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Abstract—Machine learning algorithms are effective in
several applications, but they are not as much successful
when applied to intrusion detection in cyber security. Due
to the high sensitivity to their training data, cyber detectors
based on machine learning are vulnerable to targeted
adversarial attacks that involve the perturbation of initial
samples. Existing defenses assume unrealistic scenarios;
their results are underwhelming in non-adversarial set-
tings; or they can be applied only to machine learning
algorithms that perform poorly for cyber security. We
present an original methodology for countering adversarial
perturbations targeting intrusion detection systems based
on random forests. As a practical application, we integrate
the proposed defense method in a cyber detector analyzing
network traffic. The experimental results on millions of
labelled network flows show that the new detector has a
twofold value: it outperforms state-of-the-art detectors that
are subject to adversarial attacks; it exhibits robust results
both in adversarial and non-adversarial scenarios.

Index Terms—Adversarial samples, machine learning,
random forest, intrusion detection, flow inspection, botnet

I. INTRODUCTION

THE adoption of machine learning to support se-
curity operators is an inevitable trend because of

the continuous increment of network traffic and so-
phistication of the attacks [1]–[3]. Machine learning
algorithms are employed with success in an increasing
number of areas including image processing, speech
and text recognition, social media marketing [4] and,
more recently, in cyber security. Indeed, modern Network
Intrusion Detection Systems (NIDS) are being increas-
ingly enriched with machine learning (e.g., [1], [5], [6])
and deep learning algorithms (e.g., [6]–[8]). Even some
commercial products (e.g. Darktrace or Dragonfly Threat
Sensor) integrate detectors based on machine learning.
Despite these positive achievements, recent literature
(e.g., [9]–[12]) highlights that existing machine learning
techniques are vulnerable to the so called adversarial
attacks. These malicious actions involve the production

of samples designed to thwart the machine learning
algorithm by inducing outputs favorable to the attacker.
Similar vulnerabilities are critical in the cyber security
domain because any undetected attack may compromise
an entire organization. The problem of adversarial attacks
against machine learning detectors is a relevant open
issue.

We propose a novel approach for hardening cyber
detectors based on machine learning. We focus on the
random forest algorithm due to its proven effectiveness
for intrusion detection [13]–[18]; however, recent studies
also highlight its vulnerability to adversarial perturba-
tions [19]–[21]. Our solution is based on the observation
that existing machine learning cyber detectors rely on
excessively rigid classification criteria: they are typically
trained through class labels that separate samples in
disjointed categories where each sample may be either
malicious or benign. A similar approach cannot work in
the cyber domain where each sample may present more
vague attributes. For this reason, we leverage the idea
of introducing some degree of flexibility in the training
data set by using probability labels. The intuition is that
a model that uses probability labels instead of hard class
labels can be more resilient to adversarial perturbations,
and can achieve comparable or even superior results even
in the absence of attacks. Our methodology has several
applications in all fuzzy scenarios characterizing cyber
security that involve classifiers based on random forests.
As a first test case, in this paper we adopt it for devising
botnet detectors based on network flows analyzers.

We validate our approach through a large set of
experiments, performed on a set of publicly available and
labelled traffic traces containing over 20 million network
flows with benign and malicious samples of different
malware families. These data sets capture the network
behavior of medium-large enterprises and represent an
appropriate setting for a realistic evaluation. The experi-
mental results demonstrate that the proposed solution de-
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vises a detector with comparable or superior performance
than state-of-the-art methods in scenarios that are not
subject to adversarial attacks. Moreover, it significantly
improves the robustness of random forest models against
adversarial attacks. Achieving both results is a fundamen-
tal success for real contexts where we cannot anticipate
whether a machine learning detector will be subject or
not to adversarial attacks. Our promising results have
room for further improvements, but we are confident
that this paper represents a first important step towards
more robust cyber defensive platforms based on machine
learning against adversarial attacks.

The remainder of this paper is structured as follows.
Section II introduces adversarial attacks and compares
our paper against related work. Section III describes the
proposed method. Section IV illustrates the scenario and
the threat model considered in this paper. Section V
presents the methodology and testbeds used for perfor-
mance evaluation. Section VI discusses the experimental
results. Section VII concludes the paper with some final
remarks and possible extensions of this work.

II. RELATED WORK

The complexity of network attacks and the augment
of daily traffic requires security operators to rely on
some machine learning support [1], [2]. These methods
may detect anomalies and may even reveal attack vari-
ants that are not recognizable through signature-based
approaches [5], [22]. However, the success of novel
defensive methods also induce the formulation of new
offensive strategies. Today, the so called adversarial
attacks represent a major limitation to the adoption of
a fully autonomous cyber defence platform. We describe
the main characteristics of adversarial attacks, and then
compare our proposal with the state-of-the-art.

Adversarial attacks are based on the generation of
specific samples that induce a machine learning model
to produce an output that is favorable to the attacker.
This result is caused by the intrinsic sensitivity of
machine learning models to their internal configuration
settings [1], [23], [24]. Early examples of adversarial
attacks against spam filtering are proposed in [25]–[27].
These papers show that linear classifiers could be tricked
by few carefully crafted changes in the text of spam
emails without affecting the readability of the spam mes-
sage. Another interesting example of adversarial attack
against neural networks classifiers for image processing
is presented in [28], where imperceptible perturbations to
images used in the training phase can modify arbitrarily
the model’s output. Adversarial attacks can be classified
through the taxonomy inspired by [29] that considers the
following two properties.

Influence determines whether an attack is performed at
training-time or test-time.

• Training-time: these attacks, also known as poison-
ing attacks, manipulate the training dataset through
the insertion or removal of specific samples, there-
fore altering the decisions of the trained model.

• Test-time: these attacks subvert the behavior of the
detector through the injection of specific samples
during its operational phase.

