
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 1

Deep Reinforcement Adversarial Learning
against Botnet Evasion Attacks

Giovanni Apruzzese∗, Mauro Andreolini†, Mirco Marchetti‡, Andrea Venturi‡, Michele Colajanni§
∗Hilti Chair of Data and Application Security – University of Liechtenstein, Vaduz, Liechtenstein
†Department of Physics, Computer Science and Mathematics – University of Modena, Italy

‡Department of Engineering “Enzo Ferrari” – University of Modena, Italy
§Department of Informatics, Science and Engineering – University of Bologna, Italy

{giovanni.apruzzese, mauro.andreolini, mirco.marchetti, andrea.venturi, michele.colajanni}@unimore.it

Abstract—As cybersecurity detectors increasingly rely on
machine learning mechanisms, attacks to these defenses
escalate as well. Supervised classifiers are prone to adver-
sarial evasion, and existing countermeasures suffer from
many limitations. Most solutions degrade performance in
the absence of adversarial perturbations; they are unable
to face novel attack variants; they are applicable only
to specific machine learning algorithms. We propose the
first framework that can protect botnet detectors from
adversarial attacks through Deep Reinforcement Learning
mechanisms. It automatically generates realistic attack sam-
ples that can evade detection, and it uses these samples to
produce an augmented training set for producing hardened
detectors. In such a way, we obtain more resilient detectors
that can work even against unforeseen evasion attacks with
the great merit of not penalizing their performance in
the absence of specific attacks. We validate our proposal
through an extensive experimental campaign that considers
multiple machine learning algorithms and public datasets.
The results highlight the improvements of the proposed
solution over the state-of-the-art. Our method paves the
way to novel and more robust cybersecurity detectors based
on machine learning applied to network traffic analytics.

Index Terms—Adversarial attack, Machine learning, Net-
work Intrusion Detection, Deep Reinforcement Learning,
Botnet

I. INTRODUCTION

MACHINE Learning (ML) approaches are be-
ing increasingly applied to cybersecurity where

data-driven detection algorithms outperform traditional
signature-based methods against novel forms of attacks
[1], [2]. The problem is that defensive systems have
to deal with proactive enemies who are turning their
attentions against modern ML detectors. The adopted
classifiers are vulnerable to the so called adversarial
evasion attacks aiming to thwart the ML model through
specific malicious samples that can remain undetected
(e.g., [3]–[5]). The robustness of cybersecurity detectors
is a critical issue because few misclassifications can lead

to severe consequences [6], [7]. Existing countermea-
sures are at an early stage and they suffer from several
drawbacks. For example, they are effective only against
predictable attack strategies or they can be applied only
to specific ML algorithms. Moreover, their detection rate
tends to degrade when the system is not subject to
evasion strategies [2], [8]–[11].

In the context of adversarial evasion attacks against
network intrusion detection systems (NIDS) based on
ML, we propose a novel approach that leverages Deep
Reinforcement Learning (DRL) to increase the robust-
ness of detectors relying on network flow analyses. Our
proposal allows an automatic generation of realistic ad-
versarial samples that preserve their underlying malicious
logic and can evade detection with high probability.
The detector is hardened by means of an adversarial
training procedure based on automatically generated
samples [10], [12]. To the best of our knowledge, this
paper represents the first proposal that exploits deep re-
inforcement learning for the purpose of hardening botnet
detectors through adversarial training. In our research
we consider the real constraints that characterize the
cybersecurity domain. They include the necessity of
creating adversarial samples through small and feasible
modifications, but also the implication that the attacker
has limited queries to evade detection. Moreover, adver-
sarial training requires accurate analyses because it may
even decrease detection performance in the absence of
adversarial attacks (e.g., [13]).

