference information, however, requires
some human ‘supervision’.4 Consequently, whenever labeling is
required, it is common [9] to introduce some form of labeling budget,

3Cyberthreat detection is⊥ to anomaly detection (not all anomalies are “a threat” [52]).
4Hence the name of supervised ML techniques [57].

B, used to associate each sample, 𝑥 , of a given dataset, D, to its
ground truth, 𝑦. From an organizational perspective, labeling can
be seen as that process which uses B to obtain L, i.e., a labeled
dataset (having L⊆D) used to develop an ML model 𝑀 .

Without loss of generality, we identify the following labeling
approaches—discussed, adopted, and proposed in research (and
sometimes associated to the term “semi-supervised learning” [9]).
• Random (e.g., [5]), i.e., the most naive form of labeling: After ob-
taining a given dataset, the annotator labels each sample without
following any specific strategy, until the budget is depleted.

• Temporal labeling (e.g., [6]), whose goal is to label the samples
according to their chronological occurrence (until the budget is
depleted), to provide a “temporally consistent” testbed (useful
to prevent temporal bias which may skew the results [12]).

• Crowdsourcing (e.g., [64]), in which the labeling efforts are del-
egated (by using the available budget) to third-parties. This is
a common approach in computer vision [39], which is receiv-
ing attention also in cybersecurity [29] (especially when the
annotation does not require extensive domain expertise).

• Synthetic generation (e.g., [55]), which entails the creation of
specific samples whose ground truth is known “a priori”.

• Active learning (e.g., [49]), which seeks to optimize the labeling
procedure by “suggesting” specific samples to the annotator: The
idea is to prioritize labeling of those samples that can maximize
the learning of the ML model (see Appendix A for more details).

We also mention approaches typically denoted as self-supervised
learning, which revolve around having the ML model to (iteratively)
learn on the (likely inaccurate) predictions that it makes when
analyzing unlabeled data (e.g., [38, 56]).

We observe, however, that the practical effectiveness of all the
abovementioned strategies is questionable or still unclear. For
instance, random labeling is, by definition, inefficient (and is the
source of experimental bias [9, 12]). Temporal labeling requires
accurate timestamps, which are not always available [8]. Crowd-
sourcing is reliant on the judgment (and ‘honesty’ [41]) of people
who may not be at all interested in the performance of the resulting
ML model [39]. Generating data synthetically can be economically
viable (since the budget is virtually infinite), but it is difficult to do
so in a realistic way (e.g., the generated data may represent threats
that are well-known and for which there are already countermea-
sures [24]) and recent research showed plenty of inaccuracies in
some popular datasets [22]. Self-supervised learning has been re-
cently shown to provide almost negligible benefits in cyberthreat
detection [9]. Finally, while active learning (AL) has consistently
proven to be advantageous [9, 17, 26, 37, 49], it is still unclear how
to reliably use it in practice: as we will show in this paper (§4), some
practitioners are oblivious of the term “active learning”.

2.2 Labeling in Practice (related work)

Despite thousands of papers that focus on the interplay between
ML and cybersecurity (see, e.g., [7, 32, 53] for literature surveys),
we observed that no paper attempted to scrutinize how labeling

is done by security practitioners.
Indeed, we carried out an extensive review of existing cybersecu-

rity literature, and we found that most works that seek to mitigate
the problem of data-labeling simply acknowledge that “labeling
is costly in practice”, and then proceed to propose a solution that
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attempts to alleviate such costs. For example, in 2017, Li et al. [37]
showed that using AL (w.r.t. random selection) allows a phishing
detector to converge faster (in terms of the number of labeled in-
stances required) to its ideal maximum accuracy; a similar finding
was made in 2020 by Chen et al. [17] for malware classification, and
in 2021 by Zhang et al. [63] for network intrusion detection. Yet,
all these solutions have been assessed in a laboratory setting, and
they did not undergo any form of validation by real practitioners—
despite achieving substantial performance improvements.5 To the
best of our knowledge, the few (recent) exceptions are the paper
by Van Ede et al. [59], encompassing authors from both industry
and academia; and the study by Fredriksson et al. [23]. However,
the latter – while providing insight from practitioners – does not
pertain to cybersecurity; whereas the former – which proposes
a coarse labeling strategy that is validated in a real SOC – only
accounts for the perspective of a single security company.

Put simply, scientific literature overlooks the real-world impli-
cations of data-labeling in cybersecurity—which, to the best of our
knowledge, are still unknown. This is a problem because it pre-
vents one from determining: (i) whether a given solution is truly
applicable to a given context (i.e., does its adoption in practice yield
some benefits?); (ii) which methods should be given more attention
(i.e., by knowing which methods are used in practice, one can focus
on improving such methods); (iii) the overall role of data-labeling in
an operational workflow (i.e., do practitioners really care?). Address-
ing any of these issues is, however, challenging— especially from
the perspective of a researcher. This is because doing so requires
the researcher to go beyond the lab, i.e., they must establish some
form of collaboration with security professionals—whose practices
are often kept hidden (both for their own companies’ security, as
well as for trade-secrets [28]). For instance, receiving permission to
test a given solution on a real security system may be unfeasible for
researchers, whereas finding companies who are willing to disclose
(parts of) their workflows is tough [42]. In this paper, we aim to
overcome all such challenges.

