
Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, Mirco Marchetti
21st June, 2017
University of Modena and Reggio Emilia, Italy

Detection and Threat 
Prioritization of Pivoting 
Attacks in Large Networks



▪ Defending large enterprise systems is an extremely challenging task.

▪ Attackers want to control hosts with higher privileges or more valuable data. 

→ Recent diffusion of pivoting:

– Operation Aurora (2010)

– Operation Night Dragon (2011)

– Black Energy malware (2015)

– MEDJACK (2016)

– Archimedes (2017)

▪ Countering pivoting poses significant problems:

– Pivoting cannot be detected through signatures

– False Positives

– Evasion

– Complexity

Scenario

2



▪ Limited literature

▪ Focuses on prevention instead of detection:

– Game-theoretic models → easily evaded

– Re-planning and re-structuring of the entire network → unfeasible

▪ Other detection approaches:

– HIDS on every host → unfeasible

– A-priori knowledge of adopted protocols → easily evaded

Related Work

3



▪ Original algorithm for pivoting detection

– Based on network flows

▪ Easy to collect, store and fast to analyze

– No a-priori knowledge required

▪ Algorithm for threat prioritization of pivoting attacks

– Ranks the detected pivoting activities

▪ Feasible for large networks

Our Proposal

4



▪ Pivoting: any action in which a command propagation tunnel is 
created among three or more hosts

▪ Pivoting activities are not necessarily malicious

▪ Pivoting attacks consist of three phases:

– Reconnaissance

– Compromise

– Command Propagation Our focus

Pivoting Description

5



Pivoting Example

6



▪ (network) Flow:

– Aggregation of packets from a source host to a destination host

▪ Flow-sequence:

– Ordered set of flows where consecutive flows are:

▪ Chronologically ordered

▪ Separated by at most 𝜺𝒎𝒂𝒙 time units

▪ Adjacent

▪ Not cyclical

▪ Pivoting path:

– A pivoting path is an ordered set of hosts for which at least one flow-sequence 
exists

Example of flow-sequence (𝜀𝑚𝑎𝑥 = 20𝑠):
(a,b,10s),(b,d,15s),(d,e,30s)

From flow-sequence:
(a,b,10s),(b,d,15s),(d,e,30s)

...we can derive the pivoting path:
(a,b,d,e)

Definitions

𝑓 = (𝑠𝑟𝑐; 𝑑𝑠𝑡; 𝑝𝑠𝑟𝑐; 𝑝𝑑𝑠𝑡; 𝑏𝑖𝑛; 𝑏𝑜𝑢𝑡; 𝑑; 𝑡)

7



If 𝜺𝒎𝒂𝒙 = 𝟐𝟕𝒔 If 𝜺𝒎𝒂𝒙 = 𝟓𝒔

Example

8



Pivoting Detection Algorithm – 1

▪ Input:

– All the network flows that occur within a time-window 𝑾

– The maximum propagation delay 𝜺𝒎𝒂𝒙

– The maximum flow-sequence length 𝑳𝒎𝒂𝒙

▪ Output:

– List of all the flow-sequences occurring within the time-window 𝑊

9



1. Read all the input flows and store them in 𝐹

2. Iterate over 𝐹:

– Build flow-sequences of length-1 and store them in 𝑃

3. For 𝑖 = 1 to 𝐿𝑚𝑎𝑥:

– For every flow-sequence 𝑘 of length-𝑖 in 𝑃, check if you can extend 𝑘 to a 
flow-sequence 𝑘’ of length- 𝑖 + 1 with any flow in 𝐹

▪ If you can, then add 𝑘’ at the end of 𝑃

▪ Keep checking for all extensions of 𝑘 of length-(𝑖 + 1)

– If you cannot find any flow-sequence of length-(𝑖 + 1), stop

4. Return 𝑃

Flow-sequences of length-1
are the same as flows

Pivoting Detection Algorithm – 2

10



Pivoting Detection Algorithm – 3

𝜀𝑖 ≤ 𝜀𝑚𝑎𝑥 , ∀𝑖

11



▪ Reminder: pivoting activities are not necessarily malicious

▪ Need to discriminate between “benign” and “malicious” pivoting

▪ Solution: Rank the detected pivoting activities on the basis of 
threatening characteristics displayed

▪ Characteristics considered by the algorithm:

– Novelty

– Reconnaissance Activities

– Uncommon Ports

– LANs involved

– Anomalous Data Transfers

Threat Prioritization Algorithm

12



▪ Collected the network flows of a large real organization 
(over 90M flows)