The implementation of the proposed approach pro-
duces a framework that can be used to attack state-of-the-
art botnet detectors and to defend them against known
and novel evasion strategies. With respect to existing
works, our framework protects the detectors against
unforeseen evasion attempts without compromising the
detection rate in the absence of adversarial attacks. Our
proposal is applicable to botnet detectors relying on

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 2

different machine learning classifiers. Its effectiveness
is demonstrated in realistic scenarios represented by
multiple datasets of enterprise network flows. An exten-
sive experimental campaign shows the benefits of our
method against previous literature in several terms. The
samples generated by our method increase the resilience
of botnet classifiers against existing and novel evasion
attacks through adversarial training. The improved detec-
tors maintain their performance even in the absence of
adversarial attacks. By varying the amount of malicious
samples to include in the augmented training dataset, we
also show that our autonomous solution increases the
detection rate by requiring less samples than approaches
entailed by manual adversarial training. In the best cases,
by adding just 1% of adversarial samples to the training
set, we are able to increase the detection rate by nearly
25%.

The remainder of this paper is structured as follows.
Section II motivates our paper and describes the threat
model. Section III presents the proposed method. Sec-
tion IV details the experimental settings for the evalua-
tion. Section V discusses the results of the experiments.
Section VI compares our paper against related work.
Section VII concludes the paper with some final remarks
and future research directions.

II. MOTIVATION

The threats posed by botnets are increasing (e.g., [6],
[7], [14]) and the difficulties of their detection represent
a real menace for modern organizations. Botnet detection
is the topic of a large body of literature where traditional
methods based on full-packet captures are replaced by
recent solutions relying on both supervised and unsu-
pervised ML approaches [2], [9] that analyze network
flows [15]–[19]. Unfortunately, the growing popularity of
these botnet detectors is arousing the interest of adver-
saries that plan and produce new evasion attacks [20]. As
a consequence, it is important to devise novel defensive
approaches that can improve the detector robustness
against these evasion attempts.

Adversarial attacks to ML-based detectors aim to gen-
erate specific samples that induce the model to produce
an incorrect output [8]. These adversarial samples can be
introduced during the training phase (so called poisoning
attacks [21]) or at inference time [22] that is of interest
for this paper. Within this latter category, we consider
evasion attempts where the goal of the attacker is to
induce a misclassification of malicious samples. Many
papers tackle this issue in image and speech processing
domains (e.g., [23]–[27]). Surprisingly, the cybersecurity
context is new although it has inherently to deal against
intentional attackers. Most studies focus on spam and

malware analysis [8], [28]–[30], while there are few
results on network intrusion detection which represents
the focus of this paper. Attacks against detectors were
investigated by the same authors and by other researchers
in [4], [5], [10], [31], [32]. Most of these papers highlight
that even small adversarial perturbations against machine
learning detectors can significantly reduce their detection
rates, while a careless insertion of malicious samples may
favor detection.

In Figure 1 we outline the typical scenario consisting
of an enterprise network with many internal hosts, where
at least one machine has been compromised by a botnet
malware communicating with a Command and Control
system (CnC). The network traffic is inspected by a
NIDS that analyzes network flows to identify botnet
activities by means of supervised machine learning meth-
ods. Our threat model represents a realistic gray-box
attack where the adversary has partial information about
the defensive system. We consider unrealistic to assume
that the attacker knows the precise internal configuration
of the model, the full set of features, and the complete
training set of the detector as in other papers.

Internal
Network Internet

Border
Router

ML-based
NIDS

Flow
Exporter

Figure 1: Considered threat scenario.

The attacker can realistically assume that a modern
network is monitored by a ML-based NIDS that has been
trained on network flows [15], [33]. They do not know
the complete set of features, but they can expect that
time- and data-related information are included because
most flow-based detectors use them as reported by liter-
ature on botnet detectors (e.g., [4], [16], [17], [34]–[37]).