Problem. Despite abundant works claiming that “labeling is
costly in cybersecurity”, there is no paper that attempted to in-
vestigate such a hurdle from the perspective of practitioners.

To shed light on the process of data labeling in operational cyberse-
curity, we reach out to security practitioners (through both expert
interviews and user studies) and ask them to share some insights
deriving from their daily routines.6 We then carry out proof-of-
concept experiments to validate some of the findings brought to
light by our prior analyses. Such a twofold approach is unusual
in related literature. Indeed, technical papers (e.g., [26]) tend to
overlook the perspective of practitioners; whereas papers that inves-
tigate the practitioners’ viewpoint (e.g., [23]), do not perform any
sort of validation—aside from not being focused on cybersecurity.

5Albeit, interestingly, a recent work [9] revealed that most comparisons presented
shortcomings, thereby questioning whether prior work was effective even in research.
6
Ethics: Our institutions know and approve this research. We follow the Menlo report.

3 EXPERT INTERVIEWS

Our first contribution are the findings of interviews with experts
in the field of ML and cybersecurity. We describe the methodol-
ogy (§3.1); then, we present (§3.2) and discuss (§3.3) our results.

3.1 Method

The goal of these interviews was to identify pain points in the
data labeling process, assess its costs and time factors, and gather
insights through narrative and directed open-questions [60].

Participants. To identify suitable subject matter experts (SME),
we reached out to over 40 companies with expertise in cybersecu-
rity and ML. Companies actively involved in ML programming for
cybersecurity applications were specifically targeted, rather than
those solely using pre-existing ML solutions. Despite sending hun-
dreds of emails, we found an agreement only with five SMEs, each
representing a different company (located in Europe, and having
>500 employees). Such SMEs agreed to share some information on
their daily routines (due to NDA, we cannot reveal more informa-
tion on our participants). All these difficulties (common in related
studies, e.g., [4, 42]) increase the value of our findings.

Questions. After reaching an agreement with our SME, two
authors held various brainstorming sessions aimed at deriving a
set of questions that would be used as a basis for the interviews.
Specifically, we sought to frame open-ended questions that would
facilitate a broad discussion, which allows for uncovering non-
obvious issues—while accounting for potential NDA binding the
interviewee. Eventually, we concocted eight questions, for which
we also anticipated potential answers and prepared likely follow-up
questions to delve deeper into specific issues based on the inter-
viewee’s responses. In particular, for each question, we predicted
between one and five potential answers and defined between three
to seven follow-up questions. This laid the foundation for gaining a
comprehensive understanding of the practical implications, which
formed the basis for subsequent endeavors such as user study and
experiments aimed at addressing the identified issues within real-
world contexts. Our generic set of questions is available in our
public repository [1], but we provide a summary in Table 1.

Table 1: Interview topics

Question No. Category - Data Labeling

1 Description of the Process
2 - 3 Resource Requirements and Time Expenditure
4 - 6 Improvement Possibilities and Strategies
7 - 8 Future Predictions and Impact

Conduction. The interviews were done (in English) by the same
author, who reached out to each SME and agreed on a one-hour
timeslot to have a remote interview. We did not prime our SMEs
(i.e., we did not send them any questions beforehand), but they were
informed that the interviewwould revolve around labeling practices.
The interviews were not recorded, and the interviewer, after asking
each question, took plenty of notes. Overall, the interviews were
done between December 2022 and March 2023.

3.2 Main Findings

After carrying out the interviews, we qualitatively analyzed all the
notes taken (we cannot share such notes due to NDA). We organize
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our main findings in three areas (summarized in Table 2): challenges
of data labeling, possible improvements (in the short-term), and
avenues for future work. Let us present each of these at a high level.

Table 2: Interview results.

Challenges Suggested Improvements Future Work

Sensitive Data Iterative Labeling Self-explainable
ML Models

Time Expenditure Active Learning Early labeling

Financial Costs Integration of data labeling
into Company Routines

Lack of Ground Truth
Continuous Process
Manual Task

Challenges of Data Labeling. Our SMEs admitted to facing
many challenges during their daily routines w.r.t. data labeling.
Among these, we mention the following six.
• Sensitive data: Labeling sensitive data poses challenges due to
strict privacy regulations. Systems that ensure no direct human
interaction with the data are needed to maintain confidentiality.

• Time expenditure: The time spent on data labeling varies depend-
ing on the data type and system dynamics. The complexity is
increased by system changes within a short period. Estimating
the exact percentage of time spent on labeling is difficult but it
consumes a significant amount of time, especially in supervised
methods for threat modeling or identifying malicious patterns.

• Costs of data labeling: Data labeling constitutes a significant
portion of the overall costs associated with developing an ML
model. However, discussing specific cost numbers is challenging
and SMEs have limited knowledge about the costs due to its
ongoing nature and budget allocations.

• Lack of ground truth: especially for some cyberthreats (e.g.,
APT [36]), it is hard even for a SME to provide a reliable la-
bel (i.e., is an attack taking place or not?). Iterative labeling is
necessary due to difficulties in differentiating between different
threat types and the discovery of new patterns.

• Ongoing nature of data labeling: Data labeling is an ongoing
process due to software updates and changes in the environment
or threat landscape. Labeled datasets become obsolete and re-
labeling is necessary based on factors such as data type and
problem dynamics. This issue is often aggravated by the (well-
known) likely “alert fatigue” [4].

