
Machine Learning in Space: Surveying the
Robustness of on-board ML models to Radiation

Kevin Lange¶, Federico Fontana∗, Francesco Rossi∗, Mattia Varile∗, Giovanni Apruzzese¶
¶University of Liechtenstein, ∗AIKO S.r.l.

{kevin.lange, giovanni.apruzzese}@uni.li¶, {federico, francesco, mattia}@aikospace.com∗

Abstract—Modern spacecraft are increasingly relying on ma-
chine learning (ML). However, physical equipment in space is
subject to various natural hazards, such as radiation, which
may inhibit the correct operation of computing devices. Despite
plenty of evidence showing the damage that naturally-induced
faults can cause to ML-related hardware, we observe that the
effects of radiation on ML models for space applications are not
well-studied. This is a problem: without understanding how ML
models are affected by these natural phenomena, it is uncertain
“where to start from” to develop radiation-tolerant ML software.

As ML researchers, we attempt to tackle this dilemma. By
partnering up with space-industry practitioners specialized in
ML, we perform a reflective analysis of the state of the art.
We provide factual evidence that prior work did not thoroughly
examine the impact of natural hazards on ML models meant
for spacecraft. Then, through a “negative result,” we show that
some existing open-source technologies can hardly be used by
researchers to study the effects of radiation for some applica-
tions of ML in satellites. As a constructive step forward, we
perform simple experiments showcasing how to leverage current
frameworks to assess the robustness of practical ML models for
cloud detection against radiation-induced faults. Our evaluation
reveals that not all faults are as devastating as claimed by some
prior work. By publicly releasing our resources, we provide a
foothold—usable by researchers without access to spacecraft—
for spearheading development of space-tolerant ML models.

I. INTRODUCTION

During the last years, machine learning (ML) solutions for
on-board satellite missions have seen a tremendous push from
academia, space agencies, as well as industry [1]. Indeed, ML
can now be used to carry out many space-related tasks (Fig. 1).
For instance, thanks to ML, companies in this market can opti-
mize downlink communications, thereby reducing the amount
of unusable data and improving efficiency [2]. In addition, the
increasing interest in space has reduced the time required to
launch satellites in orbit—especially for CubeSats [3], which
represent the state of the art of modern spacecraft [4, 5].

CubeSats are typically equipped with commercial-off-the-
shelf (COTS) components (e.g., the NVIDIA Jetson Nano),
which can be used to empower ML models [6]. Aside
from being cheaper [5], some COTS components can also
outperform (e.g., faster processing speed) specialized space-
tolerant counterparts [7]. Unfortunately, COTS components
have a shorter expected lifetime since they are not designed to
withstand the harsh space environment [8]. For instance, com-
pared to radiation hardened components (like the NanoeXplore
BRAVE Large or Xilinx Kintex XQRKU060), the Myriad2 can
withstand only half of the total ionizing dose [9]. Furthermore,

Slater et al. found that the NVIDIA Jetson Nano is expected
to last at most two years in low Earth orbit [10]; whereas
Rodriguez et al. [11] also found that the NVIDIA Xaview SoC
is susceptible to faults induced by natural hazards in space.

These hazards, such as radiation, are likely to endanger
next-generation COTS components even more, due to the man-
ufacturers’ interest in hardware miniaturization—which exac-
erbates the vulnerabilities of COTS components to faults such
as bit-flips [11]. Worryingly, abundant prior work (e.g., [12–
14]) showed the disruptive impact that bit-flips can have
against some ML models. Therefore, there is a need for fault-
tolerant software, which calls for contributions from various
research domains (e.g., space, but also applied ML) [15].

v1

Clouds

No Alarm

 On-Board Satellite 

a) Disaster
Response

b) Fault detection,
isolation, and recovery

c) Downlink
Optimization

ML

ML

ML

ML

MLDebris

d) Collision
Avoidance

e) Debris
Removal

v2

Earth
(source)

Earth
(destination)

Fig. 1: Applications of ML on-board spacecraft – In some cases, ML is
used to analyse data of Earth (taken by the satellite), and then send the results
to Earth; in other cases, the output of ML is used by the satellite itself.

In this context, we find ourselves in a quandary. On the
one hand, a large body of literature (e.g., [13]) demonstrated
the impact of hardware-related faults on ML models. On the
other hand, many papers showed that natural hazards in space
can lead to damaged hardware (e.g., [10]). However, we ask
ourselves: “what about papers that specifically focus on the
impact of natural hazards on ML models meant for on-board
deployment in spacecraft?” Indeed, COTS components can
empower many computational elements besides ML models;
whereas not all the faults that can affect an ML model
at the hardware level may be related to natural hazards in



space. Hence, before developing fault tolerant software for ML
components in space, it is first necessary to determine how
much the space environment can affect ML models deployed
on-board satellites. We pursue this quest in this paper.

CONTRIBUTIONS. We aim to foster development ML
methods that are robust to “natural” space hazards. After sum-
marising the applications and problems that entail deployment
of ML on satellites (§II), we make the following contributions.
• By performing a thorough literature review, we show that

prior work poorly accounted for the effects of natural
faults on ML applications in space (§III); [major contribution]

• To address this issue, we analyse open-source toolkits for
carrying out simulations of the effects that radiation can
have on ML: through negative experiments, we find that
some current solutions have functional issues (§IV).

• To fix this problem, we carry out some technical experi-
ments – under the guidance of practitioners – showcasing
how to approximate realistic evaluations, and the impact
of radiation-induced faults on ML methods (§V).

Lastly, after outlining implications for related work (§VI),
we publicly release our resources [16]. Besides doing so
for scientific reproducibility and transparency, our tools serve
to kickstart future experimentation on space-tolerant ML
models—without the need to carry out field tests.
Remark: our contributions should not be taken as a finger-pointing
attempt. Rather, we perform a reflective exercise on the current
landscape of papers and technologies for on-board deployment of
ML, with the ultimate objective of improving the state of the art.

II. APPLICATIONS (AND PROBLEMS) OF ML IN SPACE

To setup the stage for our contribution, we summarize the pros-
and-cons that entail deployment of ML on-board satellites.
Goal and Audience. We seek to build a bridge between two com-
munities: space researchers, who have expertise in studying (often
via real equipment) the natural phenomena affecting spacecraft; and
ML researchers, whose proficiency lies in analysing (typically with
open-source resources) the ins-and-outs of ML (see Fig. 2).

ML
researcher

Open-
Source
Dataset

Open-Source
Models

(Train,Test)

Simulate

improve

get use

ML

commodity
hardware

Fig. 2: Perspective of the ML researcher – ML researchers do not have
access to spacecraft or to physical equipment that reproduces a space setting.
They only rely on open-source tools (models and data) and commodity
hardware (e.g., GPUs), but their knowhow can help improve state-of-the-art
methods for real-world deployments of ML.

A. What tasks can be solved by ML (in space)?

Applications of ML for on-board inference in spacecraft
involve the processing of information that can be either
used by the satellite itself or sent back to Earth. Indeed,
it has been found [17] that elaborating the data directly on

spacecraft provides many benefits. We identify five exemplary
applications (refer to Fig. 1) of ML for on-board deployment in
Earth-orbit satellites—taken from both research and practice.

a) Disaster response. In these contexts, latency is paramount
and can be reduced by transmitting only the most essen-
tial information [18]. For instance, Ruzicka et al. [19]
used ML to identify the areas affected by earthquakes,
fires, floods and other natural disasters.

b) Fault detection, isolation and recovery. In these cases,
the spacecraft uses ML to, e.g., identify faults and issues
in its internal pipelines and apply mitigation [7, 20].

c) Downlink optimization. One pioneering example is the
Φ-Sat-1 Mission from the European Space Agency in
2020 [21]. Here, ML was used to detect clouds in im-
ages [22], so as to avoid sending useless “noisy” images
(showing mostly clouds) back to Earth, saving bandwidth.

d) Collision avoidance. Due to the growing number of
satellites in Earth orbit and the increasing risk of potential
collisions between satellites, avoiding such situations
becomes increasingly relevant. Gonzalo et al. [23] as
well as Bourriez et al. [24] showed how to address this
problem with ML for on-board computation.

e) Debris removal. A fundamental part of mission planning
is identifying which targets must be removed, and then
pinpoint the most efficient removal order. Notable efforts
are the solution by Xu et al. [25] and that by Guthriel [26]
(which relies on convolutional neural networks).

We also mention some orthogonal applications of ML, e.g.,
“federated learning” approaches [27]; or for missions that go
beyond the Earth orbit, such as using ML to pinpoint landing
on the Moon [28], or for managing the autonomy of CubeSats
in deep space [29]. These works are outside our scope.

B. What space-specific problems affect ML (in space)?

Computing hardware deployed on-board a satellite is exposed
to a harsh environment. In particular, two “natural hazards” –
which are much more present in space than on Earth – can
interfere with on-board equipment: temperature and radiation
(see Fig. 3 for a schema of these hazards for cloud detection).

1) Temperature: In-orbit satellites are exposed to ex-
treme temperatures—both cold and hot. In particular, the
surface temperature of low-orbit satellites can vary between
[−150;+150] Celsius degrees [30]. Heat sources include: the
Sun, the Earth’s albedo, the infrared emissions of Earth [31];
as well as the heat produced by the satellite itself.

2) Radiation: Within our solar system we can distinguish
three different sources of radiation [32]: solar radiation, which
comes from the Sun in the form of solar wind, solar flares
and coronal mass injections [33]; galactic cosmic rays, coming
from outside our solar system, which are remnants particles
of galaxies and stars (while most particles are blocked from
the heliosphere, others can reach Earth and affect electronic
components in satellites [32]); and the “Van Allen Belt”, a
toroidal-shaped area of charged particles (whose kinetic energy
depends on the Sun’s activity [32, 34]) which can be found
around planets with a magnetic field—such as Earth.



Cloud Detection by (on-board) ML

Cloud

ML

Good

Cloudy

Good

Natural sources
of disturbance

Data
acquisition

Natural sources
of disturbance

Va
n 

A
lle

n 
B

el
t

Sun

Fig. 3: Using ML for on-board Cloud Detection – The satellite acquires
data (i.e., images) of Earth; such data may be subject to natural disturbances
(e.g., radiation). Then, the captured data is analyzed by an ML model (which
may also be subject natural disturbances). The output of this analysis is then
sent back to Earth. To optimize downlink communications, “cloudy” images
(detected via on-board ML) are not transferred. This saves bandwidth.

The effects of temperature on hardware are well-known in
computer science (e.g., [35–37]), so in the next section we
focus on radiation—which is intrinsic of space missions.

C. How can radiation interfere with ML (in-space)?

Whenever electronic components are exposed to radiation, ion-
izing particles continuously interact with the device’s semicon-
ductors [38], potentially leading to equipment malfunctions—
thereby impacting the ML pipeline in various ways.

1) Effects on the ML model: While low-energy ions
may not have any effect [39], others can cause “single-event
transients”, manifested through memory bit-flips—which may
persist until the memory is overwritten (e.g., for the NASA
mission Orbview-2, a state recorder had over 200 daily bit-
flips [40]). Although bit-flips not necessarily lead to negative
consequences, radiation can interfere with an operation caus-
ing a “single event functional interrupt”, which can lead to an
incorrect output or a system crash [41]. It is even possible for
a component to be permanently damaged (i.e., “single-event
latchups” [42]), e.g., due to high currents which overheat the
circuits [32]. Altogether, these effects can inhibit the correct
operation of the device empowering the ML model—either
via hardware- or software-faults [12, 13]. The problem is
aggravated for COTS equipment (and its miniaturization): the
smaller the manufacturing technology used, the lower the
amount of radiation such a technology can tolerate [9].

2) Effects on Data: Radiation can also affect the data
that is meant to be further processed by an ML model. For
instance, radiation can lower the picture quality [43] of image
sensors reliant on CMOS (which are increasingly used for
space applications [44]), thereby impacting the accuracy of a
cascading ML model. Moreover, sensors’ prolonged exposure
to radiation increases dark-current in the acquired images [45],
potentially leading to permanent damages affecting all taken

images [46, 47]. Finally, since radiation can cause overheat-
ing [32], it can also lead to the complete loss of the camera
(such an issue likely affected the Juno mission [48]). We have
created a set of images (see Fig. 4) showcasing the effects of
some disturbances applied to images taken by satellites.