Violation denotes the type of security violation, which
can affect the availability or integrity of the system.

• Integrity: often referred to as evasion attacks, the
goal is increasing the false negative rate of the
model by introducing malicious samples that are
classified as benign.

• Availability: these attacks tend to cause overwhelm-
ing spikes of false alarms, inducing temporary shut-
downs and/or recalibrations of the detector.

There is extensive literature on adversarial perturba-
tions against image processing (e.g., [9], [11], [12], [30]),
while few papers consider adversarial attacks from a
cyber security perspective (e.g., [18], [19], [21], [29],
[31]). Several recent results demonstrate that adversarial
attacks can represent a dangerous threat to any defen-
sive system based on machine learning. For example,
[10] and [32] consider the case of adversarial samples
against PDF malware detectors based on Support Vector
Machines (SVM), neural networks, and random forests.
Other papers [21], [33], [34] highlight the problem
of adversarial evasion for Android malware and spam
detectors. Furthermore, the capability of a Generative
Adversarial Network to thwart a Domain Generation
Algorithm detector based on random forests is evaluated
in [35]. More recently, [20] shows the fragility of a
flow-based botnet detector relying on random forest
against small adversarial perturbations. Although the
threats posed by adversarial inputs are clear, the few
existing solutions are not immediately applicable to
real contexts. For example, [35] proposes to harden
the classifier through multiple re-training steps based
on adversarial samples. This is an interesting theoretic
solution with practical limitations because it requires the
creation and continuous management of datasets with
realistic adversarial samples. Moreover, [31] suggests to
improve the robustness against evasion attacks by not
considering the features that can be manipulated by an
attacker. The problem of this approach is that it reduces
accuracy in normal scenarios as shown in [18], [36]. On
the other hand, our proposal is immediately applicable to
real contexts as demonstrated by multiple experimental
settings.
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Defensive distillation may work in mitigating adver-
sarial perturbations against image classification [37], but
this technique is built and evaluated only on neural
network algorithms [38]. Although cyber detectors based
on this algorithm exist and can be hardened through
the original distillation proposal [39], in cybersecurity
scenarios detectors based on random forests outperform
those relying on neural networks and other supervised
methods [13], [15]–[18], [40]. More recently, [41] eval-
uates different classifiers for the specific problem of
botnet detection and confirms that random forest yields
the best results. Finally, [42] proposes a NIDS that
inspects network flows through a random forest classifier
to identify botnets and obtains outstanding results with
detection rates close to 0.99. For this reason, we devise
an original formulation of the distillation technique that
is specifically aimed at hardening random forest detec-
tors, thus allowing to devise robust defensive schemes
for cyber detection based on machine learning. Although
a recent work [43] shows that it is possible to evade
the defensive distillation, we observe that the considered
threat model is unrealistic because it assumes an attacker
with complete control of the detector: with similar privi-
leges, attackers can (and most likely will) adopt measures
much more invasive and disruptive than those based
on adversarial perturbations. Other works on defenses
against adversarial samples [44], [45] consider just SVM
classifiers applied to malware analysis, which is out of
the scope of this paper. We are not aware of other defen-
sive mechanisms against evasion adversarial attacks that
are applicable to random forest algorithms for network
intrusion detection. Hence, we can conclude that the
topic considered in this paper is a promising research
theme, which we address through a novel approach
that hardens random forest-based detectors through an
original defensive distillation method.

III. PROPOSED METHOD

We propose a novel method that hardens machine
learning detectors based on random forest against ad-
versarial attacks. The idea comes from the observation
that the excessively rigid classification criteria learned
by machine learning algorithms in the training phase
are vulnerable to subtle adversarial perturbations. Indeed,
existing detectors are trained through class labels that
separate samples in disjointed categories where each
sample may be either malicious or benign but not both.
On the other hand, the cyber domain is more fuzzy,
and a sample may present characteristics belonging to
different categories. Any rigid classification produced by
hard class labels may represent an exploitable weakness
of cyber detectors in adversarial settings. For this reason,

we aim to introduce some degree of flexibility and uncer-
tainty in the training process by using probability labels
that allow the algorithm to capture additional information
between classes such as similarity. The intuition is that
a model that uses probability labels instead of hard class
labels can be more resilient to adversarial samples, and
can achieve comparable or superior results even in the
absence of attacks. The main difficulty of a similar ap-
proach is that probability labels are not readily available
in the cyber domain; hence we devise an original solution
built upon the two following phases:

1) generation of probability labels from hard class
labels;

2) deployment of a supervised model trained with the
generated probability labels to perform the cyber
detection.

Fig. 1 shows that this approach considers as its input a
dataset and its class labels. Then, it computes the corre-
sponding probability labels (represented in the leftmost
box), and uses them to train a supervised model that will
be integrated in the detector. We apply this method to the
random forest machine learning algorithm by leveraging
the foundations [46] of the defensive distillation for neu-
ral networks [37]. By using the information encoded in
the probability labels in the form of probability vectors,
generated after training an initial model, it is possible to
develop a second “distilled” model that is more robust
against adversarial attacks. The entire workflow applied
to the random forest algorithm is illustrated in Fig. 2
where each step is denoted by a circled number that
is explained in the following subsections. Unlike the
original defensive distillation technique, the generation of
probability labels and their use for detection is performed
through random forest-based models instead of neural
networks.

A. Generation of the probability labels

The initial phase is performed through a random forest
classifier, the Condenser, denoted by C. We first train
this classifier (step 1 in Fig. 2). Then, we leverage the
intrinsic property of the random forest algorithm of being
an ensemble method, that is, a composition of several
decision trees (or estimators), where the final output is
generated after evaluating the response of each individual
tree. This characteristic allows us to produce the desired
probability vectors by considering the percentage of
estimators that predicted a specific result (step 2 in
Fig. 2). Formally, let X be a dataset, |X| ∈ N the number
of samples that constitute X , and xi ∈ X(0 ≤ i ≤ |X|)
a sample within this dataset; let Y be the set of hard
class labels (in the form of indicator vectors) associated
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Figure 1: The two phases of the cyber detector.

