Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, Mirco Marchetti
215t June, 2017
University of Modena and Reggio Emilia, Italy

= Defending large enterprise systems is an extremely challenging task.
= Attackers want to control hosts with higher privileges or more valuable data.

- Recent diffusion of pivoting:
— Operation Aurora (2010)

— Operation Night Dragon (2011)
— Black Energy malware (2015)

— MEDJACK (2016)

— Archimedes (2017)

LAN 1
= Countering pivoting poses significant problems:

— Pivoting cannot be detected through signatures
— False Positives
— Evasion

— Complexity 2

» Limited literature

= Focuses on prevention instead of detection:
— Game-theoretic models - easily evaded

— Re-planning and re-structuring of the entire network - unfeasible

= Other detection approaches:
— HIDS on every host = unfeasible

— A-priori knowledge of adopted protocols = easily evaded

(Original algorithm for pivoting detection A
— Based on network flows
= Easy to collect, store and fast to analyze
— No a-priori knowledge required
| 4
@ D

= Algorithm for threat prioritization of pivoting attacks

— Ranks the detected pivoting activities

& 4
= Feasible for large networks

= Pivoting: any action in which a command propagation tunnel is
created among three or more hosts

= Pivoting activities are not necessarily malicious

= Pivoting attacks consist of three phases:
— Reconnaissance

— Compromise
— Command Propagation < Our focus

“‘-.................................. “-...............'.
. LAN 1 o LAN 2 ‘.
* Entry host Pivoter 1 - Pivoter 2 :
: @ ®
. 0] wm L

%, Attacker o s

®spussssssssssssmssamssmmssmmnnmus?

*
“sussmssnmnnnmnnns®

AN IEEEEEENE NN NN,

*

s LAN 3

. Terminal host

: — @
Execle

= ’ ! 4 attacker

[action

.

'.

*
“sussmmnnnmnnnnnnn®

..
S EEEEEEEEEEEEES

*

Target host

(network) Flow:

— Aggregation of packets from a source host to a destination host

Flow-sequence:

— Ordered set of flows where consecutive flows are:

= Chronologically ordered

= Separated by at most €4, time units

= Adjacent

= Not cyclical

Pivoting path:

— A pivoting path is an ordered set of hosts for which at least one flow-sequence
exists

If &pax = 275

Path | Length | Flow sequences
(a,b,2s),(b,d,15s)
abd 2 (a,b,11s),(b,d,15s)
(a,b,2s),(b,c,12s)
a,b,c 2 (a,b,115),(b,c,125)
(b,d,15s),(d,e,30s)
bde 2 (b,d.155).(d e 425)
(a,b,11s),(b,d,15s),(d,e,30s)
(a,b,11s),(b,d,15s),(d,e,42s)
__abde)3 a b 26),(b,d,155),(d,e,305)

If &0 = 55

Path | Length | Flow sequences
abd | 2 | (a,b,11s),(b,d,15s)
ab,c | 2 | (a,b,11s),(b,c,12s)

8

(a,b,2s),(b,d,15s),(d,e,42s)

= |nput:

— All the network flows that occur within a time-window W
— The maximum propagation delay &4«

— The maximum flow-sequence length L, 4

= Qutput:

— List of all the flow-sequences occurring within the time-window W

1. Read all the input flows and store them in F

2. lterate over F:

— Build flow-sequences of length-1 and store them in P

3. Fori=11toL,g:

— For every flow-sequence k of length-i in P, check if you can extend k to a
flow-sequence k’ of length-(i + 1) with any flow in F

= If you can, then add k’ at the end of P
= Keep checking for all extensions of k of length-(i + 1)

— If you cannot find any flow-sequence of length-(i + 1), stop

4. Return P 10

Step1
L——1, L - -
A B
Step2
&< emae¥i | | L L
Step3
% t >% €, U tE,+E, >%| %
Step4
% t >% +E, >qg t+€,+E, ’*E% t+81+82+83>%

= Reminder: pivoting activities are not necessarily malicious

= Need to discriminate between “benign” and “malicious” pivoting

= Solution: Rank the detected pivoting activities on the basis of
threatening characteristics displayed