• Manual labeling: Human expertise is crucial in the labeling pro-
cess. Involving domain experts with a deep understanding of
the cybersecurity domain is necessary for accurate labeling.

Perhaps interestingly, our interviewees never mentioned “crowd-
sourcing” (§2.1). This may be because their security companies
handle sensitive data that cannot be offloaded to third parties.

Improvement Possibilities: According to our interviewees,
there are ways to improve the current process of labeling in the
cybersecurity domain. Three, in particular, were identified,
• Iterative labeling: Iterative labeling is beneficial for cyberthreat
detection. This approach allows continuous adaptation, although
it requires reevaluation when new discoveries arise.

• Active learning: Most companies were not familiar with the con-
cept of active learning (AL). However, those who were aware7

7Interestingly, SOC analysts did not know the term, but were unconsciously using AL
since alerts in a SOC can be labeled and are also provided with a ‘confidence’ score.

of AL recognize its potential to enhance the efficiency and effec-
tiveness of the data labeling process.

• Integration into company routines: Companies strive to seam-
lessly integrate data labeling into their routines to ensure accu-
rate labeling. However, widespread implementation and stan-
dardized processes are still lacking.

We anticipate that the findings above inspired us to perform our
experimental campaign focused on active learning.

Looking ahead. Our interviewees made two intriguing remarks
that may revolutionize the process of data labeling in cybersecurity.
• Data labeling in cybersecurity will be influenced by develop-
ments in AI explainability. Currently, many ML models operate
as black boxes, lacking transparency in their decision-making
processes. This hinders trust in the outputs of these models
and the ability to justify security decisions to stakeholders. The
demand for more explainable ML models in cybersecurity is
growing, potentially reducing the reliance on human experts for
data labeling. Models that can provide credible explanations for
their decisions may eliminate the need for human verification. In
contrast, more advanced models could offer additional context
to assist human experts, reducing the time required for labeling.

• Commencing data labeling early is crucial for cost efficiency
and improved learning. Even if better labeling methods emerge
in the future, starting with pre-labeled data prevents starting
from scratch. Early data labeling expedites the learning cycle
and enhances the quality of labeling, leading to long-term cost
savings. Companies should ensure their systems allow easy val-
idation or dismissal of data with a single click. However, they
must also guard against dismissing results without thorough
scrutiny. Proper data labeling is essential to avoid future com-
plications. Effectively mastering data labeling is an ongoing
process involving labeling, learning from errors, and repeating
the cycle. Therefore, it is advantageous for companies to initiate
data labeling as early as possible.

Disclaimer: The statements above stem from our own re-
elaboration of the (sparse and unstructured) answers we received
during our interviews, and they reflect the opinion of SMEs.

3.3 Interpretation and Takeaways

We now attempt to interpret the responses received by our inter-
viewees, aiming to derive some actionable takeaways.

First, there is a huge gap between scientific research and

industrial practice. This is evidenced by the following:
• Most of our interviewees did not know the term “active learning”,
despite being common in related literature [9, 51].

• Despite labeling playing a crucial role inML development (which
had been known for decades [44, 57]), companies do not have
established workflows for doing so in practice.

• Reaching out to practitioners was hard, since only 5 out of 40
companies accepted to participate in our interviews (a problem
encountered also by other studies [42]).

Given the above, our paper is a step in the right direction.
Second, the costs of labeling are unknown to both researchers

and practitioners alike. Whenever we asked an interviewee to
provide an estimate of such costs (either in terms of allocated re-
sources, or time spent labeling) we have never received a clear
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answer. What we find intriguing is that our interviewees belonged
to large and well-known security companies—and we were expect-
ing that the labeling workflow was at least somewhat structured;
in contrast, the reality is that (at least according to our intervie-
wees) these procedures are done manually and occasionally. Hence,
we advocate for companies to take the problem of labeling more
seriously (even their employees are implicitly requesting it!).

Third, labeling is not easy even for SMEs. This finding is
crucial, especially in the cybersecurity context, since it suggests
that – in reality – the data used to train operational ML models
may present abundant errors. As such, from the perspective of a
researcher, assuming that a given ‘benchmark’ dataset contains
labels that are 100% accurate (which is the de-facto standard8 in
ML papers) may be overly optimistic. We argue that to represent a
more realistic scenario, it is necessary to synthetically create some
‘polluted’ data-points which can simulate human labeling errors.

We conclude this section by reporting some insightful remarks
that, despite being orthogonal to data labeling, provide further
evidence of the ‘disconnection’ between research and practice in
the context of ML security (and which complement [4]).

Reports from SOC analysts. According to some SMEs who
are familiar with research, there is a discrepancy between aca-
demic assertions and the practical use of ML, particularly of
“Deep Learning”, in cybersecurity. Despite recent studies claim-
ing extensive application of Deep Learning (e.g., [40]), the in-
sights from SMEs suggest otherwise. Indeed, according to SMEs,
a significant portion of cyberthreat detectors relies on rule-based
methods, with ML being used only for complex scenarios.a Fur-
thermore, when anomalies or changes occur in the network en-
vironment, SMEs emphasize the need to revert to simpler ML
models and start afresh. This highlights the importance of ef-
ficient labeling and raises concerns about the efficacy of deep
learning methods, which require larger (labeled) datasets.
aAllegedly, ML is only applied to approximately 20% of the incoming samples, while
rules govern decision-making for around 70%.