We consider detectors that analyze the most important
features captured by network flows, reported in Table I,
where the gray background denotes the features on which
the attacker operates. They can issue commands to the
infected machines through the Command and Control
infrastructure. The attacker tries to evade detection by
slightly modifying the botnet communications. These
modifications alter the original flow characteristics and
result in adversarial perturbations that may evade de-
tection. For example, typical adversarial samples may
present different durations, different amounts of ex-
changed bytes or transmitted packets. Modifying these
metrics affects multiple attributes in Table I because

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 3

some of them are derived features. We consider these
alterations because we are interested in modifications
that do not compromise the underlying logic of the
botnet. Similar perturbations can be easily obtained by
inserting short communication delays, or adding random
junk data in the transmitted packets. These operations
require small changes to the source code of the botnet
malware variant without compromising its logic [38].
Metamorphic malware operates in a similar way [39].

Table I: Traffic features of the considered detectors.

Feature name Type
1,2 Source/Dest IP address type Bool
3,4 Source/Dest port Num
5 Flow direction Bool
6 Connection state Cat
7 Duration (seconds) Num

8,9 Source/Dest ToS Num
10,11 Source/Dest bytes Num

12 Total pkts Num
13 Total bytes Num

14,15 Source/Dest port type Cat
16 Bytes per second Num
17 Bytes per packet Num
18 Packets per second Num
19 Ratio of Source/Dest bytes Num

III. PROPOSED METHOD

The proposed approach leverages Deep Reinforcement
Learning to generate realistic adversarial samples that
preserve their malicious logic and are able to evade detec-
tion. These samples are used as a mean for hardening the
original detector through adversarial training [12]. The
expectation is that the resulting botnet detector achieves
better detection rates than its initial version. The method
consists of three phases that are represented in Figure 2
and detailed below.

A. Preparation

The goal of the first phase is to create a DRL agent
that is capable of autonomously generating evasive ad-
versarial samples against botnet detectors on the basis of
network flows belonging to some botnet b. As anticipated
in Section II, modeling a realistic scenario requires to
preserve the malware underlying logic. Moreover, the
attackers are also constrained to the number of sam-
ples that they can submit to the detector to guess the
underlying ML logic. This agent learns how to make
the best decisions through an autonomous trial-and-error
approach [40], [41] where at each agent’s choice, which
is chosen among the defined Action Space, corresponds
a Reward provided by the Environment.

The Environment includes two elements: the state
generator transforms the input flow sample in a format

that is recognized by the agent; the botnet detector
D̂ leverages a ML classifier trained on a dataset T
of network flows containing legitimate and malicious
samples including some pattern of the botnet b. Let D̂(T)
denote this detector.

The Reward depends on the output of the detector
to the sample produced by the agent. A correct and an
incorrect classification is associated to a positive and a
null reward, respectively. The agent continues to modify
the sample until it is able to evade detection or after a
maximum amount of failures.

The Action Space includes the set of perturbations that
an agent can introduce in a malicious sample. Our focus
is on flow-based botnet detectors and our goal is to gener-
ate samples that an attacker can realistically reproduce.
As described in Section II, we limit our Action Space
to small increments of few essential traffic flow features
(duration, sent bytes, received bytes, transmitted packets)
and correlated features.

We consider agents based on two deep reinforcement
learning algorithms that have been applied in cybersecu-
rity (e.g., [40], [42], [43]): one is based on the off-policy
Double Deep Q-Network; the other one is based on the
on-policy Deep State–action–reward–state–action. We
consider DRL approaches because they address complex
tasks better than basic RL methods. These latter achieve
poor performance when the problem requires to evaluate
many possibilities in terms of feasible states and related
action-space [44]. The function representing the value
of an action can be seen as a table that maps all states
and all actions to the expected long-term return. In our
case, the dimension of this table is large and compiling it
requires high computational costs. Approaches based on
DRL leverage deep neural networks to estimate (instead
of fully creating) the value function. In such a way, they
avoid the two-dimensional representation of the value
function and devise models with general capabilities that
are able to achieve better results [45].

To the best of our knowledge, we are the first authors
to consider the 2DQN and Sarsa algorithms to both evade
and harden a botnet detector. Other authors in [4] con-
sider Deep Q-Learning but only for offensive purposes.