= Characteristics considered by the algorithm:
— Novelty
— Reconnaissance Activities
— Uncommon Ports
— LANs involved

— Anomalous Data Transfers
12

= Collected the network flows of a large real organization
(over 90M flows)

= Assessed the capabilities of our proposals to:
— Detect benign and malicious pivoting activities
— Prioritize malicious pivoting activities

— Perform the analyses in feasible times for large organizations

= Malicious pivoting activities injected in the regular traffic

13

= Execution of the Detection algorithm on the injected real dataset

with €,4x = 1s:

— All injected attacks have been detected

— Also the benign pivoting activities have been detected (=1800 flow-sequences)

= Results of the Prioritization algorithm:

| average rank | standard deviation

Attack Class 1 (w)
Attack Class 1 ()
Attack Class 2 (w)
Attack Class 2 (5)
Attack Class 3 (w)
Attack Class 3 ()
Attack Class 4 (w)
Attack Class 4 ()
Attack Class 5 (w)

1.38
1.17
2.01
1.55
1.00
1.00
1.13
1.14
1.15

1.32
0.72
1.18
1.04
0.00
0.00
0.51
0.68
0.83

14

_ Attack Class 5 (5) 1.14 0.78 _

= Attackers may try to elude detection by increasing the command
propagation delay

= Increasing &4 also increases the number of false positives
- Priotization algorithm can help in these situations

= Results of the algorithms on the (new) injected dataset:

t
w
ut
w

Attack Class 1
Attack Class 1
Attack Class 2
Attack Class 2 (/

(w)
(8)
(w)
(3)
Attack Class 3 (w)
(3)
(w)
(3)
(W)
(3)

Attack Class 3 (;
Attack Class 4
Attack Class 4
Attack Class 5

Attack Class 5

ANENENEN
—_ b = =
> o e

x*x‘xxxx:::fﬁ

R T e A I I T
ANENE N NN NN
e v
BB O O 00D B
SSS~=a~m

NENAENNKNNANNSNN
— o~

O OO Wik = W
= O DR o ®

=2}
—

|
[
—

[e N g

—
ot
—

(73]

=)
o

o T e —

woooobboo
LSS o &

NESSNSNANNSNANANSN
SRR EER e

NNNSNSSNNANN

NN SN NN

= Execution times of the Detection Algorithm on the entire injected dataset
with different input values of &,,4x, Limgx and W:

——
——
——
——

\ .
Faecution t

= i 5 6
Maximum path length Lo

(a) Analysis of 1 hour of data (T;na> = 4.8s).

eps=30s
eps=25s
eps=20s
eps=15s
eps=10s
eps=bs

eps=ls

Execution time

G

"we

- - . o
_ ——

L] s 2 '
.

- @ . L]
— .
e

3 4
Maximum path length Lpar

(b) Analysis of 12 hours of data (Trma. = 17.8s).

= Analyses performed on an Intel Xeon E5-2609 v2 CPU, 128GB RAM.

eps=10s
cps=20s
eps=20s
eps=10s
eps=10s
eps=0%

eps=ls

16

= Pivoting is an increasingly adopted technique by attackers.

= Proposed novel algorithms for:
— Detection of pivoting activities

— Threat Prioritization of pivoting attacks

= Extensive analyses of the proposed solutions confirmed their:
— Effectiveness
— Efficency

— Applicability to practical contexts
17

Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, Mirco Marchetti
215t June, 2017
University of Modena and Reggio Emilia, Italy

Pivoting Simulations with VMs

Attack Classes
‘HJJ_L
|

Pivoting Attack Classes.

Traffic Capture

9 +

Flow Generation

Evaluation
(detection)

Flow Injecton
(for each day of the dataset)

High-traffic Hosts w
Low-traffic Hosts B

Evaluation
(prioritization)

A

) % > Pivoting Detection
g (for each day)

Threat Prioritization
|

(for each day)

Real Network
Flows

| Vector | Len | Recon | LANSs | Data
Attack Class 1 SSH 2 v 2 10 MB
Attack Class 2 SSH 2 X 2 30 MB
Attack Class 3 | Metasploit 4 v 5 100 MB
Attack Class 4 | Metasploit 3 X 4 < 1 MB
Attack Class 5 | Metasploit 4 X 1 5 MB

Propagation delays for pivoting Attack Classes.

| Delay

Attack Class 1
Attack Class 2
Attack Class 3
Attack Class 4
Attack Class 5

2s
4s
8s
10s
15s 19

Algorithm 1: Algorithm for pivoting detection.