Motion Blur Overexposure Underexposure High Contrast

Missing Parts High Gamma Gaussian Blur Gaussian Noise

Dirt particles Cloud Shadows Saturation Bright Spots

Fig. 4: Possible image disturbances – The data (i.e., images) acquired by
in-orbit satellites can be perturbed in many ways. Feeding such data to an ML
model may “naturally” impact its performance. (Own figure, code is at: [16])

In summary, there is plenty of evidence showcasing the neg-
ative effects that such natural hazards can have on components
related to ML in space. Thus, we ask ourselves:

Research Question #1: “how well does prior research on
ML applications in space account for its natural hazards?”

III. STATE OF THE ART (IN RESEARCH)

We highlighted (§II) that abundant prior work showed: (i) that
radiation (and excessive temperature) has negative effects on
ML-related components; and (ii) that such negative effects
can impact the performance of ML models. Here, as our first
contribution, we scrutinize the extent to which prior research
considered the effects of such natural hazards when proposing
a ML solutions designed for on-board satellite deployment.1

A. Methodology (literature review)

We carry out a systematic literature review. This entire pro-
cedure was done by two authors in Dec. 2023; to ensure
consistency, we repeated the same procedure in Feb. 2024.

Paper collection. We mostly rely on the snowball
method [49]. We began our analysis with the papers by
Giuffrida et al. [22] and Bruhn et al. [50], due to their
popularity2. Next, we provided each of these work as input
to ConnectedPapers [51]; and also do a forward/backward
snowball search (for both [22, 50]: altogether, these operations

1Why is this important? Among the goals of research is to provide answers
to real-world phenomena. However, the research domain does not have always
access to real-world equipment—especially for space-related tasks, the costs
of such equipment can be prohibitive. Hence, we can expect that most research
in this domain carried out their evaluations through simulations. Answering
our (first) research question allows one to determine how well the results of
prior research approximate those expected from real-world experiments.

2As of Feb., 2024, [22] ([50]) has >100 (>55) citations on Google Scholar.



yielded a set of 265 references, which we further expand with
the 97 articles listed in OPS-SAT [52].

Screening. We manually filter all (362) these documents
with the intent of identifying suitable candidates for a deeper
analysis. Specifically, we excluded: presentations/abstracts,
non-peer–reviewed documents, and papers published before
2014 (outdated). Plus, since our focus is on ML, we excluded
any paper that did not mention the terms “machine/deep learn-
ing”, “neural network”, or “artificial intelligence” either in the
title or in the abstract. Afterwards, we carried out a preliminary
inspection of the text, looking for papers that considered ML
applications in space and for on-board satellites (in Earth
orbit—i.e., the ones discussed in §II-A). To this purpose, we
excluded any paper that did not mention the term “on-board”
in the main body; and papers that envision ML applications
beyond Earth orbit (e.g., [53]), or do not carry out original ML
evaluations (e.g., reviews [54]). Altogether, these operations
led us to a set of 62 papers (published between [2018–2023]),
to which we add the work by Haser and Förstner [55] which
we found thanks to the cooperation with industry practitioners.

In-depth analysis. We manually analyse each of our iden-
tified 63 papers by considering six axes: (i) what ML use-
case is being considered? (ii) does the paper carry out an on-
board evaluation (i.e., with in-orbit spacecraft) and, if not, is
specialized hardware involved? (iii) how many times are the
terms “radiation” and “temperature” mentioned in the text?
(iv) are the effects of “radiation” or “temperature” considered
in the evaluation (either real, or simulated)? (v) does the
paper propose methods to improve the “robustness” of ML
to natural hazards in space? (vi) is the code publicly avail-
able? Altogether, assessing these axes allow one to provide
a comprehensive overview of the state of the art of ML
applications in space and w.r.t. their consideration of natural
hazards, thereby answering our first RQ. We report the results
of our analysis in Table I. Before analyzing Table I, however,
we reiterate that our analysis is not a fingerpointing attempt.

B. Findings (and interpretations)

From Table I, three findings are apparent. Out of 63 papers:
• Only 3 papers (5%) propose solutions to make ML

methods more “robust” against natural space hazards.
• 29 papers (46%) never mention “radiation”, and 41 (65%)

papers never mention “temperature”
– and 61 (97%) papers mention “radiation” or “temper-

ature” less than 6 times.
• Only 7 papers (11%) release their implementation.

Let us now analyze these results at a low-level, focusing on
“where” each paper carries out its evaluation.

In-orbit evaluations (dark-gray rows). Seven (11%) papers
perform evaluations on in-orbit spacecraft. Their results unde-
niably represent the real world, as they are obviously affected
by natural hazards. For instance, Giuffrida et al. [21], consider
radiation-hardened FPGA, and conclude that such components
are “robust”; however, such a statement is derived by simply
observing that the resulting performance of the ML models
is high despite the exposure to radiation. As a matter of fact,

TABLE I: Papers on ML applications onboard spacecraft – We used the
snowball method starting from [22, 50] and adding [52]: from 362 documents,
we distill 63 papers. Use-cases are taken from §II-A (ColAvo=Collision Avoid-
ance, DisRes=Disaster Response, DebRem=Debris Removal, DlkOpt=Downlink Opti-
mization, FDIR=Fault Detection Isolation Recovery); parentheses denote potential
misalignment between testbed and use-case. Row color denotes the experimen-
tal settings (white=software, light-gray=space-related hardware, dark-gray=in-
orbit spacecraft). In “Rad?” and “Temp?”, we report the number of times
“radiation” and “temperature” occur in the text; and a ✓ (✗) denotes whether
they affect the results (or not). For “robust”, the paper had to evaluate some
hardening/robustness method (not just “mention”) to get a ✓. For papers that
release “Code”, the ✓ points to the public repository; n is for data only.

Paper Year Use-Case Rad? Temp? Robust? Code?(1st author)

Li [56] 2018 DlkOpt 5 (✗) 5 (✗)
Pastena [57] 2019 DlkOpt 0 (✗) 0 (✗)
Esposito [58] 2019 DisRes 0 (✗) 4 (✗)
Lemaire [59] 2020 DlkOpt 0 (✗) 0 (✗)
Furano [60] 2020 DlkOpt 36 (✓) 4 (✗)
Kothari [7] 2020 DlkOpt 6 (✓) 1 (✗)
Denby [61] 2020 DlkOpt 2 (✓) 4 (✓) ✓
Maskey [62] 2020 DlkOpt 0 (✗) 0 (✗)

Giuffrida [22] 2020 DlkOpt 7 (✓) 0 (✓)
Bruhn [50] 2020 DlkOpt 34 (✓) 1 (✓) ✓
Reiter [63] 2020 DlkOpt 7 (✗) 2 (✗)

Mateo-Gracı̀a [64] 2021 DisRes 0 (✗) 0 (✗) ✓
Giuffrida [21] 2021 DlkOpt 9 (✓) 1 (✓)
Rapuano [65] 2021 DlkOpt 13 (✗) 1 (✗)

Del Rosso [66] 2021 DisRes 0 (✗) 3 (✗) n

Kucik [67] 2021 DisRes 1 (✗) 0 (✗) ✓
Diana [68] 2021 DlkOpt 14 (✗) 0 (✗)
Ferrari [69] 2021 DlkOpt 0 (✗) 0 (✗)
Pacini [70] 2021 DlkOpt 1 (✗) 0 (✗)
Leong [71] 2021 DlkOpt 0 (✗) 0 (✗)

Fernando [72] 2021 DisRes 0 (✗) 0 (✗)
Garrett [73] 2021 (DebRem) 7 (✓) 0 (✗) ✓
Haser [55] 2022 (FDIR) 10 (✓) 0 (✗)
Farr [74] 2022 DlkOpt 0 (✗) 0 (✗)

Růžička [75] 2022 DisRes 0 (✗) 0 (✗) ✓
Azami [76] 2022 DisRes 10 (✓) 12 (✗)

Luo [77] 2022 DlkOpt 0 (✗) 2 (✗)
Labrèche [78] 2022 DlkOpt/FDIR 2 (✓) 0 (✓) ✓

Spiller [79] 2022 DisRes 1 (✗) 2 (✗)
Luo [80] 2022 DlkOpt 0 (✗) 1 (✗)

Salazar [81] 2022 DlkOpt 0 (✗) 0 (✗)
Pitonak [82] 2022 DlkOpt 3 (✗) 1 (✗)
Guerrisi [83] 2022 DlkOpt 0 (✗) 0 (✗)

Jeon [84] 2022 DlkOpt 0 (✗) 0 (✗)
Zeleke [85] 2022 DlkOpt 1 (✗) 0 (✗)

Del Rosso [86] 2022 DisRes 0 (✗) 1 (✗) n

Murphy [87] 2022 FDIR 1 (✗) 2 (✗)
Spiller [88] 2022 DisRes 0 (✗) 4 (✗)

Buckley [89] 2022 DlkOpt 31 (✓) 8 (✓)
Mateo-Gracı̀a [90] 2023 DisRes 1 (✓) 0 (✓) ✓

Labrèche [91] 2022 DlkOpt 0 (✗) 0 (✗) ✓
Abderrahmane [136] 2022 DlkOpt 0 (✓) 0 (✓)

Kacker [92] 2022 DlkOpt 3 (✓) 7 (✓)
Mladenov [93] 2022 DlkOpt 1 (✗) 0 (✗)
Kervennic [94] 2022 DlkOpt 0 (✗) 0 (✗)

Fratini [95] 2022 DlkOpt 0 (✗) 0 (✗)
Gu [96] 2023 DlkOpt 0 (✗) 0 (✗)

Guerrisi [97] 2023 DlkOpt 1 (✗) 0 (✗)
Cascelli [98] 2023 DlkOpt 1 (✗) 0 (✗)

Coca [99] 2023 DisRes 4 (✗) 1 (✗)
Shi [100] 2023 DlkOpt 1 (✓) 0 (✗) ✓

Serief [101] 2023 DlkOpt 2 (✗) 0 (✗)
Kadway [102] 2023 DlkOpt 0 (✗) 0 (✗)
Ferrante [103] 2023 FDIR 1 (✗) 16 (✗)
Carbone [104] 2023 DlkOpt 1 (✗) 0 (✗)
Ciardi [105] 2023 FDIR 7 (✗) 0 (✗)
Deticio [106] 2023 DlkOpt 0 (✗) 0 (✗)
Deticio [107] 2023 DlkOpt 0 (✗) 0 (✗)
Leon [108] 2023 ColAvo 3 (✗) 0 (✗)

Fernando [109] 2023 DlkOpt 0 (✗) 0 (✗)
Murphy [110] 2023 FDIR 0 (✗) 0 (✗)
Nalepa [111] 2023 FDIR 0 (✗) 0 (✗)
Bourriez [24] 2023 ColAvo 1 (✗) 0 (✗)

https://github.com/CMUAbstract/oec-asplos20-artifact
https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods
https://github.com/alessandrosebastianelli/OnBoardVolcanicEruptionDetection
https://github.com/AndrzejKucik/SNN4Space
https://github.com/spaceml-org/RaVAEn
https://github.com/georgeslabreche/opssat-smartcam/tree/v2.1.2
https://github.com/alessandrosebastianelli/OnBoardVolcanicEruptionDetection
https://github.com/spaceml-org/ml4floods
https://github.com/georgeslabreche/dkm/tree/opssat


these works do not underscore the impact of natural hazards
on the corresponding results (i.e., there is no “hazard-free”
baseline that can be used to study the effects of such hazards).
Indeed, these papers mention the term “radiation” (typically to
account for limitations of the results which are likely affected
by radiation), but do not study this phenomenon.