4 USER STUDY

Drawing on the insights gleaned from the interviews (§3), we carry
out a user study to further elucidate the key issues tackled by this
paper. We begin by describing the adopted methodology (§4.1), and
then present the results (§4.2).

4.1 Method

Contrary to the interviews, the user study entails a semi-structured
questionnaire [2], meant to be answered asynchronously by a dif-
ferent set of participants.

Questionnaire.We designed a questionnaire having 15 ques-
tions inquiring about the role of labeling (within the participant’s
company) and about predictions on future developments of ML.
Each question is accompanied by a set of 3 to 5 potential answers
or a designated space for respondents to provide a custom response.
The last three (out of 15) questions are formulated as open prompts.
We provide our questionnaire in our repository [1]. To encourage
8This can explain why the near-perfect accuracies of ML models in research environ-
ments still trigger skepticism in security practitioners [8].

participation and ensure a reasonable completion time, the user
study is designed to be completed within five minutes. Participants
were always given the possibility of not answering some questions.

To ensure consistency and comparability of the results, the ques-
tionnaire begins by clarifying the meaning of “manual labeling”,
and by defining the term “project”9 (this term occurs frequently in
the questionnaire). The first questions (Q) focus on uncovering the
role of labeling in the participants’ daily routines; for instance, Q3
asks “what percentage of the whole project is dedicated to label-
ing?” with possible answers being “less than 10%/between 10% and
20%/between 30% and 50%/more than 50%”. We also inquire about
a participant’s opinion on “active learning”. The last questions ask
about expectations on the future role of supervised ML and explain-
ability in the cybersecurity domain (both of which are linked to
data labeling). We hosted the questionnaire on an unpublished web-
site, and we never asked for participants’ sensitive or personally
identifiable information (the questionnaire is anonymous).

Participants. We set ourselves the goal of having an increased
number of participants for the user study (w.r.t. the expert inter-
views). Hence, between March and June 2023, we reached out again
to dozens of SMEs, each representing a unique security company,
asking if they were willing to partake in a short survey about their
labeling practices. We restricted all communication to emails: as
soon as an SME agreed to participate in our research, we sent them
a link to the questionnaire. Since the procedure was asynchronous,
we do not know the identity of our respondents (who may have
delegated colleagues with better expertise). Nonetheless, by the
end of June 2023, we received 13 responses to our user study—all
belonging to SMEs representing different security companies.10

4.2 Results and Takeaways

With few exceptions, all 13 SMEs responded to every question. We
display the responses for three questions (Q3, Q5, Q7) in Fig. 2; the
full results are in our repository [1]. Due to space limitations, we
only discuss the three most relevant findings.

First, Q3 (Fig. 2a) shows varying perspectives on the time dedi-
cated to data labeling, with some SMEs estimating it to be more than
30% of a project’s life-cycle, while others believed it to be between
10 and 30%, or even less than 10%. Intriguingly, Q1 reveals that the
projects of 54% of participants take [4–6] months, while those of
31% take more than 6 months, and the remaining 15% have projects
that last [1–4] months (this supports the observation in [8] that
cybersecurity is mostly outsourced). However, Q5 (Fig. 2b) indicates
that labeling is (overall) “less expensive” than other maintenance
operations such as post-processing and analysis. This finding aligns
with Q7 (Fig. 2c), which reveals that most practitioners hardly re-
vise previous labels. Hence, we conjecture that labeling is done

mostly at the beginning and that – while important – after the
ML model has been developed, labeling duties are overshadowed
by other tasks (we invite the reader to look at Q6 in our repository).

Second, about active learning (in Q10), 4 (31%) of our respondents
have “never heard of it”, while 4 (31%) “are using it” and 5 (38%)
are “using something similar”. Further, some remarked that AL can

9We defined a project as “the development of an ML model that yields appreciable
detection performance after its deployment”.
10We believe that the higher response rate w.r.t. the interviews to be due to the survey
being less time-consuming (∼2 minutes) than the interview (1+ hour).
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0 2 4 6
Absolute Frequency

[10-30]

<10

[30-50]

>50

50.00%

33.33%

16.67%

0.00%

3. What % of the whole project costs does 
 labeling take?

(a) Responses to Q3.

0 2 4 6
Absolute Frequency

Post-processing 
 and analysis

Model 
 development

Data labeling

46.15%

38.46%

15.38%

5. What are the most expensive 
 steps during the project lifecycle?

(b) Responses to Q5.

0 3 6 9
Absolute Frequency

Sometimes

Almost 
 never

Very 
 frequently

69.23%

23.08%

7.69%

7. How often do you revise labeled 
 data during the project lifecycle?

(c) Responses to Q7.

Fig. 2: Some responses of our user study (we provide the full results in our public repository [1]).

lead to overconfidence, because the expert will only inspect the
samples suggested by the ML model, thereby potentially overlook-
ing samples that conceal traces of serious threats. This observation
is intriguing and may explain why AL is not yet widespread in
security—which is a field in which even a single misclassification
can lead to an entire system becoming compromised.