▪ Assessed the capabilities of our proposals to:

– Detect benign and malicious pivoting activities

– Prioritize malicious pivoting activities

– Perform the analyses in feasible times for large organizations

▪ Malicious pivoting activities injected in the regular traffic

Experimental Evaluation – Testbed

13



▪ Execution of the Detection algorithm on the injected real dataset 
with 𝜀𝑚𝑎𝑥 = 1𝑠:

– All injected attacks have been detected

– Also the benign pivoting activities have been detected (≅1800 flow-sequences)

▪ Results of the Prioritization algorithm:

Experimental Evaluation – Results

14



▪ Attackers may try to elude detection by increasing the command 
propagation delay 

▪ Increasing 𝜀𝑚𝑎𝑥 also increases the number of false positives
→ Priotization algorithm can help in these situations

▪ Results of the algorithms on the (new) injected dataset:

Experimental Evaluation – Evasion

15



▪ Execution times of the Detection Algorithm on the entire injected dataset 
with different input values of 𝜀𝑚𝑎𝑥, 𝐿𝑚𝑎𝑥 and 𝑊:

▪ Aa

▪

▪ Analyses performed on an Intel Xeon E5-2609 v2 CPU, 128GB RAM.

Experimental Evaluation – Execution times

16



▪ Pivoting is an increasingly adopted technique by attackers.

▪ Proposed novel algorithms for:

– Detection of pivoting activities

– Threat Prioritization of pivoting attacks

▪ Extensive analyses of the proposed solutions confirmed their:

– Effectiveness

– Efficency

– Applicability to practical contexts

Conclusions

17



Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, Mirco Marchetti
21st June, 2017
University of Modena and Reggio Emilia, Italy

Detection and Threat 
Prioritization of Pivoting 
Attacks in Large Networks



Experimental Evaluation – Workflow

19



Pivoting Detection Algorithm – full

21



Backstory…
• Our original goal was to focus on Lateral Movement as a whole, not on pivoting.

This could be achieved with a reachability graph

22



▪ The paths from which the desired reachability graph is built have the 
following definition:

– Ordered set of 𝐿 > 2 unique hosts where each host 𝑖 ≤ 𝐿 received a 
communication from host (𝑖 − 1)  after that host (𝑖 − 1) received a 
communication from (𝑖 − 2)

▪ How to compute such a reachability graph:

– Starting from network flows

– Fast enough to support online analyses in a large enterprise network

Problem

Hint: we could obtain a reachability graph of one day by providing an 𝜺𝒎𝒂𝒙 = 24h to 
the pivoting detection algorithm...
→ This takes hours to complete!

23



▪ IDEA: reduce computation time by decreasing the amount of reads on 
the input flows

▪ First attempt: keep only the first flow between each pair of hosts.
– Create paths by joining adjacent flows, in which the timestamp of the latter is higher 

than the timestamp of the former

– After adding a new host, set the timestamp of this host to the highest value of the 
timestamp of all hosts of the path

▪ Problem: false negatives: some paths are not detected

Solutions…? – 1

Assume the following flows:
(b,c,5), (a,b, 10), (b,c,11), (a,b,20) 

This is what the attacker did:

24



▪ IDEA: reduce computation time by decreasing the amount of reads on 
the input flows

▪ Second attempt: keep only the first and last flows between each pair of 
hosts.
– Create paths by joining adjacent flows, in which the last timestamp of the latter is 

higher than the first timestamp of the former. 

– After adding a new host, set the first timestamp of this host to the highest value of the 
first timestamp of all hosts of the path

▪ This solution solves the previous situation:

Solutions…? – 2.1

Assume the following flows:
(b,c,5), (a,b,10), (b,c,11), (a,b,20)

(a,b,10,20), (b,c,5,11)

25



▪ Problem: false positives: some detected paths are not actually paths

Solutions…? – 2.2

Assume the following flows:
(c,d,1), (b,c,5), (a,b,10), (c,d,13), (b,c,14), (a,b,50) 

(a,b,10,50), (b,c,5,14), (c,d,1,13)

However, in reality no path (a,b,c,d) could possibly exist from those flows!
It would exist if there were an additional flow, e.g.:

(b,c,11)
26



▪ The second solution still requires validation of all the detected paths, 
to check if they actually exist and are not false positives.
→expensive

▪ However, the second solution always works if the path has only 
3 hosts.

▪ Focusing on pivoting introduced the concept expressed by 𝜺, which 
dramatically reduced computation times due to a powerful filtering 
criteria.

Solutions…? 

27