Hardware-reliant simulations (light-gray rows). The ma-
jority (30, 47%) of papers employ space-related hardware in
their assessments. Among these, the most “accessible” work to
ML researchers is the one by Bruhn et al. [50] which focuses
on GPU testing, but the datasets considered (i.e., MNIST) have
little relevance with space settings. Some simulations carried
out on space-compliant hardware typically envisioned in space
settings do not consider radiation-tolerant COTS components.
For instance, Rosso et al. [66] experiment on the Myriad2,
which is weak to radiation (as shown in [9]); the opposite is
done, e.g., in Pitonak et al. [82], whose experiments are run
on radiation-hardened FPGA—but in both cases, there is no
assessment of the actual effects of radiation. Notably, Azami et
al. [76] carry out a radiation test for six hours on a Raspberry
Pi, showing that a single event latchup occurred after 5hours
which increased the power consumption—but there was no
measure of how it affected the performance of the ML model.
A similar (and far more realistic) experiment was done by
Buckley et al. [89]—but even here, the focus was more on the
response of the Myriad2 rather than on the performance of the
ML model. Nevertheless, such tests cannot be replicated by a
ML researcher without specialized equipment (and the code
of [50, 76, 89] is not public). Notably, however, two papers3

by Del Rosso et al [66, 86] release their data.
Software-based experiments (white rows). A total of 26

(41%) papers carry out evaluations at the software-level (re-
quiring only, e.g., a GPU). However, most of such papers sim-
ply aim at improving the baseline accuracy of ML techniques
and do not account for radiation. Remarkably, Garrett and
George [73] seek to improve the robustness of tensorflow-
based ML models to radiation. However, despite mentioning
various ML applications (e.g., “debris tracking”), the ex-
periments were carried out on common benchmark datasets
(i.e., MNIST), which are not representative of a realistic space
environment—a limitation affecting also [55]. Furthermore,
the code of [55, 73, 100] is also not available—which is,
unfortunately, a common occurrence in our analysis.4

C. Consequences (and the way forward)

Our analysis reveals a fundamental problem: not only (i) most
prior research does not account for the effects of natural
hazards on ML applications in space; but also (ii) those papers
for which the effects are implicitly considered (e.g., [22, 50])

3Such data was obtained with drones capturing images from Earth. We
considered these as “hardware” and not “real-space” because the altitude of
the drone was not high enough to be exposed to the natural hazards of space.

4Disclaimer: We stress that many works do provide extensive details for
reproducibility. For instance, Fratini et al. [95] leverage the NanoSat frame-
work and abundant details are provided in the paper. Hence, lack of source
code does not prevent scientific reproducibiilty—despite inevitably delaying
further developments (at least from the perspective of ML researchers).

do not allow one to determine their impact on the ML’s
output; and (iii) few works openly release their implementation.
Put differently, from a research perspective, it is currently
unknown how to approximate (and, hence, reproduce) the
effects that natural hazards have on real-world deployments of
ML for on-board satellites. This is the source of our quandary.

TAKEAWAYS. Only few works considered the effects that
space-natural hazards can have on ML models,a and few
papers share their resources—hindering reproducibility.

aEven a recent “critical analysis” poorly accounts for radiation [112].

If one can truly measure the effects of such hazards, one
can also determine which solution can be used to mitigate their
impact. Indeed, there exist many techniques that specifically
focus on improving the robustness of ML models against bit-
flips (e.g., selective hardening [113]). However, all such tech-
niques have been proposed for tasks that do not strictly pertain
to ML applications in space. For instance, [114] focuses on
healthcare; whereas [115] considers generic object recognition
(not in space); furthermore, the experiments in [113] are
carried out on MNIST. Hence, we ask ourselves:
Research Question #2: “can an ML researcher – without
access to specialized equipment – reproduce the effects
of natural hazards, and specifically of radiation, on ML
applications in space by leveraging current technologies?”

IV. TOOLS FOR REPRODUCING RADIATION’S EFFECTS

We now analyse the publicly available toolkits that a researcher
can use to replicate a realistic environment. In particular, we
consider the task of downlink optimization via cloud detection,
and we focus on the impact that radiation can have on the
corresponding ML pipeline either by bit-flips or by image
distortion.5 Importantly, for this analysis we rely on the know-
how of AIKO S.r.l., an European company specialized in the
development (and deployment) of ML in spacecraft.

A. Resources for replicating on-board cloud detection via ML

Assume that we want to carry out realistic experiments on ML
applications in space, focusing on cloud detection (see Fig. 3),
but without having access to a real spacecraft or physical
equipment (e.g., [14, 50, 116]). To achieve such a goal, we
must: (i) get an ML model—potentially by drawing from state-
of-the-art methods; (ii) train it over one dataset—potentially by
ensuring that it achieves state-of-the-art performance; (iii) and
then find a way to replicate the effects of radiation by either
(a) manipulating the input test-data, or by (b) introducing bit-
flips that affect the processing of the ML model (see Fig. 2).

5Why do we focus on this? The problem of on-board cloud detection via
ML is popular in prior research (among the 42 papers within the domain of
downlink optimization in Table I, 20 consider it); furthermore, we consider
radiation-induced bit-flips because we do not want to physically damage our
own (real) hardware—plus, single events latchups, while possible, are rare in
space missions [9] (confirmed by our practitioners); nonetheless, since this
task entails analysing images, we can reproduce the effects of (partially)
broken sensors on the acquired data. We stress that our analysis is just a
first step, and we do not claim generality (albeit our findings are applicable
also to other use-cases, e.g., disaster response).



Space-specific resources. For the first two steps, we can
certainly rely on well-known tools within the ML commu-
nity: e.g., TensorFlow/PyTorch frameworks, or the ImageNet

dataset.6 However, we highlight a repository [117] (which has
over 7k stars as of January 2024) that provides plenty of
resources for space-related experiments (such as the 95-Cloud

dataset [118]). Unfortunately, after extensively analysing this
repository we found that it provides no suggestion/tool to
replicate the effects of radiation (and not even of extreme tem-
peratures) on ML components. Even recently proposed space-
specific “testing labs/implementations” do not envision either
ML (e.g. [119]) or the effects of natural hazards (e.g., [120]).
We even inquired practitioners if they were aware of any
open-source and space-specific platform that provided such
a functionality, and they were not aware of any such tool.

Tools for fault-injection. According to practitioners, the
only viable way to replicate the effects of radiation (and
of natural hazards in general) is to: (i) “assume” that a
given component is exposed to non-negligible radiation (see
§II-C), (ii) “guess” the effects of such radiation on the given
component; and then (iii) manually “inject” the corresponding
fault/disturbance. For this purpose, we found7 three notable
tools that can be leveraged for on-board cloud detection.

• NVIDIA Binary Instrumentation Tool for Fault Injection
(NVBitFI) [121] (paper: [122]), useful to emulate faults
at the hardware level (e.g., on the GPU accelerator);

• Low-Level Tensor Fault Injector (LLTFI) [123] (pa-
per: [12], useful to simulate faults at the software level
(e.g., by operating on the ML model during its analysis).

• Kornia [124] (paper: [125]), which is a library for image
augmentation and hence useful to inject disturbances in
images (we used Kornia to make Fig. 4).

We also mention PyTorchFI [126] and TensorFI [127],
which are specifically tailored for PyTorch and TensorFlow.
However, after inquiring practitioners, they discouraged from
using these tools since they operate at a much higher level
than, e.g., LLFTI; furthermore, TensorFI’s (whose last com-
mit in its repo dates back to 2021) does not support Python3
and TensorFlow2—which are the state of the art for ML.

B. Analysis of NVBitFI and LLTFI (negative result)

We now seek to use the identified tools to carry out a proof-
of-concept evaluation of on-board ML for cloud detection.
Ideally, faults injected at the hardware level are more realistic,
since cosmic radiation affects physical equipment. Hence, a
researcher interested in replicating a real setting for on-board
cloud detection via ML would first opt for NVBitFI, and only
consider LLTFI as a last resort.

1) NVBitFI (scarce documentation): After reviewing the
repository of NVBitFI [121] (and its research paper [122])
we found that, in its documentation, there are no instructions
on how to use NVBitFI for ML-specific experiments. We

6One can also use the code developed by prior research. Unfortunately, as
shown in Table I, few papers publicly release their artifacts.

7We perform this search by looking at the frameworks mentioned in prior
work, as well as by manually searching over the repositories linked in [117].

tried to infer some low-level details from papers that claim
to have used NVBitFI for ML evaluations, but we could not
find any meaningful instruction: most papers (e.g., [73]) do
not release the source-code. The only relevant effort is the
paper by Dos Santos et al. [128], providing a forked version
of the NVBitFI repository which includes some “test-apps”
that also contain ML models: however, these ML models are
not functional (they are either old, or written in C) for space-
related applications, and there is scarce documentation on how
to setup the environment to develop alternative ML models.
We hence posit that, although NVBitFI can theoretically be
used for ML experiments, its current implementation can
hardly support space-specific evaluations. Even by inquiring
practitioners, we were told that they did not know how to setup
a space-compliant and ML-ready testbed through NVBitFI.

2) LLTFI (problems and errors): We then turn our atten-
tion to LLTFI, which is specifically designed for ML experi-
mentation. The documentation in the LLTFI repository [123]
provides detailed instructions, which we rigorously follow.
Specifically, after installing the LLTFI framework, we use Ten-
sorFlow to train an U-Net (an image-segmentation ML model,
representing the state-of-the-art for cloud detection [129]) on
the 95-Cloud dataset [118] (we apply an 80:20 train-test
split). After having trained the model (and verifying that its
performance aligns with the state of the art on this dataset),
we follow the guidelines of LLTFI and successfully convert
our model in ONNX format. However, from now on we began
to encounter “unexpected” issues (see Fig. 5).

Model
(TensorFlow)

LLTFI workflow

ONNX MLIR LLVM IR

OK Issues
(solved)

Issues
(not solved)

Fault
Injection

Fig. 5: Our negative experiment – We followed the guidelines provided by
the developers of LLTFI. We could not finish the workflow due to a fatal error
for which we found no workaround (even after consultation with practitioners).

• ONNX→MLIR: before injecting the faults, LLTFI requires
the model (in ONNX format) to be converted into its MLIR
representation, which can be done with an ONNX-MLIR
conversion-tool linked in the repository [130]. We were not
able to complete this procedure due to an error (“unhandled
option in ConvTranspose”), which we hypothesized was
related to the Conv2DTranspose layer. We tried changing
this layer to an UpSampling2D (envisioned in the U-Net
used, e.g., in [131]), and we also were not successful
(“not implemented yet”, suggesting that this layer was
not supported). We found a workaround by using the
most-recent version of the ONNX-MLIR tool [132]—not
provided in the LLTFI repository.

• MLIR→LLVM-IR: LLTFI injects the faults at a low level,
which requires the MLIR version of the model to be further
converted into LLVM-IR. We were not able to complete
this procedure with the instructions in LLTFI’s repository:
when we run the commands in the docs, we encounter an
error (“operation being parsed with an unregistered dialect”),



and upon following the provided suggestion we encounter
another error (“custom op ’memref.dim’ is unknown”) which
we could not troubleshoot.

We searched in the discussion section of the LLTFI reposi-
tory, but we could not find a solution. After consultation with
practitioners,8 even they were not able to resolve the issue.
This “failed experiment” is provided in our repository [16].

C. Reflections and remediations

Our analysis leads us to derive two takeaways—but we reit-
erate that we are not pointing-the-finger (see disclaimer §I):

TAKEAWAYS. (1) There is a lack of open-source resources
that facilitate realistic experiments for on-board ML. (2) The
few existing toolkits do not allow to setup a testbed that
supports state-of-the-art ML methods for cloud detection.

Inspired by these (negative) findings – which lead to an
unsatisfactory answer to our RQ#2 – we posit that it is still
possible to assess the effects of (radiation-induced) faults on a
representative ML pipeline for cloud detection. This requires
to introduce such “bugs” by manually tampering with the
(trained) ML model—i.e., by directly manipulating its weights
(thereby simulating a bit-flip [13]). We hence ask ourselves:

Research Question #3: “What are some possible effects that
(i) manual manipulation of the ML model’s weights, as well
as (ii) various disturbances of the input images – both of
which hypothetically resembling radiation-induced faults –
have on the performance of the ML model?”