Third, about future prospects, Q15 reveals that our participants
have mixed views on the popularity of supervised ML (w.r.t. un-
supervised ML): 5 (38%) participants believe that “it is unlikely
that more supervised ML will be deployed”, whereas the remaining
predicted that it would be either “very popular” (3, 23%) or “more
used, but not by much” (5, 38%). Regardless, the expectation is

that supervisedMLwill remain used in cyberthreat detection,
which urges the development of effective labeling strategies.

5 TECHNICAL EXPERIMENTS

As a last contribution, we now perform proof-of-concept experi-
ments revolving around some of our prior findings.We first examine
the impact of various amounts of training data on the performance
of a (supervised)ML-based detector (§5.1). Then, we investigate how
human labeling errors can affect the quality of an ML model (§5.2).
Finally, we assess the benefits of active learning (§5.3).

Dataset. The cyberthreat detection landscape is large, since
it encompasses, e.g., malware, phishing, and network intrusion
detection—all of which being domains for which many ML-ready
datasets exist [9]. However, recent studies revealed that publicly
available datasets for network intrusion detection are flawed [22],
whereas many recently proposed malware detectors in research
entail deep learning—which our SME regarded with skepticism (see
end of §3.3). Hence, we focus these experiments on the problem of
phishing website detection, given that (i) many works (e.g., [11, 45,
58]) showed that “shallow” ML algorithms outperform those based
on deep neural networks; and that, for phishing detection, (ii) we
are more confident that the labels are correct [9]. Among the many
datasets containing phishing and benign websites (e.g., [11, 45]),
we chose the well-known one by Chiew et al. [18]. It contains 10 000
samples (webpages), equally split between benign (taken fromAlexa
top) and phishing (taken from OpenPhish and PhishTank).
Disclaimer: The goal of our evaluation is to guide future research
by suggesting some “viewpoints” often neglected in related litera-
ture (but relevant in practice). We do not claim technical novelty,
but our results can serve as a benchmark (we share our code [1],
which also includes the hyperparameters and low-level details).

5.1 Training Size Impact (Baseline)

As a starting point, we study the performance of an ML-detector as
a function of the amount of labeled data used during its training
phase. While similar studies have been carried out in the past (even
for phishing website detection—e.g., [9, 37, 62]), we are not aware
of works that performed such an evaluation on our chosen dataset.
Furthermore, related papers on phishing detection perform their
experiments on “private” data (such as [37, 62]). Hence, our testbed
represents a valuable benchmark for future work.

Setup.We embrace the recommendations of [9]. First, we take
our dataset [18] (having 5k benign/phishing samples),D, and extract
a test partition, E, containing 20% of D (i.e., 1k benign/malicious
samples). The remaining 80% samples of D are then treated as data
usable for training, T. For developing our ML detector, we rely
on the random forest (RF) algorithm—which has been shown to
consistently outperform other types of classification algorithms
for phishing website detection (e.g., [18, 37, 45, 58]). Since in this
experiment we want to measure the impact of different amounts
of labeled data, we train ML models by randomly sampling from
T at 1% increments, spanning from 1% (i.e., 80 labeled samples) to
100% of T (i.e., 8 000 samples); for consistency, we ensure that every
subset is balanced. Hence, for every considered subset of T, we train
an RF classifier and assess its performance on E. Finally, to provide
a statistically significant benchmark, we repeat the sampling 30
times (i.e., we develop 3 000 ML models: 30 trials×100 subsets of
T): according to [9], simulations of scarce amounts of labeled data
(drawn from a large labeled dataset) may present sampling bias
which must be accounted for by repeating the draw many times
(which is not done, e.g., in [62]). Inspired by this observation, we
will compare the results of a ‘single’ trial with the results (averaged)
of 30 trials. We measure the performance of every assessment via
common evaluation metrics, i.e., accuracy, recall, precision, and
F1-score; for simplicity, we only consider accuracy in this section
(we report the other metrics in our repository [1]).

Results. We visualize the results of this experiment in Fig. 3,
showing the performance (y-axis) as a function of the size of the
training set (x-axis). The green line refers to the average accuracy
over the 30 trials, whereas the red line refers to the accuracy of
a single (randomly chosen) trial. By observing the green line, we
can see that the accuracy (we recall that E is a balanced dataset) is
already above 88% with only 1% of T, and it reaches 95% with 12% of T.
This is an intriguing result (which partially echoes those in [9, 37])
since it shows that (at least on this dataset) it is not necessary to
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resort on a large labeled dataset to develop proficient ML detectors.
Nonetheless, by observing the red line, we see an inconsistent
trend (w.r.t. the stable one of the green line): e.g., for the red line,
the accuracy for 18% of T is 97% whereas the green line reaches
such a value only for 35% of T. This underscores the importance of
carrying out multiple trials, since a single ‘lucky’ draw may yield
to overly-optimistic performance. Finally, we also note that the
average accuracy with 100% of T (i.e., 80% of the original D) is ∼99%,
a result that aligns with the one by the creators of D [18] (which
confirms the quality of our implemented ML detector).
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Fig. 3: Performance as a function of the training size. We further
compare the average performance (over 30 trials) w.r.t. a single run.