Double Deep Q-Network (2DQN): was proposed
in [46], and it leverages the synergy of the original Dou-
ble Q-Learning approach with Deep Q-Networks [46]. In
these methods, the system uses the same values to both
choose and evaluate the effects of an action, thus induc-
ing some over-estimations. In our context, this approach
tends to generate samples that deviate significantly from
their initial variant. The aim of 2DQN is to decrease
such over-estimations. The main intuition is to determine
the best decision by splitting the optimization into action

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 4

 PREPARATION AUTOMATIC SAMPLE
GENERATION (ATTACK) HARDENING

Botnet
Detector

Trained DRL
Agent

Botnet
Detector

Botnet
Detector

Adversarial
Flows

Hardened
Detector

Dataset
Malicious

Flows
Malicious

Flows

Phase	I Phase	II Phase	III

Figure 2: The three phases of the proposed solution.

selection and evaluation by relying on two deep neural
networks. The 2DQN algorithm is characterized by the
following formula [46]:

Y 2DQN
t ≡ Rt+1+γQ(St+1, argmax

a
Q(St+1, a; θ+t); θ−t)

(1)
where Y 2DQN

t is the target function at time t, and
γ ∈ [0, 1] is the discount factor used for the reward; Rt+1

is the immediate reward and St+1 is the resulting next
state (at time t+1); θ+ and θ− denote the two different
deep neural networks; Q(·, a; θt) is the function that
regulates the updating procedure at time t: in particular,
a and θ are used to denote the vector of action values
associated to the θ network. The target network θ− is
used to estimate the value selected by the online network
θ+. In summary, 2DQN adopts a greedy-policy selection
method, which results in a training process with fast
and low cost iterations. Our expectation is that a similar
approach will generate agents that require few queries to
evade detection.

Deep State-action-reward-state-action (Sarsa): is a
DRL algorithm [47] that fosters a risk-adverse strategy.
Unlike the greedy approach adopted by 2DQN, here the
learner updates its parameters with the action determined
by the policy. We consider the deep learning variant of
Sarsa which relies on a deep neural network θ to estimate
the action values. The algorithm is based on the following
update equation [47]:

Y Sarsa
t = Rt+1 + γQ(St+1, at+1; θ)−Q(St, at; θ)

(2)
where the same notation of Eq. 1 is adopted. The function
that regulates the update procedure does not include
the argmax operator because of the more conservative
strategy characterizing Sarsa. Our expectation is that
agents based on Sarsa will try to evade detection by
preferring smaller modifications, at the expense of an
increased number of iterations.

Our paper investigates the effectiveness of on-policy
and off-policy methods, as they belong to complemen-
tary DRL paradigms. We report in Figure 3 the main

differences that can be summarized as follows. On-
policy techniques such as Sarsa adopt a linear approach.
They learn to choose the best action by following and
improving one policy, which for each state suggests a
single action. On the other hand, off-policy techniques
such as Q-learning (the precursor of 2DQN) use an
exploratory policy that suggests multiple actions to play
in each state. These actions are evaluated and chosen by
a separate core policy, and the learning procedure aims to
improve this second core policy [48]. Training on-policy
methods requires more iterations but they are more robust
than off-policy algorithms.

Figure 3: Sarsa and Q-Learning algorithms
(source: [48]).

The final output of this first Preparation phase is the
DRL agent A(b) which is trained to generate adversarial
samples on the basis of network flows belonging to the
botnet b contained in T .

B. Automatic sample generation (Attack)

In this phase, the trained DRL agent A(b) is used
to produce samples that are able to evade a botnet
detector D(T) similarly to an adversarial attack scenario.
It is important to observe that the targeted detector can
even be different from the one adopted for training the
agent [21]. The methodology is outlined in Figure 4.
The system accepts a malicious flow of botnet b as its
input which is sent to the state generator (step 1) and
then forwarded to the agent A(b) (step 2). After that,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 5

the agent communicates the best action to modify the
sample to the state generator (step 3) that applies the
modification and issues the sample to the detector D(T)
(step 4). If the evasion is successful, then the modified
sample is saved in a dedicated dataset of adversarial flows
(step 5). Otherwise, the process is re-activated and the
sample is further modified until it is able to evade D(T)
or until a maximum amount of attemptsQmax is reached.
The agent A(b) does not receive any reward in this phase
because it has already been trained.