V. TECHNICAL IMPLEMENTATION AND ASSESSMENT

As a constructive step-forward, our third contribution entails
showcasing the effects of exemplary radiation-induced faults
through original experiments—and releasing our developed
source-code [16]. To this purpose, we first develop our baseline
ML models for cloud detection (§V-A); then, we examine their
robustness to manually introduced bit-flips (§V-B); finally, we
scrutinize their response when the faults affect the input test-
data (§V-C). Our evaluation is a proof-of-concept.9 We carry
out our experiments on a system mounting an Intel-Core i9
12900K with 32GB of RAM and an NVidia RTX3060Ti.

A. Baseline: U-Net on Cloud-95 dataset

We align our assessment with our “failed” experiment (§IV-B).
Setup. We rely on the U-Net (shown in Fig. 6): according to

practitioners, this is the ML model they deploy on spacecraft
for cloud detection. The dataset of choice is 95-Clouds,

8Practitioners’ Feedback: we inquired the practitioners opinion on (po-
tentially) using LLTFI and NVBitFI for their simulations meant to improve
the robustness of “radiation-hardened” ML prototypes. Accordingly, NVBitFI
is not ideal, since its workflow poses a high overhead. Indeed, companies
typically convert ML models in ONNX for their applications, hence LLTFI
represents a more suitable solution—if it worked!

9Problem: we try to “anticipate” what effects radiation may have on the
ML pipeline. Our anticipations are hypothetical: there is no guarantee that any
given sample be modified in the way we do it; and there is also no guarantee
that ML model deployed on-board be impacted by natural radiation in the way
we do it. We carry out our evaluation under the guidance of practitioners.

from which we derive a train, T, and test, E, partition by
applying an 80:20 split (common in related work [133]), which
correspond to roughly 16k and 4k samples (after filtering-out
some “incorrect” samples). Then, we extract a subset, R, of
50 samples from E: we will use this subset as a basis for
our robustness assessment. This is necessary for a broad and
comprehensive evaluation: in the real world, the effects of
natural hazards are not deterministic (e.g., it is impossible to
predict how any given sample may be affected by, say, some
incorrect pixels). By considering such a small subset, we can
gauge the impact of various types of faults (performing our
assessment on the whole E would have required 80x longer
runtime—amounting to several weeks of no-stop computing).
Finally, to mitigate experimental bias, we develop three U-Nets
by keeping the same T, E, R, but by repeating the training from
scratch with different randomly-initialized weights (repeating
trials is fundamental in ML research). We set our the learning
phase of our U-Nets to last for ≈3 hours, after which we stop
(to avoid overfitting) and proceed with the assessment.

4 64 64

38
4x

38
4

19
2x

19
2

128 128
96

x9
6

256 256

48
x4

8 512 512
24

x2
4 1024

1024

1024 512

512

512 256

256

128

128

256

128 64 1

conv 3x3, ReLU
copy and crop
max pool 2x2
conv transpose 2x2
conv 1x1, sigmoid

Fig. 6: Architecture of our U-Nets – The ML models used for our original
experiments are drawn from the state of the art for cloud detection [129].

Results. We report the baseline performance of our ML
models (after learning) in Table II, showing the accuracy,
precision and recall of our U-Nets on T, E and R. We
appreciate that, on average, our ML models achieve good
performance on the test set (i.e., E), and comparable with
state-of-the-art works (e.g., [131]). These findings confirm our
baselines are a solid choice for our robustness assessment. Our
repository includes the detailed implementation [16].

TABLE II: Baseline – We train three U-Nets (on T for 3h). Then, we compute
accuracy (Acc), precision (Pre) and recall (Rec) on our selected subsets (T, E,
R) of 95-Cloud. Our results (on E) match those of prior works (e.g., [131]).

Model Training Set (T) Test Set (E) Robustness Set (R)
Acc Pre Rec Acc Pre Rec Acc Pre Rec

U-Net #1 90.1 92.9 82.9 89.9 92.5 81.7 91.2 93.5 84.1

U-Net #2 89.1 83.3 92.4 88.9 82.8 91.6 91.6 87.7 93.0

U-Net #3 88.1 81.5 92.7 87.8 81.0 92.0 90.4 84.7 94.8

average 89.1 85.9 89.3 88.9 85.4 88.4 91.1 88.6 90.7

B. Simulating radiation-induced bit-flips on the ML models

An elusive property of naturally-occurring bit-flips is the
impossibility of predicting which and how many bits will be



flipped—i.e., each bit has the same probability of being flipped
as any other bit. Hence, we consider various bit-flips.10

Setup. We take each (trained) U-Net, and we manually
modify its learned weights and biases in three ways: first, a
worst-case scenario (we provide an example in Fig. 7) wherein
we modify the bits of the exponent (ExpBF); and two others
wherein we modify the bits controlling the mantissa (ManBF)
or the sign (SgnBF). Depending on the weight, ManBF can
be more (or less) impactful than SgnBF. For a bias-free
assessment, we consider bit-flips of one bit, which are chosen
randomly among the weights of each layer of our baseline
models—each having 44 layers. We then run our “faulty”
models again on the samples in the robustness set, R. We
repeat this experiment 50 times to account for randomness.11

0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1

SgnBF ExpBF ManBF

= 12.3849

0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 = 53 192 740 864.0

Fig. 7: Exemplary effects of a bit-flip – By flipping just a single exponential
bit (from a 0 to a 1), the value 12.38249 changes to 53 192 740 864.0.

Results. We report the results in Figs. 8, showing the
performance (y-axis), averaged across our 3 models, for each
type of bit-flip which affects a given layer of our U-Net (x-
axis); the lines represent the mean (blue), baseline (red) and
the min/max range achieved during the 50 trials. Specifically,
Fig 8a focuses on accuracy, Fig. 8b on precision and Fig. 8c
on recall. Our repository includes instructions to perform
additional assessments to further mitigate bias. By observing
the accuracy (which is the most common metric) in Fig. 8a, we
see that the majority of our single bit-flips have a negligible
impact. Notably, however, for ExpBF the performance of our
“faulty” models decreases the most when the bit-flip affects
the outer layers of the U-Net; whereas only the first layers are
affected in SgnBF—albeit at a much lower degree than for
ExpBF. Intriguingly, ManBF may increase the performance.

Analysis. We find it instructive to compare this experiment
with the one by Haser and Förstner [55]. Specifically, the
evaluation in [55] seeks to assess the robustness of neural
networks against bit-flips on the MNIST dataset (we posit that
this setting is highly unrepresentative of a realistic space
environment). Nevertheless, the results in [55] show that the
accuracy of the ML model drops to that of a coin-toss by
flipping 700 bits; and that, e.g., SgnBF affecting over 50% of
the layers also leads to an unusable model. According to our
practitioners, these findings, while useful, represent “unlikely”
circumstances: even in space missions, such high corruptions
are unlikely. This is why we opted for single bit-flips, which
are more likely to occur and also more subtle. Moreover, Haser

10Background on bit-flips. In simple terms, injecting bit-flips in an ML
model means taking the bits representing the weights of the ML model and
flipping them from a 0 to a 1, or from a 1 to a 0. In theory, changes to the
“first” bits are likely to induce a greater impact to the final output of the ML
model; whereas changes in the “last” bits are more likely to have a negligible
effect. We also stress that a single flip in a “high” bit can be more impactful
than multiple changes in “lower” bits. For more detailed information, see: [13].

11Overall, we perform 3(models)×44(layers)×3(types)×50(repeats)=19 800

bit-flips. This entire assessment required 10h of non-stop computation.

and Förstner [55] conclude that “if a corruption occurs in later
parts its impact is more harmful then in early layers” (sic).
This is in contrast with our findings: e.g., for ExpBF, bit-
flips affecting last and first layers are more impactful than on
middle layers (result confirmed with a statistical t-test: p ≈ 0).

0 10 20 30 40

0.885

0.890

0.895

0.900

0.905

0.910

A
cc

ur
ac

y 
[%

]

Bit-flip in Sign (SgnBF)

0 10 20 30 40
Number of the layer

0.5

0.6

0.7

0.8

0.9

Bit-flip in Exponent (ExpBF)

0 10 20 30 40
0.900

0.905

0.910

0.915

0.920

0.925

0.930
Bit-flip in Mantissa (ManBF)

Baseline Accuracy
Mean Accuracy
Min/Max

(a) Accuracy.

0 10 20 30 40

0.768

0.770

0.772

0.774

0.776

Pr
ec

is
io

n 
[%

]

Bit-flip in Sign (SgnBF)

0 10 20 30 40
Number of the layer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bit-flip in Exponent (ExpBF)

0 10 20 30 40
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Bit-flip in Mantissa (ManBF)
Baseline Precision
Mean Precision
Min/Max

(b) Precision.

0 10 20 30 40
0.805

0.810

0.815

0.820

0.825

0.830

0.835

R
ec

al
l [

%
]

Bit-flip in Sign (SgnBF)

0 10 20 30 40
Number of the layer

0.5

0.6

0.7

0.8

0.9

Bit-flip in Exponent (ExpBF)

0 10 20 30 40
0.70

0.75

0.80

0.85

0.90

0.95
Bit-flip in Mantissa (ManBF)

Baseline Recall
Mean Recall
Min/Max

(c) Recall.
Fig. 8: Effects of bit-flips – We measure the performance (averaged across
50 trials) of our bit-flips on each possible layer (out of 44) of our 3 U-Nets.

C. Effects of radiation-induced perturbations on image data
Images can be affected by natural hazards in many ways (see
Fig. 4 in §II-C2). Here, we only consider those disturbances
that are more common in space—according to practitioners.

Setup. We consider three types of disturbances: hot pixels,
which involve having some pixels of an image be “brighter”
w.r.t. their originals; dark currents, which yield a fixed-pattern
noise in an image; and radiation streak, which involve having
multiple pixels in succession to (incorrectly) have the same
value. According to practitioners, these disturbances are very
common in the images captured by operational spacecraft. We
provide an exemplary illustration of wherein we combine all
these disturbances (alongside their effects on the ML model) in
Fig. 9. For each of the 50 samples in R, we apply each distur-
bance at various noise levels (e.g., we progressively increase
the number of faulty pixels in an image); the areas affected
are chosen randomly. Our repository provides the detailed
implementation [16]. After applying these manipulations, we
run our (baseline) U-Nets again on the perturbed images.

Results. We report the results in Fig. 10, showing the
average accuracy, precision and recall (y-axis) achieved by our



a) Original image b) Ground truth c) Prediction

d) Disturbed image e) Raw prediction f) Final Prediction

Fig. 9: Exemplary effect of disturbances – We show how the effects of
introducing common disturbances in spacecrafts (hot pixels, radiation streaks,
dark currents) to the input images during the ML model’s inference.

three U-Nets at varying intensity (x-axis) of each disturbance
applied to all samples in R. Our repository includes the code
to run this evaluation on different images, as well as to repeat
these experiments at different noise levels and/or more times.
From Fig. 10, we observe that the performance decreases for
increasing noise levels, especially dark currents and streaks.

Analysis. We find it interesting, however, that hot pixels
have a relatively mild effect. This result contrasts the impact
of targeted “one-pixel” attacks that are sometimes considered
in related papers on adversarial ML robustness [134]. From
a security standpoint, this result underscores that radiation-
induced faults must be treated differently than “adversarial
examples”, whose countermeasures (e.g., adversarial training)
induce a decrease in the baseline performance of an ML
model [135] (which may not be justified in space-contexts).

0 10 20 30 40 50
Number of hot pixels

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Pe
rf

or
m

an
ce

 [%
]

a) Influence of hot pixels

0 5 10 15 20 25 30
Number of streaks

0.78

0.80

0.82

0.84

0.86

0.88

0.90

b) Influence of streaks

0 5 10 15
Noise Level [%]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

c) Influence of dark current
Mean Accuracy
Mean Precision
Mean Recall

Fig. 10: Effects of image disturbances – We compute the performance
(averaged across our three U-Net) on the images in R after applying our
disturbances at increasing noise levels.