Takeaways.
a First, large labeled datasets are not always nec-

essary to yield appreciable performance—hence we endorse re-
searchers to experiment with smaller amounts of labeled data.
Second, when randomly sampling from small datasets, the perfor-
mance betweenmultiple and single trials is remarkably different—
hence we encourage researchers to repeat their assessments.
aThese only apply to our dataset and ML algorithm, and we do not generalize.

5.2 Human Error Impact

Next, inspired by some of our findings (revealing that labels may
be revised—see §4.2), we seek to evaluate what happens if some of
the labels in a given training dataset are incorrect.

Setup. We follow a similar procedure as in the previous experi-
ment (see §5.1). The first difference is that we consider only three
(instead of a hundred) subsets of T: 50%, 80%, 100% (i.e., 40%, 64%, 80%
of the original D). The second difference entails the method we use
to simulate the erroneous labels. Specifically, for any given subset of
T used for training, we ‘flip’ the class of some of its labels—thereby
inducing some form of “self-poisoning” [33]. We consider five flip
ratios (listed in Table 3), each denoting the percentage of samples of
a given class (benign or malicious) whose label is flipped (i.e., a ‘be-
nign’ sample is assigned to a ‘malicious’ label, and vice-versa). We
repeat all experiments 30 times, averaging the performance—always
measured on the same E (20% of D) for consistency.
Table 3: Flip Ratios—We simulate poisoning by flipping the label (‘benign’
becomes ‘malicious’, and vice-versa) of a subset of the training data.

Malicious Benign Poisoning

Clean 0.0 0.0 0%

Poison

0.10 0.10 20%
0.10 0.20 30%
0.20 0.10 30%
0.20 0.20 40%

Results.We visualize the results in Fig. 4, showing the perfor-
mance (y-axis) for each training subset of T (group of bars), and

for each flip ratio (individual bars); specifically, the light-blue bar
is ‘clean’ (which we use as baseline) and the green ones entail
‘poisoning’. Fig. 4(a) focuses on F1-score, whereas Fig. 4(b) on the
(absolute) false positives. By observing Fig. 4(a), an intriguing result
is that, despite the substantial difference in training data size, the
performance barely changes (i.e., each bar of the same color has
very similar F1-scores—confirmed by a two-sample statistical t-test).
Furthermore, another surprising observation is that the effect on
the F1-score is mild: even when 40% of the labeled data is poisoned
(dark-green bar), the drop w.r.t. the baseline (light-blue bar) is minor
(from 0.97 to 0.92). However, a two-sample statistical t-test confirms
that the drop is statistically significant (𝑝-value ≈ 0).

In contrast, by focusing on Fig. 4(b), we see an almost contradic-
tory result: the highest number of false positives is always achieved
by the middle bar in each group—which is not the one with the
largest percentage of poisoning (which is the rightmost bar in each
group). Given that in phishing detection false positives tend to be
very annoying to end-users, this reveals that practitioners should
be extra-cautious when assigning ‘malicious’ labels (indeed, the
middle bar has 20% of benign samples being turned into malicious
ones, and 10% of malicious samples being turned into benign ones).

Takeaways.
a For certain amounts of training data size, misla-

beled data (poisoning) leads to negligible performance differences.
However, while the F1-score appears to be a ‘robust’ metric to poi-
soning, the amount of false positives is affected by a specific type
of poisoned classes. Hence, we endorse researchers to pay more
attention to the poisoned class. For mitigations, see, e.g., [16].
aThese only apply to our dataset and ML algorithm, and we do not generalize.

5.3 Active Learning Gain

Lastly, we turn the attention to active learning (AL) due to the
‘mixed’ viewpoint expressed by our SME on this technique (see
§3.2 and §4.2). We recall that extensive background on AL is in
Appendix A, which discusses the specific method of uncertainty
sampling—whichwewill use in our experiments due to its simplicity
and demonstrated effectiveness (e.g., [9, 37, 49]).

Setup. We adopt a similar setup as in §5.1. The implementation
of AL is similar11 to the one in [9]. However, the difference lies in
our assessment methodology. In particular, we seek to pinpoint the
performance gain by assuming a fixed labeling budget but spread
over many iterations. To give an idea, assume that an annotator has
a labeling budget of 50 samples. In [9] (or also in [37]) the authors
compared the gain using, e.g., 50 randomly chosen labeled samples
w.r.t. 50 actively suggested labeled samples. In contrast, we want to
compare what happens if the 50 actively suggested labeled samples
derive from the annotator labeling such samples “all together” w.r.t.
doing so by splitting the labeling task in “mini-batches”. I.e., labeling
a subset of these 50 (e.g., 25), and then using such batch to update
the ML model which is then used to provide “updated suggestions”,
which will finally be provided to the annotator for another (or more)
round of labeling. To do this, we ‘fix’ the labeling budget to the
entire T, and then consider different 5 different amounts of labeling
iterations, i.e., [2,4,16,32,64]; the first iteration is always randomly
11For this experiment we changed the RF algorithm by setting the ‘bootstrap’ option
to False (setting it to True, which we did in §5.1, yielded spurious artifacts here).
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Fig. 4: Impact of mislabeling.We simulate human error by flipping the label of some subsets of the training data to see how much the performance changes.

chosen (this is a realistic assumption—§3.2 and [9]). After each
iteration, we measure the performance of the resulting updated ML
model (always on the same E, for consistency). As usual, we repeat
these experiments 100 times for statistical robustness.12
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Fig. 5: Impact of Active Learning (avg 100 trials).We compare the gains
of labeling the suggested samples “all together” w.r.t. doing so over many
iterations—each done by updating the model and suggesting new samples.