As an example, assume a malicious flow f ∈ b in input:
the system may opt to increase the duration of f thus
obtaining the sample f ′, and submits it to the detector
D(T). If the evasion is successful, then f ′ is added to the
dataset of the adversarial samples. Otherwise, the agent
further modifies f ′ by increasing another (or the same)
feature and repeats the submission process.

The output of this procedure is a set of adversarial
flows GA

D(b) that are perturbed versions of the botnet b
flows that is, they have been altered by the agent A(b) in
order to evade the detector D(T). The flows contained
in GA

D(b) can then be used to harden the detector.

II: AUTOMATIC SAMPLE
GENERATION (ATTACK)

State Generator

Environment

evasion?

Malicious
Sample

No

1

4Detector
D (T)

Increment	Duration
Increment	InBytes
Increment	OutBytes
Increment	TotPkts

Action:

Adversarial
SampleYes

Botnet b
Flows

2

3
Trained
Agent
A

5 Adversarial
Flows
GD
A(b)

(b)

Figure 4: Automatic generation of adversarial samples.

C. Hardening
The final phase leverages the adversarial training

paradigm to harden the botnet detector. This goal is
achieved by re-training the detector D(T) through an
augmented training set GA

D(b) that includes the adver-
sarial samples generated during the previous phase. A
threshold Ψ specifies the percentage of adversarial sam-
ples that are introduced in the initial training dataset to
generate the augmented dataset. This latter may contain
also some additional benign flows to maintain a realistic
ratio of legitimate-to-illegitimate samples. We are the
first to evaluate the sensitivity of the detector as a
function of different Ψ percentages in Section V.

At the end, this phase yields a hardened version of the
detector D(T) that is trained on the adversarial samples
GA

D(b) and that we denote as D
A

(T).

IV. EXPERIMENTAL SETTINGS

We now describe and motivate the experimental envi-
ronment used for our evaluation. We start by presenting
the testbed and the specifics of the target detectors, and
then detail the configuration of the proposed framework.
Finally, we report the characteristics of the considered
adversarial attacks.

A. Datasets

We consider two datasets in the experimental cam-
paign: the CTU [49] and the BOTNET [50], that contain
labelled collections of millions of network flows gen-
erated by benign and malicious devices in networks of
hundreds of hosts representing modern enterprises. The
heterogeneous environments captured by these datasets
are appreciated by related literature in botnet detec-
tion [4], [34], [35], [51]. The malicious flows in these
datasets belong to different botnet families. As recom-
mended by the state-of-the-art [4], [5], [8], [52], [53] we
use ensembles of classifiers, in which each classifier is
devoted to a specific botnet variant.

We report in Table II some samples of network flows
that are included in these datasets with the corresponding
features. For the sake of readability, we omit the derived
features.

B. Detectors

The botnet detectors are based on two famous ma-
chine learning classifiers: Random Forest (RF) and
Wide and Deep (WnD). RF is recognized in literature
as one of the most proficient techniques for cyber detec-
tion [4], [12], [53], [54].

WnD is a deep learning-based approach proposed by
Google [55] that, to the best of our knowledge, has
never been evaluated for botnet detection. We consider
it due to its appreciable results in other classification
contexts [56]. Both algorithms adopt the feature set
reported in Table I.

The training procedure of each classifier follows the
best practices in related literature [17], [31]: 80% of
samples are used for training and 20% for testing; the
samples are distributed in a legitimate-to-illegitimate
ratio of 20:1. We report the amount of samples used for
training and testing in Table III, where five famous botnet
families (included in the CTU and BOTNET datasets) are
considered. We exclude from the evaluation the botnets
with too few samples in the datasets because they yield
under-performing detectors. Each detector consists of an
ensemble of five classifiers, each trained on a specific
botnet family (see Section IV-A).