VI. DISCUSSION AND IMPLICATIONS

We now critically review our study, identifying limitations and
clarifying how our findings are useful to related research.

A. Disclaimers (and Alternative Formulations)

We acknowledge that our work may have limitations. Let us
reflectively scrutinize each of our contributions.

Literature Review (§III). The papers included in Table I
have been chosen by two authors who queried popular scien-
tific resources for publications that envisioned applications of
ML for on-board spacecraft. For instance, papers proposing

an ML method for cloud detection in images but which
do not specifically aim (or mention) at on-board satellite
deployment, such as [136], were omitted from our analysis. We
did so because our goal was assessing the the extent to which
prior work on ML for space accounts for its natural hazards.
Furthermore, we did not perform the forward/backward search
ad infinitum (we inspected 362 documents just from 2 papers),
so we did not include papers that matched our inclusion criteria
if they were cited (or cited by) in a longer chain. For instance,
we did not include the paper by Sabogal et al. [116] (which
carries out a detailed assessment on dedicated hardware—
including a real radiation-beam!). We also did not consider
several works ([137–143]) because they were behind a paywall
we could not overcome (even through our own institutions).
Nonetheless, our findings revealed that abundant prior work
on ML in space poorly accounted for natural hazards, and that
few release their resources publicly. However, we acknowledge
that there is a growing body of research (notably, from
the University of Pittsburgh [144–146]) that is investigating
such phenomena. Our work can inspire future endeavours to
better account for the issues that affect deployment of ML in
spacecraft—and openly release corresponding toolkits to the
research community.

Tool Analysis (§IV). Our survey of state-of-the-art tech-
nologies for ML-based experiments in space contexts was
limited to publicly available solutions, which have been found
by two researchers supported by practitioners. We are aware
that we may have overlooked, e.g., some repositories, and
that some closed-source resources (potentially available upon
request) may exist which may allow a researcher to simulate
realistic testbeds (e.g., [147]). Furthermore, in our analysis we
excluded PyTorchFI (used, e.g., in [100]—whose code is not
released) because it was deemed impractical by practitioners.
Finally, our low-level experiments (for NVBitFI and LLTFI)
have been carried out by individuals who, despite having
plenty of experience (over 5 years) in software development
and/or ML, may have overlooked some details.12 Nonetheless,
reproducibility issues are—unfortunately—common in the ML
domain (e.g., [148]). To fix this, and also for complete
transparency, we disclose our code and procedures [16].

Proof-of-Concept Experiments (§V). Our assessment is an
effort to spearhead novel research that accounts for radiation-
induced faults in space-related evaluations—with the ultimate
goal of finding ways to mitigate this real problem. Our
results entail the application of well-known methods (U-Net)
on benchmark datasets (95-Cloud) and by simulating faults
(bit-flips or image disturbances). However, we cannot claim
our testbed has 100% fidelity with a real spacecraft—albeit
the practitioners that we inquired confirmed our workflow
to represent a realistic pipeline. Moreover, we do not claim
novelty in the methods we use—albeit we do claim our
findings to be original (especially in light of the conclusions
in [55]). Finally, there are potentially infinite ways to inject

12Ethics: we contacted the maintainers of the NVBitFI and LLFTI reposi-
tories, informing them of the issues we encountered while using these tools.



the faults we considered. We account for this by releasing
our source-code [16]: the interested researcher can replicate
our experiments, or carry out new evaluations by considering
different faults, models, or datasets.

TAKEAWAYS. Our technical contributions are addressed
at ML enthusiasts who want to develop of space-tolerant
ML software without relying on specialized hardware.a

a§III and §IV showed that existing solutions have practical limitations.

B. Implications for Research (and for Practice)

We focus on deployment of ML in spacecraft—a setting
that partially overlaps with, e.g., aerial vehicles and com-
munications [149–151] or GPS [152]. We focus on solutions
at the software-level: developing radiation-tolerant hardware
(e.g., [153]) is an orthogonal research field. Our contributions
can be leveraged by a wide audience: we discuss 3 groups.

Power Consumption. Many papers on space missions
consider the relationship between ML and power consump-
tion [154–156]. For instance, [156] propose to use ML to
forecast energy requirements, whereas [154] assess the power
consumption of equipment which can also empower ML
models. Our contributions can be helpful to this research area:
indeed, they would inspire ML researchers “on Earth” to gauge
the accuracy applications of ML similar to those envisioned
in [156] by simulating certain faults, and then devising ap-
propriate ML-specific hardening methods. Alternatively, since
radiation can degrade the performance of ML also during
training [157], it would be intriguing to assess the energy
expenditure of ML models under the impact of radiation-
induced bitflips: such an analysis would be useful for those
applications that envision on-board ML training [78].

Space Security. We focus on the impact of naturally-
induced faults on ML models—a problem that falls in the
“robustness” research domain. Our findings are hence closely
related to cybersecurity [158]. E.g., papers on “adversarial
ML” (e.g., [135]) envisage “data perturbations”, which are
strongly connected to the perturbations that we injected for
our image experiments (§II-C). Notably, some works envi-
sion “adversarial attacks” against object detectors meant for
space deployment [159], but do not account for radiation: it
would be intriguing to study the effects of such “adversarial
perturbations” if combined to the effects of naturally-occuring
perturbations. Finally, satellites are now targeted by real at-
tackers [160], and must hence be protected [161, 162] against
sophisticated cyberthreats (e.g., [163, 164]). Our findings (and
resources) can open research avenues considering, e.g., the
effects of radiation-induced faults on ML models for on-board
network security (e.g., [165]).

Developers and Practitioners. Among the main take-home
messages of our paper is that there is a lack of publicly
available resources for realistic assessments of ML methods in
space contexts. Indeed, our work would not have been possible
without the guidance of practitioners, who provided us with
valuable information on how ML is deployed in spacecraft. Put
simply, we argue that (i) the shortage of “plug-and-play” (and

open-source) tools for radiation-induced faults, paired with
(ii) the prohibitive costs to setup a representative testbed for
space-related assessments is a substantial barrier for research
breakthroughs. For instance, the ML community flourished
thanks to the open release of code and data; yet, the results
claimed by research papers on generic ML have questionable
value for deployment of ML on-board satellites, due to the
“naturally adversarial” environment of spacecraft—of which
we know very little about from the ML perspective. Hence,
we advocate developers at all levels to prioritize publicly
accessible and easy-to-use tools for space experiments (and,
in particular, for robustness assessments of ML methods).
Call to Action. To quote Crum et al. [15]: “Progress in this field
depends on many stakeholders working together efficiently; not
only scientists from the astronomy and physics, ground- and space-
based communities, but also engineers, software developers, data,
and communication scientists, and more” and “to help development
[...] an open simulation and test environment is needed”.

VII. CONCLUSIONS AND FUTURE WORK

We seek to improve the robustness of ML models deployed
on-board spacecraft to radiation-induced faults. We reveal that
(i) prior research poorly accounted for the natural hazards that
may impact the performance of ML in space; and that (ii) cur-
rent open-source technologies are poorly suited to examine this
problem from the perspective of an ML researcher. To improve
the current situation, we pair-up with practitioners and carry
out proof-of-concept experiments highlighting the effects of
some radiation-induced faults on state-of-the-art ML methods
for cloud detection. Moreover, to foster development of future
efforts focusing on radiation-tolerant ML components, we
release all our tools and data in a dedicated repository [16]. We
also include a demonstrative 2-minutes video, showcasing
the simplicity of using our resources.

As intriguing avenues for research that can be built upon this
work, we suggest: the assessment of radiation-induced faults
at training-time (we only considered effects at the inference-
stage), since ML models should be periodically updated and
re-trained; and the consideration of ML models that analyse
data different from images (e.g., power or network data).

REFERENCES

[1] N. Altaf. (2021) The New Space Age. https://www.ibm.com/blog/ibm-
develops-a-unique-custom-edge-computing-solution-in-space/. IBM.

[2] D. Bradley and L. Brandon, “Orbital Edge Computing: Machine
Inference in Space,” IEEE Computer Architecture Letters, 2019.

[3] European Space Agency. (2023) CubeSats. https://esa.int/Enabling
Support/Preparing for the Future/Discovery and Preparation/
CubeSats.

[4] S. W. Samwel, E. A. El-Aziz, H. B. Garrett, A. A. Hady, M. Ibrahim,
and M. Y. Amin, “Space radiation impact on smallsats during maximum
and minimum solar activity,” Advances in Space Res., 2019.

[5] F. Rawlins, R. Baker, and I. Martinovic, “Death By A Thousand
COTS: Disrupting Satellite Communications using Low Earth Orbit
Constellations,” in SpaceSec (NDSS-W), 2023.

[6] M. Lofqvist and J. Cano, “Accelerating Deep Learning Applications
in Space,” in Annual Small Satellite Conference (Workshop), 2020.

ACKNOWLEDGEMENT. We would like to thank the anonymous reviewers
of the SpaceSec workshop for the invaluable feedback. We also thank the
Hilti Corporation for funding part of this research.

https://github.com/langekevin/mlspace_robustness/blob/main/assets/video/demonstrative_video_720p.mp4
https://www.ibm.com/blog/ibm-develops-a-unique-custom-edge-computing-solution-in-space/
https://www.ibm.com/blog/ibm-develops-a-unique-custom-edge-computing-solution-in-space/
https://esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
https://esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
https://esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats


[7] V. Kothari, E. Liberis, and N. D. Lane, “The final frontier: Deep
learning in space,” in Int. Workshop on Mobile Computing Systems
and Applications, 2020.

[8] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. S. Reorda, and
J.-G. Mess, “An analysis of test solutions for COTS-based systems in
space applications,” in IEEE Int. Conf. Very Large Scale Integr., 2018.

[9] E. Rapuano, G. Meoni, T. Pacini, G. Dinelli, G. Furano, G. Giuffrida,
and L. Fanucci, “An FPGA-Based Hardware Accelerator for CNNs
Inference on Board Satellites: Benchmarking with Myriad 2-Based
Solution for the CloudScout Case Study,” Remote Sensing, 2021.

[10] W. S. Slater, N. P. Tiwari, T. M. Lovelly, and J. K. Mee, “Total Ionizing
Dose Radiation Testing of NVIDIA Jetson Nano GPUs,” in IEEE High
Perf. Extreme Comp. Conf., 2020.

[11] I. Rodriguez-Ferrandez, M. Tali, L. Kosmidis, M. Rovituso, and
D. Steenari, “Sources of Single Event Effects in the NVIDIA Xavier
SoC Family under Proton Irradiation,” in IEEE Int. Symp. On-Line
Testing and Robust System Design (IOLTS), 2022.

[12] U. K. Agarwal, A. Chan, and K. Pattabiraman, “LLTFI: Framework
Agnostic Fault Injection for Machine Learning Applications,” in IEEE
ISSRE, 2022.

[13] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in IEEE/CVF ICCV, 2019.

[14] E. Miller, C. Heistand, and D. Mishra, “Space-operating linux: An
operating system for computer vision on commercial-grade equipment
in leo,” in IEEE Aerospace Conference, 2023.

[15] G. Crum, M. Dosberg, E. Gizzi, C. Gramling, C. Green, J. E. Hill,
M. Johnson, K. Mauldin, R. Morgenstern, C. Roberts et al., “Nasa’s
goddard space flight center’s distributed systems missions architecture,”
in International Astronautical Congress, 2022.

[16] https://github.com/langekevin/mlspace robustness/, 2024.
[17] B. Denby and B. Lucia, “Orbital Edge Computing: Nanosatellite

Constellations as a New Class of Computer System,” in ASPLOS, 2020.
[18] D. Izzo, G. Meoni, P. Gómez, D. Dold, and A. Zoechbauer, “Selected

trends in artificial intelligence for space applications,” in Artificial
Intelligence for Space (AI4SPACE), 2022.