Results. We report the results in Fig. 5, which shows the Ac-
curacy (y-axis) as a function of the amount of the training size
(x-axis); lines indicate the specific amount of iterations. As usual,
we report further visualizations entailing other performance met-
rics (F1-score, Recall, Precision) and training sizes (50% and 80% of
T) in our repository [1]. By observing Fig. 5, we see that the first
iteration (which reports the performance after randomly choosing
samples) is always much worse than the following ones—which
is expected. However, we make an intriguing observation: there
is a stark difference between the ‘gain’ of multiple labeling tasks,
w.r.t. fewer ones. To appreciate this, we consider two use cases.
(1) Scarce Budgets, i.e., when an annotator can label at most 1.5k
samples. Let us focus our attention on the blue, yellow, and green
lines. For the green line, after one round of active learning (500
random and 500 suggested labels over a single round), the Accuracy
12
For example, 4 iterationsmeans that T (having 8k samples) is first randomly sampled

(by drawing 2k samples) used to train an initial ML model 𝑀 ; this 𝑀 is then used to
suggest 2k samples to an annotator and, after being correctly labeled, will be used to
update 𝑀 (which is now trained over 4k samples). The updated 𝑀 will then further
suggest 2k samples to label, and then be updated again (now with 6k samples). The
procedure will be repeated one last time—thereby exhausting the labeling budget of
8k samples (i.e., the full T). After every update of 𝑀 , we assess its performance on E.
We repeat this process 10 times, and then select a new E (as recommended by [9]) and
start again for 10 more times. We average all results. (Runtime is in Appendix B.)

is 96%; for the yellow line, after four rounds (250 random, and 750
suggested labels over three rounds) the Accuracy is 97%; for the blue
line, after eight rounds (125 random, and 875 suggested labels) the
Accuracy is 97.2%. This may indicate that splitting the labeling task
into multiple batches may be advantageous. However, this is not
true for (2) Abundant Budgets, i.e., when an annotator can afford
more than 4k labels. Let us compare the blue with the orange line.
For the orange line, after one round of active learning, (2k random
and 2k suggested labels), the Accuracy is 97.5%. For the blue line,
after 32 rounds (125 random and 3875 suggested), the Accuracy is
97.3%. Indeed, after a certain point, the performance saturates and
there is no gain in splitting the labeling into multiple batches.

Takeaways.
a Applying active learning (through uncertainty

sampling) by splitting the labeling task into multiple batches is
advantageous in the initial development phases, but yields no
returns after some saturation points. We endorse researchers to
identify these plateaus in other domains and datasets.
aThese only apply to our dataset and ML algorithm, and we do not generalize.

6 DISCUSSION

Comparison with Prior Work. Our paper shares similarities
with prior (peer-reviewed) works that touch the problem label-
ing in practice. Here, we discuss two of these. (1) Fredriksson et
al. [23] carry out interviews (in 2019) with five SMEs belonging to
two companies (ours belong to five companies) in a single country
(ours belong to five countries). However, the role of cybersecurity
is unclear: the two companies to which their SMEs belong to are
only reported to be “telecommunication providers” and “a company
specialized in labeling”. Intriguingly, one participant from the latter
company reported that “labeling takes 200 times less with active
learning”, which is in stark contrast to what most of our SMEs
reported (both in our interviews and in the user study). (2) Koh et
al. [35] conduct semi-structured interviews with 21 ML practition-
ers (4 of whom work in cybersecurity) on the EU AI Act. While
their results do not allow to identify the specific responses of the
security practitioners, they found that 20% of their interviewees
perform a “thorough labeling process”, potentially suggesting that
some industries do have systematic labeling approaches in place.

Implications for AI Security. Our study reveals that the pro-
cess of labeling in cybersecurity is still at an early stage and that the
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many methods proposed in research to deal with this problem are
far from being a panacea. This underscores a problem: labeled data
is necessary for applications of ML in cyberthreat detection [9], but
the immaturity of the currently adopted labeling practices leads to
ML-driven security systems with tradeoffs. E.g., incorrectly labeled
data leads to self-poisoning [33] which degrades performance (as
we also showed in §5.2). Moreover, the lack of a structured ap-
proach to labeling security events also hinders updating the ML
model with new (correctly) labeled data, thereby exposing it to
evasion attacks [7]. Ultimately, this paper is a call to action: by
building a bridge between research and practice, novel solutions—
at both the technical and organizational levels —could be developed
that improve the reliability (in terms of detection performance and
generic robustness) of security systems empowered by ML.