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 6

Table II: Example of network flows included in the datasets.

S IP D IP S Port D Port Dir State Dur S ToS D ToS S Bytes D Bytes T Pkts S Port t D Port t

int ext 43458 80 mo RA 0.09 0 0 264 0 4 high known
ext int 22 10005 bi CON 192.62 0 0 4968 1413 40 known high

Table III: Datasets used for training and testing. Total
samples: CTU: 3 431 629; BOTNET: 189 352.

Overall Training set Testing setDataset Family Malicious Malicious Benign Malicious Benign
Neris 80 097 60 071 1 201 455 20 026 400 485
Rbot 27 509 20 631 412 635 6 878 137 545
Virut 32 347 24 260 485 205 8 087 161 735
Menti 2 825 2 118 42 375 707 14 125CT

U

Murlo 1 106 829 16 590 277 5 530

Neris 3 685 2 763 55 275 922 38 425
Rbot 3 685 2 763 55 275 922 38 425
Virut 878 658 13 170 220 4 390
Menti 3 685 2 763 55 275 922 38 425BO

TN
ET

Murlo 3 685 2 763 55 275 922 38 425

Combining the two network scenarios (CTU and BOT-
NET) and the two detectors (RF and WnD), we have
four combinations. For example, the detector RF(CTU)
consists of an ensemble of 5 random forest classifiers
where each is trained on a botnet family of the CTU
dataset.

C. Framework

The training of the agents is based on RF because it
outperforms other classifiers [5], [51], [54], [57]. When
an agent wants to modify a sample, it selects a feature
and then increments it by a chosen amount. An important
choice of our approach is to generate novel adversarial
samples that are realistic and remain consistent with traf-
fic features. For these reasons, we limit the increment of
each selected feature to at most two units. For example,
an agent can increase the duration feature by 1 or 2
seconds or can modify the Total Pkts by increasing it of
1 or 2 packets.

Unlike attacks occurring in the problem space
(e.g., [28]), our agent generates adversarial samples by
directly modifying the malicious network flows. As the
perturbations are applied directly to the features, the
modified samples must not contain values causing incon-
sistencies [58]–[60]. We address this issue by instructing
the agent to check and update all the features whenever a
manipulation is performed. (For example, an increase to
the Source bytes determines an increment of the Bytes per
second). As the magnitude of the modification is small
(at most +2 units), we do not need to update the Duration
because it is realistic and feasible to transmit more data
through packets or bytes in the same timeframe.

At the end of the training process, we obtain four
agents that are denoted by the corresponding reinforce-
ment learning algorithm. For instance, Sarsa(CTU) is the

agent relying on the algorithm Sarsa that is trained to
evade the RF(CTU) detector. In the remainder we omit
the considered network because all experiments consider
agents and detectors that operate on the same network.

The trained agents generate evasive samples against all
detectors. The goal is to show that our trained agents are
not only effective at attacking the same detector used in
the preparation phase, but also against different detectors.
For instance, we use 2DQN to attack both RF and WnD
by considering three values of Qmax=(1, 5, 80). The first
two values are used to emulate a realistic attack scenario,
compliant with the considered threat model, where the
adversary cannot see the output of the detector (Qmax=1)
or can leverage a limited number of queries (Qmax=5).
The last value is used for hardening purposes because the
defenders can freely access and query the detector. In this
attack phase, the agents modify every available malicious
sample into an evasive network flow. For each value
of Qmax, the agents generate two sets of adversarial
flows for every detector. For example, we obtain the sets
G2DQN

RF and GSarsa
RF for the RF detector.