[19] V. Růžička, A. Vaughan, D. De Martini, J. Fulton, V. Salvatelli,
C. Bridges, G. Mateo-Garcı́a, and V. Zantedeschi, “RaVÆn: unsuper-
vised change detection of extreme events using ML on-board satellites,”
Scientific Reports, 2022.

[20] P. Miralles, A. Scannapieco, N. Jagadam, P. Baranwal, B. Faldu,
R. Abhang, S. Bhatia, S. Bonnart, I. Bhatnagar, B. Batul, P. Prasad,
H. Ortega-González, H. jagan raj, H. More, S. Morchedi, A. Panda,
M. Di Fraia, D. Wischert, and D. Stepanova, “Machine Learning
in Earth Observation Operations: A review,” in Proc. International
Astronautical Congress (IAC), 2021.

[21] G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley, A. Dunne,
C. van Dijk, M. Esposito, J. Hefele, N. Vercruyssen et al., “The Φ-
Sat-1 mission: The first on-board deep neural network demonstrator
for satellite earth observation,” IEEE Transactions on Geoscience and
Remote Sensing, 2021.

[22] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati,
and L. Fanucci, “CloudScout: A Deep Neural Network for On-Board
Cloud Detection on Hyperspectral Images,” Remote Sensing, 2020.

[23] J. L. Gonzalo and C. Colombo, “On-board collision avoidance appli-
cations based on machine learning and analytical methods,” in Europ.
Conf. Space Debris, 2021.

[24] N. Bourriez, A. Loizeau, and A. F. Abdin, “Spacecraft Autonomous
Decision-Planning for Collision Avoidance: a Reinforcement Learning
Approach,” in International Astronautical Congress, 2023.

[25] Y. Xu, X. Liu, R. He, Y. Zhu, Y. Zuo, and L. He, “Active Debris
Removal Mission Planning Method Based on Machine Learning,”
Mathematics, 2023.

[26] B. Guthrie, M. Kim, H. Urrutxua, and J. Hare, “Image-based attitude
determination of co-orbiting satellites using deep learning technolo-
gies,” Aerospace Science and Technology, 2022.

[27] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for dense leo constellations,” in International Con-
ference on Communications, 2022.

[28] S. Silvestrini, M. Piccinin, G. Zanotti, A. Brandonisio, I. Bloise,
L. Feruglio, P. Lunghi, M. Lavagna, and M. Varile, “Optical navigation
for Lunar landing based on Convolutional Neural Network crater
detector,” Aerospace Science and Technology, 2022.

[29] R. Walker, D. Binns, C. Bramanti, M. Casasco, P. Concari, D. Izzo,
D. Feili, P. Fernandez, J. Fernandez, P. Hager, D. Koschny, V. Pesquita,

N. Wallace, I. Carnelli, M. Khan, M. Scoubeau, and D. Taubert, “Deep-
space CubeSats: thinking inside the box,” Astronomy and Geophysics,
2018.

[30] P. Gordo, T. Frederico, R. Melicio, S. Duzellier, and A. Amorim,
“System for space materials evaluation in LEO environment,” Advances
in Space Research, 2020.

[31] F. Tribak, O. Bendaou, and F. Nejma, “Impact of orbit inclination on
heat transfer in a 1U LEO CubeSat,” MATEC Web of Conferences, vol.
371, 11 2022.

[32] R. Baumann and K. Kruckmeyer, Radiation Handbook for Electronics.
Texas Instruments, 2019.

[33] K. Tekbıyık, G. K. Kurt, A. R. Ekti, and H. Yanikomeroglu, “Reconfig-
urable intelligent surfaces in action for nonterrestrial networks,” IEEE
Vehicular Technology Magazine, 2022.

[34] I. Daglis, Space Storms, Ring Current and Space-Atmosphere Coupling.
Springer Netherlands, 2001.

[35] M. Platini, T. Ropars, B. Pelletier, and N. De Palma, “CPU overheating
characterization in HPC systems: a case study,” in IEEE/ACM Work-
shop Fault Toler. HPC Extr. Scale, 2018.

[36] M. Sarafraz, A. Arya, F. Hormozi, and V. Nikkhah, “On the convective
thermal performance of a CPU cooler working with liquid gallium
and CuO/water nanofluid: A comparative study,” Applied Thermal
Engineering, 2017.

[37] H. Handel, “Analyzing the influence of camera temperature on the
image acquisition process,” in Three-Dimensional Image Capture and
Applications, 2008.

[38] M. J. Cannizzaro and A. D. George, “Evaluation of RISC-V Silicon
Under Neutron Radiation,” in IEEE Aerospace Conference, 2023.

[39] Y. Liu, G. Armstrong, B. Campanini, S. Messenger, and J. Rodriguez,
“Characterization of low dose rate ionizing radiation effect on the
micropac 66266-303 optocoupler,” in IEEE Radiation Effects Data
Workshop, 2023.

[40] C. Poivey, J. Barth, K. LaBel, G. Gee, and H. Safren, “In-flight
observations of long-term single-event effect (SEE) performance on
Orbview-2 solid state recorders (SSR),” in IEEE Radiation Effects Data
Workshop, 2003.

[41] I. Loskutov, N. Kravchenko, V. Marfin, P. Nekrasov, D. Bobrovsky,
A. Smolin, and A. Yanenko, “Investigation of operating system in-
fluence on single event functional interrupts using fault injection and
hardware error detection in ARM microcontroller,” in IEEE SIBCON,
2021.

[42] M. V. O’Bryan, K. A. LaBel, D. Chen, M. J. Campola, M. C.
Casey, J.-M. Lauenstein, J. A. Pellish, R. L. Ladbury, and M. D.
Berg, “Compendium of current single event effects for candidate
spacecraft electronics for NASA,” in Nuclear and Space Radiation
Effects Conference (NSREC), 2015.

[43] C. Virmontois, A. Toulemont, G. Rolland, A. Materne, V. Lalucaa,
V. Goiffon, C. Codreanu, C. Durnez, and A. Bardoux, “Radiation-
induced dose and single event effects in digital CMOS image sensors,”
IEEE T. Nuclear Science, 2014.

[44] S. B. Sukhavasi, S. B. Sukhavasi, K. Elleithy, S. Abuzneid, and
A. Elleithy, “CMOS image sensors in surveillance system applications,”
Sensors, 2021.

[45] G. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE
Transactions on Nuclear Science, 2000.

[46] A. Huber, G. Sergienko, D. Kinna, V. Huber, A. Milocco, L. Mercadier,
I. Balboa, S. Conroy, S. Cramp, V. Kiptily, U. Kruezi, H. T. Lambertz,
C. Linsmeier, G. Matthews, S. Popovichev, P. Mertens, S. Silburn, and
K.-D. Zastrow, “Response of the imaging cameras to hard radiation
during JET operation,” Fusion Engineering and Design, 2017.

[47] Y. Cai, L. Wen, Y. Li, Q. Guo, D. Zhou, J. Feng, X. Zhang, B. Liu,
and J. Fu, “Single-Event Effects in Pinned Photodiode CMOS Image
Sensors: SET and SEL,” IEEE Transactions on Nuclear Science, 2020.

[48] Jet Propulsion Laboratory. (2023) NASA’s Juno Team Assessing
Camera After 48th Flyby of Jupiter. https://www.nasa.gov/missions/
juno/nasas-juno-team-assessing-camera-after-48th-flyby-of-jupiter/.
NASA.

[49] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in EASE, 2014.

[50] F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling
radiation tolerant heterogeneous GPU-based onboard data processing
in space,” CEAS Space Journal, 2020.

[51] “Connected papers,” https://www.connectedpapers.com/.
[52] “European State Agency—OPS-SAT Space Lab Community Platform,”

https://github.com/langekevin/mlspace_robustness/
https://www.nasa.gov/missions/juno/nasas-juno-team-assessing-camera-after-48th-flyby-of-jupiter/
https://www.nasa.gov/missions/juno/nasas-juno-team-assessing-camera-after-48th-flyby-of-jupiter/
https://www.connectedpapers.com/


https://opssat1.esoc.esa.int/projects/publications.
[53] F. Latorre, D. Spiller, S. Sasidharan, S. Basheer, and F. Curti, “Transfer

learning for real-time crater detection on asteroids using a Fully
Convolutional Neural Network,” Icarus, 2023.

[54] L. Pauly, W. Rharbaoui, C. Shneider, A. Rathinam, V. Gaudillière, and
D. Aouada, “A survey on deep learning-based monocular spacecraft
pose estimation: Current state, limitations and prospects,” Acta Astro-
nautica, 2023.

[55] B. Haser and R. Förstner, “Reliability of Neural Networks: A Fault
Injector for Space related Perturbations,” IAC, 2022.

[56] H. Li, H. Zheng, C. Han, H. Wang, and M. Miao, “Onboard spectral
and spatial cloud detection for hyperspectral remote sensing images,”
Remote Sensing, 2018.

[57] M. Pastena, B. C. Domı́nguez, P. P. Mathieu, A. Regan, M. Esposito,
S. Conticello, C. V. Dijk, N. Vercruyssen, and P. Foglia, “ESA
Earth observation directorate NewSpace initiatives,” in Small Satellite
Conference, 2019.

[58] M. Esposito, S. S. Conticello, M. Pastena, and B. C. Domı́nguez, “In-
orbit demonstration of artificial intelligence applied to hyperspectral
and thermal sensing from space,” in CubeSats and SmallSats for remote
sensing III, 2019.

[59] E. Lemaire, M. Moretti, L. Daniel, B. Miramond, P. Millet, F. Feresin,
and S. Bilavarn, “An FPGA-based Hybrid Neural Network accelerator
for embedded satellite image classification,” in IEEE International
Symposium on Circuits and Systems, 2020.

[60] G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois,
A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss et al.,
“Towards the use of artificial intelligence on the edge in space systems:
Challenges and opportunities,” IEEE Aerospace and Electronic Systems
Magazine, 2020.

[61] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite con-
stellations as a new class of computer system,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020.

[62] A. Maskey and M. Cho, “CubeSatNet: Ultralight Convolutional Neural
Network designed for on-orbit binary image classification on a 1U
CubeSat,” Engineering Applications of Artificial Intelligence, 2020.

[63] P. Reiter, P. Karagiannakis, M. Ireland, S. Greenland, and L. Crockett,
“FPGA acceleration of a quantized neural network for remote-sensed
cloud detection,” in 7th International Workshop on On-Board Payload
Data Compression, 2020.

[64] G. Mateo-Garcia, J. Veitch-Michaelis, L. Smith, S. V. Oprea, G. Schu-
mann, Y. Gal, A. G. Baydin, and D. Backes, “Towards global flood
mapping onboard low cost satellites with machine learning,” Scientific
reports, 2021.

[65] E. Rapuano, G. Meoni, T. Pacini, G. Dinelli, G. Furano, G. Giuffrida,
and L. Fanucci, “An FPGA-Based Hardware Accelerator for CNNs
Inference on Board Satellites: Benchmarking with Myriad 2-Based
Solution for the CloudScout Case Study,” Remote Sensing, 2021.

[66] M. P. Del Rosso, A. Sebastianelli, D. Spiller, P. P. Mathieu, and
S. L. Ullo, “On-Board Volcanic Eruption Detection through CNNs and
Satellite Multispectral Imagery,” Remote Sensing, 2021.

[67] A. S. Kucik and G. Meoni, “Investigating Spiking Neural Networks
for Energy-Efficient On-Board AI Applications. A Case Study in Land
Cover and Land Use Classification,” in CVPR, 2021.

[68] L. Diana, J. Xu, and L. Fanucci, “Oil spill identification from SAR
images for low power embedded systems using CNN,” Remote Sensing,
2021.

[69] L. Ferrari, F. Dell’Acqua, P. Zhang, and P. Du, “Integrating EfficientNet
into an HAFNet Structure for Building Mapping in High-Resolution
Optical Earth Observation Data,” Remote Sensing, 2021.