Limitations. We conducted open interviews with five SMEs
and carried out a semi-structured user study with 13 SMEs—all
operating in the field of cybersecurity and ML, and belonging to
different companies. The recruitment of experts with experience
in both areas proved challenging due to their scarcity, which is
common in related studies [4, 35] whose population hardly goes
above 20. As such, we do not aim to generalize our findings (but we
are not aware of studies focused on security that do so), and our
small sample size prevents one from deriving statistically-rooted
conclusions. Our experiments are a proof-of-concept and there
exist many ways to carry out our evaluation. For instance, we con-
sider only one ML algorithm (despite being the best for the chosen
task [18]) and one AL strategy (which is known to work well [9])
and experiment on only one dataset (which is popular [13]) of a
subdomain of cyberthreat detection—but this is due to recent works
showing the unreliability of prior datasets in other domains [22, 30].
We advocate future work to replicate our experiments on different
datasets (and we release our tools to facilitate this [1])

7 CONCLUSIONS AND RECOMMENDATIONS

We investigated the problem of data labeling from the perspec-
tive of operational ML security. We interviewed and carried out
a user study with security professionals with experience in ML
development. Our findings elucidate the hurdles and issues that
practitioners face in their daily routines when managing ML-driven
security systems. We then carried out technical experiments aimed
at showcasing some pragmatic aspects of data labeling which are
seldom considered in research on cyberthreat detection.

To improve the security and robustness of theirML systemswhile
reducing data labeling costs, companies can take the following steps:
(1) Optimize Label Quality: Ensure high-quality data labeling from
the beginning to avoid costly revisions of previously labeled data,
(2) Implement Active Learning (AL): AL can reduce time and cost
by achieving high performance with fewer iterations, reducing the
amount of data to be labeled, (3) Set Stop Criteria for AL Cycles:
After a certain number of iterations, a performance plateau may
be reached where further labeling efforts may not be cost-efficient.
Setting stop criteria can reduce time and cost, and (4) Integrate Data
Labeling into Workflows: Incorporating data labeling into ongoing
work processes enhances efficiency and reduces labeling time.

Acknowledgments.We thank the Hilti Corporation for fund-
ing, and the practitioners we interviewed for their contributions,
availability, and valuable feedback.
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A BACKGROUND ON ACTIVE LEARNING

The fundamental principle of active learning (AL) is to optimize the
labeling procedure by “suggesting” to a given (human) annotator
which (unlabelled) samples should be provided with their ground
truth. The intuition is that some samples are “more informative”
than others: by having an ML model be trained on such samples, it
is possible to improve its learning in a cost-effective way [9].

Formally, given an ML model 𝑀0 (having performance 𝜇0) and
an unlabelled dataset U, AL methods seek to identify which sam-
ples 𝑥𝑎∈U, when used to update 𝑀0 (after being correctly labeled),
yield an ML model 𝑀𝑎 whose performance 𝜇𝑎 is superior to the
performance 𝜇 of another ML model �̄� obtained by updating the
original ML model 𝑀0 with any other sample 𝑥∈U (with 𝑥≠𝑥𝑎).

Among the many methods [51] encompassed by AL, a popular
one is uncertainty sampling [50], which leverages the predictions
of a pre-trained ML model 𝑀0 as a guide for the “suggestions”.
The idea is that 𝑀0 is likely to learn ‘more’ from samples that it
cannot properly recognize.13 Hence, by computing the “uncertainty”
(e.g., [48]) of 𝑀0 on the samples 𝑥∈U, it is possible to optimize the
labeling by having the annotator focus only on those samples that
have the highest uncertainty by 𝑀0. Such a procedure has been
shown to be significantly more efficient than random sampling [9].

From a research perspective, it is possible to simulate the above-
mentioned workflow as follows. First, given a (labeled) dataset
D, the researcher must reserve a subset E used for performance
evaluation; and isolate a (small) portion which is considered to
be labeled (i.e., L), and then consider the remaining samples14 as
unlabelled (i.e., U) . Next, the researcher must train an ML model
𝑀0 on L, compute its performance 𝜇0 on E, and use 𝑀0 to analyze
the samples in U, ensuring to store the confidence (or uncertainty)
of each prediction (which can be discarded). Then, the researcher
must order the resulting samples according to their confidence, and
use the given labeling budget B to ‘move’ the samples with the
lowest confidence (or highest uncertainty) from U to L (thereby
obtaining L𝑎), but by assigning them with the correct label (which
the researcher knows). Finally, the researcher must re-train 𝑀0 on
L𝑎 (obtaining 𝑀𝑎), and assess the resulting performance 𝜇𝑎 on E.
Ideally, 𝜇𝑎 should be largely superior to 𝜇0, and superior to the 𝜇

of any �̄� yielded by re-training 𝑀0 on any updated version of L
obtained by using the same budget B through random sampling
from U. This process can be repeated many times, each time taking
some samples from U and moving them to L.

B RUNTIME

We perform our experiments on an Intel i9-12900H CPU (6 cores
@ 5GHz) with 64GB of RAM. The runtime for performing all the
experiments in §5.1 was 666 seconds; for §5.2, it was 146s; for §5.3,
it was 8445s. More details are in our repository [1].
13In a sense, this is the principle of adversarial training [46].
14Importantly, E ∩ (L ∪ U) = ∅

10


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Labeling Strategies (in research)
	2.2 Labeling in Practice (related work)

	3 Expert Interviews
	3.1 Method
	3.2 Main Findings
	3.3 Interpretation and Takeaways

	4 User Study
	4.1 Method
	4.2 Results and Takeaways

	5 Technical Experiments
	5.1 Training Size Impact (Baseline)
	5.2 Human Error Impact
	5.3 Active Learning Gain

	6 Discussion
	7 Conclusions and Recommendations
	References
	A Background on Active Learning
	B Runtime