Figure 2: Workflow of the algorithm where distillation is applied to the random forest algorithm.

to dataset X , and yi ∈ Y the label associated to xi. If C
is a random forest classifier, then |C| ∈ N is the number
of estimators that compose C, and tj ∈ C(0 ≤ j ≤ |C|)
is a tree of classifier C. After training C by means of
X (as training dataset) and of Y (as labels), the set
of probability labels Y ′ that can be obtained from X
through C is:

Y ′ =

{
y′i | y′i =

∑|C|
j=1 t

i
j

|C|

}
, (1)

where y′i is the probability vector corresponding to
sample xi, and tij denotes the output of tree tj for sample
xi, which is an indicator vector. As an example, let
us consider a random forest classifier consisting of 100
estimators that are trained to solve a binary classification
problem (either 0 or 1). Now, let us assume that, for a
given sample, 31 estimators predict 0 and produce the
indicator vector (1, 0), while the remaining 69 predict
1 and produce the indicator vector (0, 1). In this case,
although the final output of the classifier is the indicator
vector (0, 1), we generate the binary probability vector
(0.31, 0.69) which encodes the output produced by each
individual tree. On the other hand, if 69 estimators
predict 0 and 31 estimators predict 1, we would obtain
the probability vector (0.69, 0.31).

It should be noted that the objective of the Condenser
is to generate accurate probability labels but it does not
perform detection. As the focus is on the prediction of
every individual estimator, and not on the classification
results of the whole random forest classifier, the concept
of “misclassification” does not strictly apply to this
phase. For example, let us consider a binary classification
scenario where we train the Condenser and then test it to

generate the probability labels: it may be possible that,
for a sample associated to the label 1, 69% of the estima-
tors of the Condenser predict a 0. This event cannot be
considered a misclassification because the output of the
Condenser is a probability (e.g., the probability vector
(0.69, 0.31)). However, such occurrences may have a
detrimental effect in the next phase. To minimize similar
risks, we utilize the entire available dataset to both train
and test C: this approach would yield the best results as
it ensures that each sample is associated to a probability
label with the highest degree of confidence.

B. Model deployment

In the second phase, the probability vectors generated
by the Condenser (step 3 in Fig. 2) are used as training
labels for a random forest regressor that uses those
probabilities as its training input (step 4 in Fig. 2).
We define this model as the Receiver denoted by R.
Since this model performs the actual detection tasks
(step 5 in Fig. 2), we evaluate it against the adversarial
inputs. Hence, it is important that this model is trained by
following the best practices (as in [24]) to avoid the risk
of overfitting. For example, the training and validation
sets should be chosen through appropriate splits of the
available dataset.

We remark that the Receiver can be seen as a complex
multi-output regressor with the challenging task of multi-
target regression [47]. However, for the specific scenarios
related to cyber detection, it is possible to devise a
simpler regressor because the main goal is to analyze
network traffic and to identify illegitimate activities.
Hence, we can model the case as a binary classification
instead of a multi-class problem, in which the algorithm
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is required to determine only whether a given sample
of traffic is malicious or not. To this purpose, for each
data sample, the Condenser needs to generate a single
probability value (denoting the likelihood of being a
malicious sample) instead of a multi-dimensional prob-
ability vector. By considering the binary classification
example described in Section III-A, the 31 estimators of
the Condenser that predicted a 0 would give the value
0, while the remaining 69 estimators would produce the
value 1. Thus, the corresponding probability value for
the analyzed sample is 0.69. These probability values are
then used as the labels for the Receiver, whose output is
another probability value that can be converted into a
discrete number through a rounding operation:

P (xi) = bRxie, (2)

where Rxi
is the output of the Receiver R for the sample

xi, and P (xi) ∈ [0, 1] denotes the final prediction of the
distilled model.

IV. APPLICATION SCENARIO FOR THE DETECTOR

A realistic scenario where the proposed detector can be
applied successfully is represented in Fig. 3, which shows
a large enterprise network with many internal hosts and
a border router connected to a network flow exporter.
The generated flows are inspected by a network intrusion
detection system based on machine learning that aims to
identify malicious activities (e.g., botnet) by leveraging
the random forest algorithm. We assume that an attacker
has already established a foothold in the internal network
by compromising one or more machines and deploying
botnet malware that communicate with a Command
and Control (CnC) infrastructure. The attacker model
can be described accordingly to the four characteristics
described in [10]: goal, knowledge, capabilities, strategy.

Figure 3: Example of network considered in our use-case.

The main goal of the attacker is to evade detection
so that he can maintain access to the internal net-
work, compromise more machines and gather informa-
tion about adopted defenses [48]. He knows that network
communications are monitored by a NIDS based on
machine learning. We assume that the attacker can issue

commands to the bot through the CnC infrastructure,
possibly modifying the underlying network behavior,
but he cannot interact with the detector. Although the
attacker does not know the specific machine learning
algorithm (alongside its parameters and features) used by
the NIDS, he can easily guess that the detector is trained
over a dataset containing malicious flows generated by
the same or a similar malware variant deployed on
the infected machines. Hence, he has to devise some
countermeasure to evade the botnet detector.

The strategy to avoid detection is through a targeted
exploratory integrity attack [10] that is performed by
inserting tiny modifications in the communications be-
tween the bot and its CnC server. These alterations may
include slight increases of flow duration, exchanged bytes
and exchanged packets. Similar changes can be applied
without interfering with the application logic of the bot
that can continue to operate as initially designed by the
attacker. In such a way, the detector is induced to misclas-
sify the network flows generated by bot communications
despite being trained with malicious samples belonging
to the botnet variant employed by the attacker.