[70] T. Pacini, E. Rapuano, G. Dinelli, and L. Fanucci, “A multi-cache
system for on-chip memory optimization in FPGA-based CNN accel-
erators,” Electronics, 2021.

[71] T. I. Leong, Y. M. Abbas, M. A. C. Purio, and H. A. Elmegharbel,
“Image Classification Unit: A U-Net Convolutional Neural Network
for On-Orbit Cloud Detection Aboard CubeSats,” in IEEE International
Geoscience and Remote Sensing Symposium, 2021.

[72] P. Fernando and J. Wei-Kocsis, “Towards a Disaster Response System
Based on CubeSat Constellations,” in IEEE Cognitive Communications
for Aerospace Applications Workshop, 2021.

[73] T. Garrett and A. D. George, “Improving dependability of onboard
deep learning with resilient tensorflow,” in IEEE SCC, 2021.

[74] A. J. Farr, I. Petrunin, G. Kakareko, and J. Cappaert, “Self-supervised

vessel detection from low resolution satellite imagery,” in AIAA
SCITECH 2022 Forum, 2022.

[75] V. Růžička, A. Vaughan, D. De Martini, J. Fulton, V. Salvatelli,
C. Bridges, G. Mateo-Garcı̀a, and V. Zantedeschi, “RaVÆn: unsuper-
vised change detection of extreme events using ML on-board satellites,”
Scientific reports, 2022.

[76] M. H. b. Azami, N. C. Orger, V. H. Schulz, T. Oshiro, and M. Cho,
“Earth observation mission of a 6U CubeSat with a 5-meter resolution
for wildfire image classification using convolution neural network
approach,” Remote Sensing, 2022.

[77] C. Luo, S. Feng, X. Yang, Y. Ye, X. Li, B. Zhang, Z. Chen, and
Y. Quan, “LWCDnet: A Lightweight Network for Efficient Cloud De-
tection in Remote Sensing Images,” IEEE Transactions on Geoscience
and Remote Sensing, 2022.

[78] G. Labrèche, D. Evans, D. Marszk, T. Mladenov, V. Shiradhonkar,
T. Soto, and V. Zelenevskiy, “OPS-SAT Spacecraft Autonomy with
TensorFlow Lite, Unsupervised Learning, and Online Machine Learn-
ing,” in IEEE Aerospace Conference. IEEE, 2022.

[79] D. Spiller, K. Thangavel, S. T. Sasidharan, S. Amici, L. Ansalone,
and R. Sabatini, “Wildfire segmentation analysis from edge computing
for on-board real-time alerts using hyperspectral imagery,” in IEEE
International Conference on Metrology for Extended Reality, Artificial
Intelligence and Neural Engineering, 2022.

[80] C. Luo, S. Feng, X. Li, Y. Ye, B. Zhang, Z. Chen, and Y. Quan,
“ECDNet: A bilateral lightweight cloud detection network for remote
sensing images,” Pattern Recognition, 2022.

[81] C. Salazar, J. Gonzalez-Llorente, L. Cardenas, J. Mendez, S. Rincon,
J. Rodriguez-Ferreira, and I. F. Acero, “Cloud detection autonomous
system based on machine learning and cots components on-board small
satellites,” Remote Sensing, 2022.

[82] R. Pitonak, J. Mucha, L. Dobis, M. Javorka, and M. Marusin,
“CloudSatNet-1: FPGA-based hardware-accelerated quantized CNN
for satellite on-Board cloud coverage classification,” Remote Sensing,
2022.

[83] G. Guerrisi, F. Del Frate, and G. Schiavon, “Satellite On-Board Change
Detection via Auto-Associative Neural Networks,” Remote Sensing,
2022.

[84] M. Jeon, T. Kim, C. Lee, and C.-H. Youn, “A Channel Pruning
Optimization With Layer-Wise Sensitivity in a Single-Shot Manner
Under Computational Constraints,” IEEE Access, 2022.

[85] D. A. Zeleke and H.-D. Kim, “A New Strategy of Satellite Autonomy
with Machine Learning for Efficient Resource Utilization of a Standard
Performance CubeSat,” Aerospace, 2023.

[86] M. P. Del Rosso, A. Sebastianelli, D. Spiller, and S. L. Ullo, “A demo
setup testing onboard CNNs for Volcanic Eruption Detection,” in IEEE
International Conference on Metrology for Extended Reality, Artificial
Intelligence and Neural Engineering (MetroXRAINE), 2022.

[87] J. Murphy, J. E. Ward, and B. M. Namee, “Developing Machine
Learning Models for Space Based Edge AI Platforms,” in Small
Satellite Conference, 2022.

[88] D. Spiller, A. Carbone, F. Latorre, and F. Curti, “Hardware-in-the-
loop Simulations of Remote Sensing Disaster Monitoring Systems with
Real-Time On-Board Computation,” in IEEE International Conference
on Metrology for Extended Reality, Artificial Intelligence and Neural
Engineering, 2022.

[89] L. Buckley, A. Dunne, G. Furano, and M. Tali, “Radiation Test and
in Orbit Performance of MpSoC AI Accelerator,” in IEEE Aerospace
Conference, 2022.

[90] G. Mateo-Garcı́a, J. Veitch-Michaelis, C. Purcell, N. Longepe, S. Reid,
A. Anlind, F. Bruhn, J. Parr, and P. P. Mathieu, “In-orbit demonstration
of a re-trainable machine learning payload for processing optical
imagery,” Scientific Reports, 2023.

[91] G. Labrèche, D. Evans, D. Marszk, T. Mladenov, V. Shiradhonkar, and
V. Zelenevskiy, “Artificial Intelligence for Autonomous Planning and
Scheduling of Image Acquisition with the SmartCam App On-Board
the OPS-SAT Spacecraft,” in AIAA SCITECH 2022 Forum, 2022.

[92] S. Kacker, A. Meredith, K. Cahoy, and G. Labreche, “Machine learning
image processing algorithms onboard OPS-SAT,” in Small Satellite
Conference, 2022.

[93] T. Mladenov, G. Labreche, T. Syndercombe, and D. Evans, “Aug-
menting Digital Signal Processing with Machine Learning techniques
using the Software Defined Radio on the OPS-SAT Space Lab,” in
International Astronautical Congress, 2022.

[94] E. Kervennic, T. Louis, M. Benguigui, F. Férésin, Y. Bobichon, and

https://opssat1.esoc.esa.int/projects/publications


A. Girard, “Deployment of a cloud segmentation neural network on
embedded hardware targets and benchmark of the different deployment
toolchains.” in International Workshop on On-Board Payload Data
Compression, 2022.

[95] S. Fratini, N. Policella, R. Silva, and J. Guerreiro, “On-board autonomy
operations for OPS-SAT experiment,” Applied Intelligence, 2022.

[96] L. Gu, Q. Fang, Z. Wang, E. Popov, and G. Dong, “Learning
lightweight and superior detectors with feature distillation for onboard
remote sensing object detection,” Remote Sensing, 2023.

[97] G. Guerrisi, F. Del Frate, and G. Schiavon, “Artificial Intelligence based
on-board image compression for the Φ-Sat-2 mission,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
2023.

[98] G. Cascelli, C. Guaragnella, R. Nutricato, K. Tijani, A. Morea,
N. Ricciardi, and D. O. Nitti, “Use of a Residual Neural Network to
Demonstrate Feasibility of Ship Detection Based on Synthetic Aperture
Radar Raw Data,” Technologies, 2023.

[99] M. Coca and M. Datcu, “FPGA Accelerator for Meta-Recognition
Anomaly Detection: Case of Burned Area Detection,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
2023.

[100] Q. Shi, L. Li, J. Feng, W. Chen, and J. Yu, “Automated Model
Hardening with Reinforcement Learning for On-Orbit Object Detectors
with Convolutional Neural Networks,” Aerospace, 2023.

[101] C. Serief, Y. Ghelamallah, and Y. Bentoutou, “Deep Learning-based
System for Change Detection On-Board Earth Observation Small Satel-
lites,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2023.

[102] C. Kadway, S. Dey, A. Mukherjee, A. Pal, and G. Bézard, “Low Power
& Low Latency Cloud Cover Detection in Small Satellites Using On-
board Neuromorphic Processors,” in International Joint Conference on
Neural Networks (IJCNN), 2023.

[103] N. Ferrante, G. Giuffrida, P. Nannipieri, A. Bechini, and L. Fanucci,
“Fault Detection Exploiting Artificial Intelligence in Satellite Systems,”
in International Conference on Applied Intelligence and Informatics,
2022.

[104] A. Carbone, D. Spiller, S. Amici, K. Thangavel, R. Sabatini, and
G. Laneve, “Comparison of 1D and 3D Convolutional Neural Networks
for Wildfire Detection Using PRISMA Hyperspectral Imagery and
Domain Adaptation,” in IEEE International Conference on Metrology
for eXtended Reality, Artificial Intelligence and Neural Engineering,
2023.

[105] R. Ciardi, G. Giuffrida, G. Benelli, C. Cardenio, and R. Maderna,
“GPU@SAT: A General-Purpose Programmable Accelerator for on
Board Data Processing and Satellite Autonomy,” in International
Conference on Applied Intelligence and Informatics, 2022.

[106] R. Deticio, A. Bandala, J. A. Jose, R. Concepcion II, M. A. Purio,
E. Sybingco, and R. J. T. Ai, “Improving the U-Net Segmentation
Model for Land Cover Classification in Satellite Image Processing,” in
IEEE Region 10 Conference (TENCON), 2023.

[107] R. Deticio, A. Bandala, J. A. Jose, R. C. Ii, M. A. Purio, E. Sybingco,
and R. J. T. Ai, “Application of a U-Net Segmentation Model in Land
Cover Classification for Use in Automated Data Prefiltering Onboard
Nanosatellites,” in IEEE Region 10 Conference, 2023.

[108] V. Leon, P. Minaidis, G. Lentaris, and D. Soudris, “Accelerating AI
and Computer Vision for Satellite Pose Estimation on the Intel Myriad
X Embedded SoC,” Microprocessors and Microsystems, 2023.

[109] T. Fernando, C. Fookes, H. Gammulle, S. Denman, and S. Sridharan,
“Towards On-Board Panoptic Segmentation of Multispectral Satellite
Images,” IEEE Transactions on Geoscience and Remote Sensing, 2023.

[110] J. Murphy, J. E. Ward, and B. Mac Namee, “An Overview of Machine
Learning Techniques for Onboard Anomaly Detection in Satellite
Telemetry,” in European Data Handling & Data Processing Conference
(EDHPC), 2023.

[111] J. Nalepa, B. Ruszczak, K. Kotowski, J. Andrzejewski, A. Musiał,
D. Evans, V. Zelenevskiy, S. Bammens, and R. Laurinovičs, “Look
ma, no ground truth! On building supervised anomaly detection from
OPS-SAT telemetry,” in International Astronautical Congress, 2023.

[112] P. Miralles, K. Thangavel, A. F. Scannapieco, N. Jagadam, P. Baranwal,
B. Faldu, R. Abhang, S. Bhatia, S. Bonnart, I. Bhatnagar et al.,
“A critical review on the state-of-the-art and future prospects of
Machine Learning for Earth Observation Operations,” Advances in
Space Research, 2023.

[113] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga,

C. Frost, and P. Rech, “Selective hardening for neural networks in
FPGAs,” IEEE Transactions on Nuclear Science, 2018.

[114] K. Adam, I. Mohamed, and Y. Ibrahim, “A Selective Mitigation Tech-
nique of Soft Errors for DNN Models Used in Healthcare Applications:
DenseNet201 Case Study,” IEEE Access, 2021.

[115] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft Error Resilience of Deep Residual Networks for Object Recog-
nition,” IEEE Access, 2020.

[116] S. Sabogal, A. George, and G. Crum, “ReCoN: A reconfigurable CNN
acceleration framework for hybrid semantic segmentation on hybrid
SoCs for space applications,” in IEEE Space Computing Conference,
2019.

[117] “Satellitegithub,” https://github.com/satellite-image-deep-learning.
[118] S. Mohajerani and P. Saeedi, “Cloud-net+: A cloud segmentation cnn

for landsat 8 remote sensing imagery optimized with filtered jaccard
loss function,” arXiv, 2020.