We use the sets of adversarial samples that are pro-
duced by our agents to create augmented training sets
that improve the robustness of the detectors against eva-
sion attacks. The effects of adversarial training are stud-
ied as a function of different amounts of injected sam-
ples. Existing proposals on adversarial training simply
inject a fixed amount of samples and proceed to measure
the results (e.g., [12], [61]). We adopt a more realistic
approach that is necessary for devising cybersecurity
solutions in real scenarios. For this reason, we consider to
inject different percentages of injected malicious samples
Ψ=(1%, 5%, 10%, 20%, 100%), where Ψ=100% is the
baseline as in related literature [61]. For hardening we
use the adversarial datasets generated with Qmax=1000
which contains the exact amount of samples of the
original malicious datasets. We perform the re-training
and subsequent re-testing by following the same ratios
and splits used for the baseline detectors. After this phase
we have eight hardened detectors for every value of Ψ
where, for example, the detector RF2DQN is the variant
of RF that is hardened through the samples contained in
G2DQN

RF .

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 7

D. Implementation of attacks

Solutions leveraging adversarial training are evaluated
against the attack scenarios that resemble the samples
used for producing the augmented dataset [8], [12], [21],
[61]. These defense strategies are effective if the attacks
can be foreseen that is, by manually crafting samples that
replicate the predicted evasion attempts. Our proposal
aims to overcome a similar limitation and shows that
our autonomous approach allows the creation of resilient
detectors that are less affected by novel perturbations.
In order to achieve a comprehensive evaluation, we
consider three gray box evasion attack scenarios that are
compatible with the threat model in Section II and are
described below.

• E1 represents the attacks performed by our frame-
work. This scenario assumes a powerful attacker
that is able to query the detector several times
without the risk of triggering other defensive mech-
anisms. We use this scenario to show that our
framework is effective even against stronger but less
realistic attackers that can see the response of the
detector to a malicious flow, by using the machine
learning model as an oracle [26]. We evaluate the
detectors against attackers that can modify each
sample up to five times. In practice, we submit each
sample in G2DQN

RF (at Qmax = 5) to each hardened
detector in the same network setting.

• E2 represents an attack strategy that was shown to
effectively evade detection [5]. Here, the detector
is evaded by manually modifying combinations of
up to four features (duration, source bytes, destina-
tion bytes, total packets) that are altered by fixed
amounts. We manually craft adversarial samples
from the original malicious flows that mimic a
similar attack pattern. Each flow has the values of
the considered features that are increased by five
amounts that is, (+1,+2,+5,+10,+30). Experi-
ments show that these perturbations produce adver-
sarial flows that are able to evade the considered
detectors with high probability. We consider E2 as
the basis for producing the set of manually crafted
adversarial flows that are denoted by GMan.

• E3 represents attacks that alter the same features
of E2 but with intermediate increments. For ex-
ample, if the samples in E2 increase the duration
of the original malicious flows by (1, 2, 5, 10, 30),
then the samples in E3 increase the duration
by (1.5, 3.5, 7.5, 20). The adversarial samples in
E3 represent unforeseen attacks, and the toughest
testbed for our approach.

The rationale for considering these three attack scenar-

ios is as follows. As the augmented datasets for adversar-
ial training include samples that mimic the corresponding
attack pattern, we can expect that detectors hardened
through our framework can achieve better results when
the attack types are in E1, and a manual approach should
yield better results in the E2 scenario. On the other
hand, the adversarial samples in E3 represent unforeseen
attacks, hence it is of maximum importance that our
hardening approach is effective even in this scenario. The
experimental evaluation aims to show that the proposed
solution is able to mitigate all these attack scenarios.

V. EVALUATION

The experimental campaign has the twofold objective
of showing that our framework produces samples that
are able to evade detectors with high success rate and
few queries, and that the generated samples can be used
to harden the detectors against evasion attacks without
decreasing their performance in non-adversarial settings.
The framework has been implemented in Python3 with
the scikit-learn, Keras-RL and OpenAI Gym toolkits. For
evaluating the performance in non-adversarial settings
we adopt the usual metrics of machine learning studies:
Precision, Detection Rate (DR, or Recall), and F1-
score [51], [53]; on the other hand, for the attack scenar-
ios we consider the Detection Rate of the adversarially
manipulated samples.