V. EVALUATION METHODOLOGY

The evaluation and comparison of machine-based de-
tectors subject to adversarial attacks is a complex pro-
cedure. In this section, we describe the methodology of
our evaluation by presenting the experimental testbed,
the details of the considered random forest models, and
the procedure to generate the adversarial samples.

A. Experimental testbed

The experimental evaluation considered in our paper
is performed on a public collection of multiple datasets,
known as “CTU-13” [49]. The CTU-13 includes net-
work data captured at the Czech Technical University in
Prague, and contains labelled network traffic generated
by various botnet variants and mixed with normal and
background traffic. These flows are captured in a network
environment with hundreds of hosts, while the malicious
traffic is generated by infecting machines with mal-
ware related to several botnet families [49]. Overall, the
CTU-13 contains 13 distinct datasets of different botnet
activity; each dataset refers to one botnet variant of
the 6 considered families: Neris, Rbot, Virut, Menti,
Murlo, NSIS.ay. We report the meaningful metrics of
each dataset in the CTU-13 collection in Table I, which
also includes the botnet-specific piece of malware and
the number of infected machines. This Table highlights
the massive amount of included data, which can easily
represent the network behavior of a medium-to-large
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real organization. Nevertheless, we remark that in our
evaluation, we prefer not to consider the Sogou botnet
because of the limited amount of its malicious samples.

To generate each dataset, the authors first capture the
network data in specific packet-capture (PCAP) files, and
then convert them into network flows. A network flow (or
netflow) is essentially a sequence of records, each one
summarizing a connection between two endpoints (that
is, IP addresses). The inspection of network flows allows
administrators to easily summarize the information of
two endpoints, such as the source and destination of
traffic, the class of service, and the size of transmitted
data. Network flows are of particular interest for cyber se-
curity applications because of the following benefits with
respect to full packet captures: lower amount of storage
space required; faster analyses; reduced privacy concerns
due to the absence of packet-specific payloads [50].

The authors of the CTU-13 convert the raw network
packets into network flows by means of Argus, a network
audit system. Argus presents a client-server architecture:
the server component processes packets (either PCAP
files or live packet data) and generates detailed status
reports of all the netflows in the packet stream, which
are then provided to the dedicated clients. By inspecting
the CTU-13, we can assume that the client used by
the authors to extract the netflows from each individual
PCAP file is ra. The output of this conversion process
is a CSV file. The final step is the labeling of each
individual network flow: indeed, the authors provide an
additional “Label” field, which separates legitimate from
illegitimate flows. More specifically, benign flows cor-
respond to the normal and background labels; whereas
the botnet and CnC-channel labels denote malicious
samples.

B. Considered detectors

For the evaluation we consider the following detectors
based on random forest:
• The Undistilled detector, which presents character-

istics similar to the random forest classifier model
proposed in [51], is used as the baseline for the
experiments; a graphical representation of its archi-
tecture is provided in Fig. 4.

• The Distilled detector represents the main proposal
of this paper. It consists of the Condenser for gen-
erating the probability labels, and of the Receiver to
perform the detection tasks. This detector is evalu-
ated against the Undistilled detector in adversarial
and non-adversarial settings.

Each detector has 6 instances, each one focusing on
recognizing a specific malware family of the dataset.

Figure 4: Architecture of the Undistilled detector.

The motivation for this design choice comes from the
observation that machine learning techniques yield supe-
rior results when they pursue a specific goal rather than
aiming to an impossible catch-all solution [6], [51].

For each botnet variant, we generate a dedicated train-
ing set containing both benign and malicious samples
belonging to that family; all instances share the same
legitimate-to-illegitimate flow ratio in the training sets.
Formally, let D be the set of all the traces of network
flows considered in the testbed, and let Dl ⊂ D and
Dm ⊂ D be the sets of all legitimate and malicious
samples in D, respectively (so that Dl ∪Dm = D, and
Dl ∩ Dm = ∅). Now, let Db be the set of malicious
flows corresponding to the b botnet family, so that⋃6

b=1 D
b = Dm. We train each detector’s instance cor-

responding to the b botnet family with samples randomly
extracted from Dl and Db, in a 20 : 1 ratio. (The
randomized extraction of samples is done to reduce the
impact of selection bias.) The 20 : 1 ratio is similar
to that in [15], and it is motivated by the fact that in
realistic settings the legitimate flows largely outnumber
the botnet-generated flows. Other studies use even greater
ratios [52]. The instances of the Receiver are trained
with 80% of the botnet flows generated by each malware
variant, and validated on the remaining 20%. These splits
are close to those adopted in [15], [20]. On the other
hand, the instances of the Condenser, which generate the
probability labels, are trained and tested on the same
dataset containing all the malicious flows of the related
botnet family. Other details are presented in Section III.
These models adopt feature sets that are similar to
those adopted in [20] and [51] because they achieve
appreciable detection rates. We integrate these features
with information about the IANA port type for the source
and destination hosts, thus obtaining the list summarized
in Table II. For completeness, we remark that the code
for the experiments is implemented in Python3 and uses
the scikit-learn toolkit. Moreover, we report in Table III
the meaningful parameter settings of each model, which
are chosen through extensive grid search operations. The
F parameter denotes the number of features in input, and
MSE is the Mean Squared Error.
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Table I: Meaningful metrics of the CTU-13 collection. Source: [49].