[119] J. Timpe, K. O’Neill, D. Qendri, B. Berkane, G. Chapman, and
D. Quinn, “Application of AMD Versal™ Adaptive SoC to Radar Space
Time Adaptive Processing in Space,” in European Data Handling &
Data Processing Conference. IEEE, 2023.

[120] A. Costin, H. Turtiainen, S. Khandker, and T. Hämäläinen, “Towards a
Unified Cybersecurity Testing Lab for Satellite, Aerospace, Avionics,
Maritime, Drone (SAAMD) technologies and communications,” in
SpaceSec (NDSS-W), 2023.

[121] “NVBitFI,” https://github.com/NVlabs/nvbitfi.
[122] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler,

“NVBitFI: Dynamic Fault Injection for GPUs,” in IEEE/IFIP Int. Conf.
Depend. Syst. Netw., 2021.

[123] “LLTFI,” https://github.com/DependableSystemsLab/LLTFI.
[124] “Kornia,” https://github.com/kornia/kornia.
[125] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski, “Kornia:

an Open Source Differentiable Computer Vision Library for PyTorch,”
in IEEE Winter Conf. Appl. Comp. Vis., 2020.

[126] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve,
C. W. Fletcher, I. Frosio, and S. K. S. Hari, “PyTorchFI: A Runtime
Perturbation Tool for DNNs,” in IEEE/IFIP Int. Conf. Dependable
Systems Networks Workshops, 2020.

[127] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “TensorFI: A Flexible Fault Injection Framework for
TensorFlow Applications,” in IEEE ISSRE, 2020.

[128] F. F. Dos Santos, A. Kritikakou, J. E. R. Condia, J.-D. Guerrero-
Balaguera, M. S. Reorda, O. Sentieys, and P. Rech, “Characterizing
a neutron-induced fault model for deep neural networks,” IEEE Trans-
actions on Nuclear Science, 2023.

[129] S. Mohajerani and P. Saeedi, “Cloud-Net: An end-to-end cloud detec-
tion algorithm for Landsat 8 imagery,” in IEEE IGARSS, 2019.

[130] “ONNX-MLIR-LLTFI repository,” https://github.com/
DependableSystemsLab/onnx-mlir-lltfi/tree/LLTFI.

[131] H. Guo, H. Bai, and W. Qin, “ClouDet: A dilated separable CNN-based
cloud detection framework for remote sensing imagery,” IEEE J. Sel.
Topics Applied Earth Obs. Remote Sens., 2021.

[132] “ONNX-MLIR repository,” https://github.com/onnx/onnx-mlir.
[133] K. A. Kalpoma, A. S. Aurgho, M. M. I. Shizan, F. H. Ani, and A. R.

Bondhon, “Deep learning image segmentation for satellite images of
national highways of Bangladesh,” in IEEE IGARSS, 2023.

[134] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

[135] G. Apruzzese, H. S. Anderson, S. Dambra, D. Freeman, F. Pierazzi,
and K. Roundy, ““Real Attackers Don’t Compute Gradients”: Bridging
the Gap Between Adversarial ML Research and Practice,” in SaTML,
2023.

[136] N. Abderrahmane, B. Miramond, E. Kervennic, and A. Girard,
“SPLEAT: SPiking Low-power Event-based ArchiTecture for in-orbit
processing of satellite imagery,” in International Joint Conference on
Neural Networks (IJCNN), 2022.

[137] M. J. Veyette, K. Aylor, D. Stafford, M. Herrera, S. Jumani,
C. Lineberry, C. Macklen, E. Maxwell, R. Stiles, and M. Jenkins,
“Ai/ml for mission processing onboard satellites,” in AIAA SCITECH
2022 Forum, 2022.

[138] M. Esposito, S. Conticello, M. Pastena, and B. Carnicero Domı́nguez,
“Hyperscout-2: Highly integration of hyperspectral and thermal sensing
for breakthrough in-space applications,” Proceedings of the ESA Earth
Observation φ-Week, 2019.

https://github.com/satellite-image-deep-learning
https://github.com/NVlabs/nvbitfi
https://github.com/DependableSystemsLab/LLTFI
https://github.com/kornia/kornia
https://github.com/DependableSystemsLab/onnx-mlir-lltfi/tree/LLTFI
https://github.com/DependableSystemsLab/onnx-mlir-lltfi/tree/LLTFI
https://github.com/onnx/onnx-mlir


[139] M. Esposito, B. Dominguez, M. Pastena, N. Vercruyssen, S. Conticello,
C. van Dijk, P. Manzillo, and R. Koeleman, “Highly integration of
hyperspectral, thermal and artificial intelligence for the ESA PHISAT-
1 mission,” in Proceedings of the International Astronautical Congress
IAC, 2019.

[140] L. Chavier, B. Bonham-Carter, H. Burd, T. Heydrich, G. O’Shea,
J. Prud’homme, N. Ayyappan, M. Maharib, T. Ganesalingam, A. Hig-
ginson et al., “Deploying Artificial Intelligence Capabilities by Hy-
bridizing a Neural Network on a Satellite,” in ASCEND 2023, 2023.

[141] B. Ruszczak, K. Kotowski, J. Andrzejewski, A. Musiał, D. Evans,
V. Zelenevskiy, S. Bammens, R. Laurinovics, and J. Nalepa, “Machine
Learning Detects Anomalies in OPS-SAT Telemetry,” in International
Conference on Computational Science, 2023.

[142] V. Fanizza, D. Rijlaarsdam, P. T. T. González, and J. L. Espinosa-
Aranda, “Transfer Learning for On-Orbit Ship Segmentation,” in Eu-
ropean Conference on Computer Vision, 2022.

[143] A. J. Macdonald, A. Budhkar, B. Bonham-Carter, E. Smal, M. Cross,
K. V. Raimalwala, M. Battler, and M. Faragalli, “Enabling Autonomy
with a Deep Learning Framework for Planetary Exploration,” in
ASCEND, 2022.

[144] C. Wilson, S. Sabogal, A. George, and A. Gordon-Ross, “Hybrid,
adaptive, and reconfigurable fault tolerance,” in IEEE Aerospace Con-
ference, 2017.

[145] S. Sabogal and A. George, “A Methodology for Evaluating and An-
alyzing FPGA-Accelerated, Deep-Learning Applications for Onboard
Space Processing,” in IEEE Space Computing Conference, 2021.

[146] E. T. Kain, T. M. Lovelly, and A. D. George, “Evaluating SEU
resilience of CNNs with fault injection,” in IEEE High Performance
Extreme Computing Conference, 2020.

[147] L. M. Luza, A. Ruospo, D. Söderström, C. Cazzaniga, M. Kastriotou,
E. Sanchez, A. Bosio, and L. Dilillo, “Emulating the effects of
radiation-induced soft-errors for the reliability assessment of neural
networks,” IEEE Transactions on Emerging Topics in Computing, 2021.

[148] D. Olszewski, A. Lu, C. Stillman, K. Warren, C. Kitroser, A. Pascual,
D. Ukirde, K. Butler, and P. Traynor, “”Get in Researchers; We’re
Measuring Reproducibility”: A Reproducibility Study of Machine
Learning Papers in Tier 1 Security Conferences,” in ACM CCS, 2023.

[149] A. Ding, M. Chan, A. Hass, N. O. Tippenhauer, S. Ma, and S. Zonouz,
“Get Your Cyber-Physical Tests Done! Data-Driven Vulnerability As-
sessment of Robotic Aerial Vehicles,” in IEEE DSN, 2023.

[150] M. Strohmeier, I. Martinovic, and V. Lenders, “A k-NN-based localiza-
tion approach for crowdsourced air traffic communication networks,”
IEEE Transactions on Aerospace and Electronic Systems, 2018.

[151] R. P. Dick, R. Aitken, J. Mogill, J. P. Strachan, K. Bresniker, W. Lu,
Y. Nakahira, Z. Li, M. J. Marinella, W. Severa et al., “Research
challenges for energy-efficient computing in automated vehicles,” Com-
puter, 2023.

[152] N. Xue, L. Niu, X. Hong, Z. Li, L. Hoffaeller, and C. Pöpper,
“DeepSIM: GPS Spoofing Detection on UAVs using Satellite Imagery
Matching,” in ACSAC, 2020.

[153] N. Martin, T. Cook, A. George, and B. M. Grainger, “Radiation-
Tolerant, High-Power Density GaN Drop-On Point-of-Load Convert-
ers,” in IEEE Aerospace Conference, 2022.

[154] N. Perryman, C. Wilson, and A. George, “Evaluation of Xilinx Ver-
sal Architecture for Next-Gen Edge Computing in Space,” in IEEE
Aerospace Conference, 2023.

[155] N. Franconi, T. Cook, C. Wilson, and A. D. George, “Comparison of
multi-phase power converters and power delivery networks for next-
generation space architectures,” in IEEE Aerospace Conference, 2023.

[156] J. R. Kocik and A. D. George, “Space Station Power Forecasting with
LSTMs for an Embedded Platform,” in IEEE National Aerospace and
Electronics Conference, 2021.

[157] J. Dong, H. Qiu, Y. Li, T. Zhang, Y. Li, Z. Lai, C. Zhang, and S.-T.
Xia, “One-bit flip is all you need: When bit-flip attack meets model
training,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023.

[158] M. Lin, M. Cheng, D. Luo, and Y. Chen, “CLExtract: Recovering
Highly Corrupted DVB/GSE Satellite Stream with Contrastive Learn-
ing,” SpaceSec (NDSS-W), 2023.

[159] A. Du, Y. W. Law, M. Sasdelli, B. Chen, K. Clarke, M. Brown, and T.-J.
Chin, “Adversarial attacks against a satellite-borne multispectral cloud
detector,” in International Conference on Digital Image Computing:
Techniques and Applications, 2022.

[160] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A. Ab-

basi, “Space Odyssey: An Experimental Software Security Analysis of
Satellites,” in IEEE S&P, 2023.

[161] D. Fischer, I. Aguilar Sanchez, B. Saba, G. Moury, B. Bailey, C. Big-
gerstaff, H. Weiss, M. Pilgram, and D. Richter, “Finalizing the CCSDS
space-data link layer security protocol: Setup and execution of the
interoperability testing,” in AIAA SPACE Conference and Exposition,
2015.

[162] M. Adalier, A. Riffel, M. Galvan, B. Johnson, and S. Burleigh,
“Efficient and secure autonomous communications for deep space
missions,” in IEEE Aerospace Conference, 2020.

[163] G. Falco, R. Thummala, and A. Kubadia, “Wannafly: An approach to
satellite ransomware,” in IEEE SMC-IT, 2023.

[164] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla, “{ICARUS}:
Attacking low earth orbit satellite networks,” in USENIX ATC, 2021.

[165] J. Smailes, S. Köhler, S. Birnbach, M. Strohmeier, and I. Martinovic,
“Watch this space: Securing satellite communication through resilient
transmitter fingerprinting,” in ACM CCS, 2023.


	Introduction
	Applications (and Problems) of ML in Space
	What tasks can be solved by ML (in space)?
	What space-specific problems affect ML (in space)?
	Temperature
	Radiation

	How can radiation interfere with ML (in-space)?
	Effects on the ML model
	Effects on Data


	State of the Art (in research)
	Methodology (literature review)
	Findings (and interpretations)
	Consequences (and the way forward)

	Tools for reproducing Radiation's effects
	Resources for replicating on-board cloud detection via ML
	Analysis of NVBitFI and LLTFI (negative result)
	NVBitFI (scarce documentation)
	LLTFI (problems and errors)

	Reflections and remediations

	Technical Implementation and Assessment
	Baseline: U-Net on Cloud-95 dataset
	Simulating radiation-induced bit-flips on the ML models
	Effects of radiation-induced perturbations on image data

	Discussion and Implications
	Disclaimers (and Alternative Formulations)
	Implications for Research (and for Practice)

	Conclusions and Future Work