=TI - A L U VR R =

T o T o T O R
U ol W N =S 8 ® NN e W NS

Input: List of m temporal edges corresponding to time window W (Flows), maximum propagation delay &,
minimum incoming and outgoing bytes B;, and B,.;, maximum flow duration §, maximum pivoting
path length L,

Output: List of pivoting flow sequences of length > 2 (corresponding to pivoting paths)

// Initialization
PivotingSequences <+ emptyList();
Candidate Flows < emptyList();
for flow [in Flows do
if (f.d > ¢) and (f.b;, > B;,, and f.b,, > B,y,) then
Insert flow f in PivotingSequences;
Insert flow f in C'andidate Flows;
// Look for possible pivoting flow sequences of length > 2
or flow sequence F in PivotingSequences do
if length(F) > Ly, then
| break;
FoundSequences < ExtendPivotingSequence(F, Candidate Flows,)
Include FoundSequences in PivotingSequences;
return List of elements in PivotingSequences with length > 2;
// Function to find flow sequences of length (/+1) given a sequence F of length ¢
Function ExtendPivotingSequence(F,Candidate Flows,z)
FoundSequences <+ emptyList();
hr + last host in pivoting flow sequence F
tF + lastest timestamp of F
FlowsWithinDelay « BinarySearch(Candidate Flows[tr : tr + 2])
for flow f in FlowsWithinDelay do
if ((f.src equal to hy) and (f.dst not in sequence F)) then
NewSequence + (sequence F with flow f);
Insert NewSequence in FoundSequences;
return FoundSequences; 21

=

e e e

* Our original goal was to focus on Lateral Movement as a whole, not on pivoting.

[This could be achieved with a reachability graph }

Baseline vs. Current

Baseline

Current

+©

Reachability graphs

mm@wmc oA WN =

Idea:
sudden increase in
reachable
destinations =
malicious activity

&

22

= The paths from which the desired reachability graph is built have the

following definition:

— Ordered set of L > 2 unique hosts where each host i < L received a
communication from host (i — 1) after that host (i — 1) received a
communication from (i — 2)

= How to compute such a reachability graph:

— Starting from network flows

— Fast enough to support online analyses in a large enterprise network .

Hint: we could obtain a reachability graph of one day by providing an &4, = 24h to
the pivoting detection algorithm...
- This takes hours to complete!

IDEA: reduce computation time by decreasing the amount of reads on
the input flows

First attempt: keep only the first flow between each pair of hosts.

— Create paths by joining adjacent flows, in which the timestamp of the latter is higher
than the timestamp of the former

— After adding a new host, set the timestamp of this host to the highest value of the
timestamp of all hosts of the path

Problem: false negatives: some paths are not detected

&

N N A
e O Y

This is what the attacker did:

IDEA: reduce computation time by decreasing the amount of reads on
the input flows

ﬁecond attempt: keep only the first and last flows between each pair of
osts.

— Create paths by joining adjacent flows, in which the /ast timestamp of the latter is
higher than the first timestamp of the former.

— After adding a new host, set the first timestamp of this host to the highest value of the
first timestamp of all hosts of the path

This solution solves the previous situation:

Solutions...? — 2.2

= Problem: false positives: some detected paths are not actually paths

Assume the following flows:
(cldll)l (blcls)l (albllo)l (cldl13)l (blcl14)l (alblso)

e

(albl 10I50)I (bch5I14)l (cldI1I13)

O
C ;10,50 C ;10,14 C ;10,13 @

However, in reality no path (a,b,c,d) could possibly exist from those flows!
It would exist if there were an additional flow, e.g.:
(b,c,11)

= The second solution still requires validation of all the detected paths,
to check if they actually exist and are not false positives.
- expensive

= However, the second solution always works if the path has only
3 hosts.

= Focusing on pivoting introduced the concept expressed by &, which
dramatically reduced computation times due to a powerful filtering
criteria.

27