Dataset Duration (hrs) Size (GB) Packets Netflows Malicious Flows Benign Flows Botnet # Bots
1 6.15 52 71 971 482 2 824 637 40 959 2 783 677 Neris 1
2 4.21 60 71 851 300 1 808 122 20 941 1 787 181 Neris 1
3 66.85 121 167 730 395 4 710 638 26 822 4 683 816 Rbot 1
4 4.21 53 62 089 135 1 121 076 1 808 1 119 268 Rbot 1
5 11.63 38 4 481 167 129 832 901 128 931 Virut 1
6 2.18 30 38 764 357 558 919 4 630 554 289 Menti 1
7 0.38 6 7 467 139 114 077 63 114 014 Sogou 1
8 19.5 123 155 207 799 2 954 230 6 126 2 948 104 Murlo 1
9 5.18 94 115 415 321 2 753 884 184 979 2 568 905 Neris 10

10 4.75 73 90 389 782 1 309 791 106 352 1 203 439 Rbot 10
11 0.26 5 6 337 202 107 251 8 164 99 087 Rbot 3
12 1.21 8 13 212 268 325 471 2 168 323 303 NSIS.ay 3
13 16.36 34 50 888 256 1 925 149 39 993 1 885 156 Virut 1

Table II: Features of the random forest models.
Source: [20].

# Feature name Feature type
1,2 source/destination IP address type Boolean
3,4 source/destination port Numerical
5 flow direction Boolean
6 connection state Categorical
7 duration (seconds) Numerical
8 protocol Categorical

9,10 source/destination ToS Numerical
11,12 outgoing/incoming bytes Numerical

13 total transmitted packets Numerical
14 total transmitted bytes Numerical

15,16 source/destination port type Categorical
17 bytes per second Numerical
18 bytes per packet Numerical
19 packets per second Numerical
20 ratio of outgoing/incoming bytes Numerical

Table III: Parameters of the random forest models.

Parameter name Value

U
nd

is
til

le
d Number of estimators 763

Quality Function Gini
Features for best split

√
F

Bootstrap Yes

C
on

de
ns

er Number of estimators 894
Quality Function Gini

Features for best split
√
F

Bootstrap Yes

R
ec

ei
ve

r Number of estimators 1352
Quality Function MSE

Features for best split F/2
Bootstrap Yes

C. Generation of adversarial datasets

We produce multiple adversarial datasets by manipu-
lating the botnet netflows Db through feature modifica-
tions. Since the produced adversarial samples are used to
evaluate the proposed approach, we consider the portion
of botnet netflows from Db contained in the datasets used

for the testing-phase, thus avoiding the submission of
samples contained in the training set.

An attacker can evade detection by increasing the
flow duration through a small latency; and the number
of bytes (or packets) by adding random junk data. All
these modifications can be introduced in the network
behavior of the bots without altering their underlying
logic. To reproduce a similar adversarial attack pat-
tern, we generate adversarial samples by manipulating
combinations of up to 4 features, such as the duration
of the flows, the total number of transmitted packets,
the number of outgoing(Src) or incoming(Dst) bytes.
Table IV reports the 15 groups of altered features denoted
by G. As an example, adversarial samples belonging to
group 1a alter only the flow duration, while those of
group 3c include modifications to the duration, dst bytes
and tot packets features. The feature manipulation is
performed by augmenting each of these groups through
9 increment steps denoted by S; these steps are fixed
for all the possible combinations. Hence, for each botnet
family, we produce 135 adversarial collections, thus
resulting in a total of 810 adversarial datasets (given
by 15[groups of altered features] ∗ 9[increment steps] ∗
6[botnet families]).

Table V reports the relationship between each step and
the corresponding feature increments where Duration is
measured in seconds. As an example, the adversarial
datasets obtained through the VI step of the group 1b
have the values of their flow outgoing bytes increased
by 128. The adversarial datasets obtained through the
II step of the group 3c have the values of their flow
duration, incoming bytes and total packets increased by
2. There is a greater focus on small increments since
they are easier to achieve and they are still able to
generate samples that evade detection. The rationale
behind the choice of the values shown in Table V is
the following: our objective is to generate adversarial
malicious samples that are only marginally different from
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Table IV: Groups of altered features. Source: [20].

Group (g) Altered features

1a Duration (in seconds)
1b Src bytes
1c Dst bytes
1d Tot pkts
2a Duration, Src bytes
2b Duration, Dst bytes
2c Duration, Tot pkts
2d Src bytes, Tot pkts
2e Src bytes, Dst bytes
2f Dst bytes, Tot pkts
3a Duration, Src bytes, Dst bytes
3b Duration, Src bytes, Tot pkts
3c Duration, Dst bytes, Tot pkts
3d Src bytes, Dst bytes, Tot pkts
4a Duration, Src bytes, Dst bytes, Tot pkts

their original counterparts, as shown in [12]. Although
the exact numbers have been selected arbitrarily by
adopting the powers of 2 for convenience, our goal is
to represent the effects of small, but sensible variations
of these features. Furthermore, introducing these small
perturbations is a realistic task for the type of attacker
considered in this paper. On the other hand, excessive
increases higher than those shown in Table V may
generate anomalous network flows that can be detected
by different defensive mechanisms (e.g., [50]). Moreover,
increasing the duration of each flow above 120 seconds
may exceed the duration limits of the flow collector [50].

Table V: Increment steps of each feature for generating
realistic adversarial samples. Source: [20].

Step (s) Duration Src bytes Dst bytes Tot pkts
I +1 +1 +1 +1

II +2 +2 +2 +2
III +5 +8 +8 +5
IV +10 +16 +16 +10
V +15 +64 +64 +15

VI +30 +128 +128 +20
VII +45 +256 +256 +30

VIII +60 +512 +512 +50
IX +120 +1024 +1024 +100

The generation of the adversarial datasets is described
in Algorithm 1, where A(·) denotes the operator indi-
cating an adversarially manipulated input. We remark
the importance of the operation on line 19, because it
shows that some features are mutually dependent. For
example, for consistency reasons, increasing the flow
duration requires to update also the bytes per second and
the packets per second.

For the performance evaluation we adopt the typical
machine learning metrics: Precision (Prec), Detection
Rate (DR, or Recall), F1-score, computed as follows:

Prec =
TP

TP + FP
, (3) DR =

TP

TP + FN
, (4)

F1-score = 2 ∗ Precision ∗DR

Precision+DR
, (5)

where TP , FP , and FN denote true positives, false
positives, and false negatives, respectively. In the remain-
der of this paper, we consider a positive detection as a
malicious sample.

Algorithm 1: Algorithm for generating datasets of
adversarial samples.

Input: List of datasets of malicious flows Xm divided in
botnet-specific sets Xb; list of altered features groups G;
list of feature increment steps S.

Output: List of adversarial datasets A(Xm).
1 A(Xm) ← emptyList();
2 foreach group g ∈ G do
3 foreach step s ∈ S do
4 foreach dataset Xb ∈ Xm do
5 Ag

s(X
b) ← CreateOneDataset(s, g,Xb);

6 Insert Ag
s(X

b) in A(Xm);
7 return A(Xm)
8 // Function for creating a single adversarial
dataset Ag

s(X
b) corresponding to a botnet-specific

dataset Xb, a specific altered feature group g,
and a specific increment step s.

9 Function CreateOneDataset(s, g,Xb)
10 Ag

s(X
b) ← emptyList();

11 foreach sample xb ∈ Xb do
12 Ag

s(x
b) ← AlterSample(s, g, xb);

13 Insert Ag
s(x

b) in Ag
s(X

b);
14 return Ag

s(X
b)

15 // Function for creating a single adversarial
sample Ag

s(x
b) corresponding to a botnet-specific

sample xb, a specific altered feature group g, and
a specific increment step s.

16 Function AlterSample(s, g, xb)
17 Ag

s(x
b) ← xb;

18 Increment features g of Ag
s(x

b) by s;
19 Update features of Ag

s(x
b) that depend on g;

20 return Ag
s(x

b)

VI. PERFORMANCE EVALUATION

We present the results of a large set of experiments
with the aim of demonstrating that: (i) the proposed dis-
tilled random forest detector achieves comparable or bet-
ter detection performance than state-of-the-art algorithms
in scenarios that are not subject to adversarial inputs;
(ii) it significantly improves the robustness of machine
learning models against adversarial attacks. Achieving
both results is an important outcome for cyber security
contexts where we cannot anticipate whether a machine
learning detector is subjected or not to adversarial at-
tacks.
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We evaluate and compare the performance of distilled
and undistilled models in scenarios where samples are
not adversarially modified. Then, we assess the effec-
tiveness of the distilled random forest model against
adversarial perturbations. Finally, we compare the result
of the proposed method against two existing defensive
strategies that can be applied to any supervised machine
learning algorithm.

A. Evaluation in normal scenarios

We initially generate the probability labels for the
Distilled detector by training and testing its Condenser
model. Then, we train both the Distilled (through the
Receiver) and Undistilled detectors on the same training
set (but with appropriate labels), and proceed to evaluate
them on the same test set. The results are shown in
Table VI, where the columns report the chosen evaluation
metrics, and the rows denote the botnet-specific instances
of the Undistilled and Distilled detectors; the last row
summarizes the results of each detector, which are av-
eraged among all instances. From this table, we observe
that the Distilled detector achieves the best results as
it obtains higher Precision and F1-scores, and superior
detection rates. We stress that the performance of the
Distilled is similar to that obtained by state-of-the-art
random forest-based botnet detectors [41], [51]. Further-
more, we highlight that our proposal also outperforms the
initial defensive distillation technique applied to neural
networks in non-adversarial settings, because the distilled
neural network model presents a reduced accuracy of
~1.5% when compared to a not-distilled neural network
model [37]; this performance drop also affects distilled
neural networks for malware classification scenarios [39],
which exhibit an increased rate of false alarms. It is
important to note that the unusual perfect Prec scores
achieved by both models for the Murlo botnet and
by the Undistilled model for the Menti botnet can be
motivated as follows: the large majority of the network
flows generated by these botnet variants are significantly
different from benign traffic, hence the models are able
to recognize their malicious samples without generating
false positives; however, some instances are still able
to evade detection as indicated by the imperfect Recall
value. These experiments show that, in the absence of ad-
versarial attacks, our version of the distillation technique
applied to random forests yields a detector with similar
or superior performance than those that do not adopt a
distillation technique. These results are crucial because
they refer to a large set of scenarios and demonstrate that
random forest-based detectors integrated with distillation
are effective even in the absence of adversarial inputs.

Table VI: Baseline vs. Distilled model performance.

Botnet Detector F1-Score Precision Recall

Neris
Undistilled 0.9577 0.9615 0.9540

Distilled 0.9651 0.9671 0.9632

Virut
Undistilled 0.9682 0.9876 0.9496

Distilled 0.9753 0.9876 0.9633

Murlo
Undistilled 0.9932 1 0.9866

Distilled 0.9968 1 0.9937

Rbot
Undistilled 0.9994 0.9999 0.9999

Distilled 0.9995 0.9999 0.9990

Menti
Undistilled 0.9984 1 0.9969

Distilled 0.9979 0.9997 0.9969

NSIS.ay
Undistilled 0.9213 0.9925 0.8596

Distilled 0.9273 0.9784 0.8812

Average Undistilled 0.9729 0.9774 0.9684
Distilled 0.9777 0.9804 0.9751

Since supervised machine learning methods for cyber
defense need periodic re-trainings [6], it is important to
evaluate the computational cost of the proposed solution.
Thus, we measure and report the training times of
the considered detectors in Table VII, which compares
the time (in seconds) required for training the baseline
Undistilled detector (composed of a single random forest
classifier) with those required by our method; as the
proposed Distilled detector includes both the Condenser
and the Receiver, we report the combined training time
of these components. Computations are performed on a
machine with the following hardware: CPU Intel Core i7-
7700HQ, RAM 32GB, and SSD 512GB. We observe
that training the Distilled detector requires more effort,
because it is composed of two models and, in addition,
training a random forest regressor (that is, the Receiver)
is more demanding than training a classifier. However,
we stress that these operations needs to be executed
only periodically. Moreover, by performing the training
computations on machines with dedicated hardware it is
possible to decrease the absolute training time difference
to negligible amounts.

B. Evaluation in adversarial settings

It must be determined whether and to which extent
the proposed method is able to address issues related to
adversarial attacks. To this purpose, we test the Distilled
and the Undistilled detectors against the generated ad-
versarial datasets, and compare their performance. The
detection rate is the metric of interest for these analyses.
We anticipate that this evaluation highlights a twofold
improvement of our proposal: a significant increase in the
detection rate; a more stable behavior against different
adversarial samples of the same botnet family.

Among the considered 810 adversarial datasets, the
Distilled detector clearly outperforms the baseline Undis-
tilled in 759 cases; for the remaining 51 datasets, the
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Table VII: Training time of each instance of the detectors.

Botnet Detector Time (s)

Neris
Undistilled 75.8

Distilled 212.5

Virut
Undistilled 16.7

Distilled 42.7

Murlo
Undistilled 19.8

Distilled 53.9

Rbot
Undistilled 77.1

Distilled 210.4

Menti
Undistilled 2.8

Distilled 8.5

NSIS.ay
Undistilled 1.6

Distilled 5.7

Average Undistilled 32.3
Distilled 87.0

Figure 5: Comparison of the average detection rates on
each malware family.

results of the two detectors are close. A comprehensive
overview of the effectiveness of the two detectors is
presented in Fig. 5, where the black and gray histograms
report the detection rates of the Undistilled and Distilled
detectors, respectively. Each histogram denotes the av-
erage performance of the models applied to each botnet
family. There is no doubt that the Distilled is significantly
superior to the Undistilled detector, with improvements
ranging from 50% to 250%.

We provide a more detailed comparison of the two
detectors by considering the impact on detection rates
of different altered features. The results are reported in
Fig. 6, where the x-axis denotes the group of altered
features, and every histogram is generated by averaging
the detection rates achieved by each instance of the
detectors for all increment steps. From this figure, we
can observe that the Distilled achieves superior detection
rates for all the groups. The improvements for the groups
2a, 2b and 3a are the most significant, as they allow
the Distilled to retain a detection rate that is much
higher than that of the Undistilled model. Moreover, the
results for group 1a show that the Distilled detector is

almost unaffected by alterations of the flow duration. On
the other hand, adversarial alterations involving multiple
features have a high impact on the performance of both
detectors, as these modifications cause the malicious test
samples to be considerably different than those used to
train each model. Nevertheless, it is appreciable that,
even in these tough circumstances, the Distilled is able
to correctly identify more than twice the amount of
malicious flows with respect to the Undistilled detector.

Figure 6: Comparison of the average detection rates for
each group of altered features.

We also evaluate the detection rates of the two de-
tectors for variable increment steps. The results are
presented in Fig. 7, where the x-axis represents the
increment steps and the histograms are generated by
averaging the performance over all groups of altered
features. We note that not only the Distilled outperforms
the Undistilled model, but that it is much more resilient
against samples that greatly differ from their original
malicious version. Indeed, the detection rates for the
VIII and IX steps are close to 50%; whereas the 15%
detection rate of the Undistilled model is unacceptably
low. This figure also shows that the Distilled presents
a more stable behavior against adversarial samples that
are obtained through different increment steps: its de-
tection rates are between 46% and 61%, against the
much broader 11% to 45% range of the Undistilled
model. From Fig. 7 and Fig. 6, we observe that greater
perturbations correspond to the lowest detection rates;
however, we remark that such modifications may gener-
ate alerts from other defensive mechanisms (as explained
in Section V). Furthermore, we highlight that adversarial
attacks are more effective and more difficult to detect
when they are carried out through adversarial samples
that are as close as possible to original samples.

We investigate the increased stability of our proposal
through the fine grained comparisons in Figs. 8, where
the lines denote the detection rate (averaged for all botnet
families) of the two models for four fixed groups of
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Figure 7: Comparison of the average detection rates for
each increment step.

altered features (reported on top of each figure) and vari-
able increment steps. The x-axis denotes the increment
steps, and the y-axis the detection rate. The black and
the gray line refers to the Undistilled and the Distilled
model, respectively. In order to appreciate the improved
stability of the performance, we include in Figs. 9 the
boxplots related to the results of Figs. 8. These boxplots
highlight that the Distilled detector is not affected by
sudden performance drops, thus indicating that it is
able to maintain its performance even against adversarial
inputs that are different from the scenarios considered
in this paper. The increased resilience of the Distilled
detector is motivated by the fact that its Receiver model
adopts a more robust set of feature importances when
compared to the Undistilled model. In other words, a
random forest model makes a prediction by comparing
the features of a sample with the feature importances
learned during its training phase: the probability labels
used to train the Receiver produce a random forest model
with a set of feature importances having a higher degree
of flexibility than that of the Undistilled classifier, which
adopts hard class labels. As a consequence, an adver-
sary can significantly alter the detection results of the
Undistilled model through tiny alterations of the features,
while the Distilled detector is capable of withstanding
even perturbations of high magnitude. For example,
let us consider two cases: in Fig. 8b the adversary
modifies only one feature (Dst Bytes); in Fig. 8d the
adversary changes three features (Duration, Src Bytes
and Dst Bytes). In the former case, the two detectors
have comparable performance for the first increment
steps because the manipulated feature (Dst Bytes) has
high and similar importance for both models. In the latter
instance, when alterations concern even incoming bytes
and flow duration, the detection rates of the Undistilled
model are unacceptably low (below 15%).

The improved resilience of our method is confirmed

by comparing the detection rates of the two detectors for
fixed botnet families. The results and corresponding box-
plots are presented in Fig. 10 and Fig. 11, respectively.
The name of the considered botnet family is reported
on top of each figure. Overall, these figures confirm the
superior detection capabilities and improved stability of
the Distilled model.

C. Comparison with existing defensive strategies

We compare the effectiveness of our proposal against
two known countermeasures against evasion adversarial
attacks that have been proposed in the literature [18],
[31], [34], [35], and that can be applied to any super-
vised machine learning algorithm: adversarial retraining
and feature removal. To this purpose, we perform our
experiments by following the same procedures described
in [18], due to the common characteristics shared by the
considered adversarial scenarios and employed datasets.
Hence, for the case of adversarial retraining we generate
a “hardened” Undistilled detector by re-training it after
introducing a small (10%) portion of the generated adver-
sarial samples into the corresponding training sets, and
then measure its detection rate on the same adversarial
datasets used in our previous experiments for both the
normal and adversarial scenarios. The results of this
evaluation are presented in Table VIII which shows the
(averaged) Recall obtained by the re-trained Undistilled
detector, the proposed Distilled detector, and the baseline
Undistilled detector that we include for completeness.

Table VIII: Comparison with adversarial retraining.

Detector Type Recall
(normal)

Recall
(adversarial)

Undistilled (retrained) 0.9695 0.4987
Undistilled (baseline) 0.9684 0.2573

Distilled 0.9751 0.5152

With regards to feature removal, we develop a different
Undistilled detector by training it on the same dataset
used in our previous experiments but without considering
the features that we modified to generate our adver-
sarial samples (that is, Tot Pkts, Duration, Dst Bytes,
Src Bytes), and then test it on the datasets used in
Section VI-A; this is motivated by the fact that feature
removal countermeasures, despite being resilient against
adversarial attacks targeting the removed features, are
known to generate excessive false alarms. The evaluation
results are shown in Table IX, which compares the (av-
erage) Precision, Recall and F1-score of the Undistilled
detector (after excluding the features) with those obtained
by the Distilled and the baseline Undistilled detector.

By observing Table VIII, we note that our proposal
exhibits a higher detection rate in both scenarios. At
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(a) Group 1a: Duration. (b) Group 1c: Dst Bytes.

(c) Group 2a: Duration & Src Bytes. (d) Group 3a: Duration & Src Bytes & Dst Bytes.

Figure 8: Comparison of the detection rates on the adversarial datasets generated by all malware families.

(a) Boxplot for Fig. 8a. (b) Boxplot for Fig. 8b. (c) Boxplot for Fig. 8c. (d) Boxplot for Fig. 8d.

Figure 9: Boxplot visualization of the results in Figs. 8.

Table IX: Comparison with feature removal.

Detector Type F1-Score Precision Recall
Undistilled (feature removal) 0.8728 0.8497 0.8974

Undistilled (baseline) 0.9729 0.9774 0.9684
Distilled 0.9777 0.9804 0.9751

the same time, concerning Table IX, we appreciate
that the Distilled detector achieves significantly better
results. Indeed, we highlight that the proposed distillation
method is not affected by the issues that characterize sim-
ilar countermeasures: feature removal strategies generate
unacceptable rates of false positives, whereas adversarial
retraining requires to constantly update the training set

with all the possible variations of samples that can be
modified by the attacker (as explained in Section II).

By taking into account all these analyses and evalua-
tions, we can draw the following main conclusions.

• Current state-of-the-art detection models based on
machine learning have features that are too sensitive
to the possibile manipulation of an attacker.

• The proposed variation of the defensive distillation
technique can be used to devise random forest
detectors that: achieve same or better detection
performance than existing algorithms in scenarios
that are not subject to adversarial inputs; exhibit
improved robustness and stability against adversar-
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(a) Group 1a: Duration (b) Group 2b: Duration & Dst Bytes

(c) Group 3a: Duration & Src Bytes & Dst Bytes (d) Group 4a: Duration & Src Bytes & Dst Bytes & Tot Pkts

Figure 10: Comparison of the detection rates on the adversarial samples generated by specific malware families.

(a) Boxplot for Fig. 10a. (b) Boxplot for Fig. 10b. (c) Boxplot for Fig. 10c. (d) Boxplot for Fig. 10d.

Figure 11: Boxplot visualization of the results in Figs. 10.

ial attacks; are not affected by the limitations of
existing countermeasures.

• Although our proposal is an important result to-
wards the reduction of the impact of adversarial
inputs against machine learning detectors, it rep-
resents just a first step. There is still space for
researches that aim to further improve the detection
rates.

VII. CONCLUSIONS

Adversarial attacks represent a prominent and dan-
gerous menace to organizations that rely on machine
learning cyber detectors. We observe that existing ap-

proaches are based on classification criteria that are too
rigid for the highly variable cyber security domain. The
intuition is that by developing more flexible models it
is possible to counter the manipulation of malicious
samples. For this reason, we present an original method
that limits the impact of adversarial perturbations by
leveraging the defensive distillation technique. We con-
sider the random forest algorithm due to its superior per-
formance in cybersecurity detection tasks. An extensive
campaign of experimental evaluations demonstrates the
effectiveness of the proposed method, which achieves a
twofold advantage over the state-of-the-art: in scenarios
subject to adversarially manipulated inputs, it improves
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the detection rate up to 250%; in scenarios that are not
subject to adversarial attacks, it achieves a similar or
superior accuracy than existing techniques. This latter
achievement is of particular importance because existing
approaches that aim to counter adversarial attacks are
often subject to a reduced performance in non-adversarial
settings. Despite these promising results, our method
presents room for further improvements. The proposed
approach represents an original contribution to design
robust detectors with high detection rates and strong
enough against adversarial attacks.
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