A. Baseline performance

We initially evaluate the baseline detectors RF and
WnD for the two network scenarios in non-adversarial
contexts. The results in Table IV show that our baseline
detectors achieve values that are comparable to the state
of the art [5], [36], [51]. RF slightly outperforms WnD as
anticipated by previous studies (e.g., [5], [51], [54]). We
observe that the WnD detector in the BOTNET scenario
obtains poor Precision in the case of the Virut and Menti
families. As these deep learning classifiers are affected
by high rates of false positives, signaling that these novel
methods still present margin for improvements. However,
these classifiers reach suitable Recall values against these
botnet families (above 0.95) thus implying that they
are able to detect most malicious samples, and hence
represent a valid baseline for the experimental campaign.

We also present in Figures 5 the ranking of the top-
5 most significant features for every baseline detector.
Each detector has minor different rankings, but all of
them have among the most important features those that
the proposed DRL agent will modify to construct the
adversarial samples. The only exception is the destination
port type of the RF(CTU) detector. We also highlight that

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 8

Table IV: Performance of the baseline detectors RF and
WnD in non-adversarial settings.

Detector Random Forest (RF) Wide & Deep (WnD)
Network Family F1-score Recall Precision F1-score Recall Precision

Neris 0.985 0.988 0.983 0.845 0.978 0.743
Rbot 0.996 0.993 0.998 0.988 0.983 0.992
Virut 0.987 0.998 0.976 0.934 0.991 0.883
Menti 0.999 0.998 0.999 0.923 0.960 0.929
Murlo 0.990 0.986 0.994 0.927 0.973 0.878C

T
U

average
(std. dev.)

0.991
(0.005)

0.993
(0.003)

0.991
(0.008)

0.935
(0.047)

0.980
(0.006)

0.898
(0.082)

Neris 0.995 0.996 0.994 0.916 0.914 0.919
Rbot 0.999 1.000 0.999 0.986 0.998 0.975
Virut 0.993 0.992 0.994 0.358 0.951 0.220
Menti 1.000 1.000 1.000 0.806 0.975 0.686
Murlo 0.999 0.999 1.000 0.994 0.999 0.989B

O
TN

E
T

average
(std. dev.)

0.998
(0.002)

0.998
(0.001)

0.998
(0.002)

0.902
(0.135)

0.970
(0.034)

0.864
(0.179)

these rankings are similar to those obtained by related
researches on botnet detection through supervised ML
algorithms [34]–[37]. For example, in [34] the Tot bytes
feature is the second most important feature, as in
RF(CTU). The detectors in [36] and in [35] focus on
the Tot Pkts feature as in WnD(BOTNET). These results
suggest that adversarial attacks aiming to perturb these
features are more likely to be effective.

B. Evasion

We evaluate the offensive capabilities of our proposal
by using the trained agents to launch evasion attacks
against the target detectors. The performance is measured
through the Evasion Rate (ER). The results are reported
in Tables V, where the cells show the ER and average
amount of queries Qavg (in parentheses) of the samples
generated by our agents withQmax=80. Gray cells report
the weighted average across all botnet families of each
network. From these tables, we observe that the agents
produced by our framework are able to evade the RF
detector with very high probability, and they are also
effective against the WnD detector where ER exceeds
90%. We also note that, as anticipated in Section III-A,
an agent based on 2DQN requires less attempts to evade
detection compared to an agent based on Sarsa.

We compare the automatic evasion capabilities of the
proposed solution against an attack proposed by the
same authors [5], where the adversarial samples were
generated by manually increasing the same features by
fixed amounts. Those attacks obtained an average evasion
rate of 35% on the CTU dataset, and of 40% on the
BOTNET dataset, while our evasion rates are above 90%
(Tables V).

In realistic scenarios, attackers cannot arbitrarily query
the detector or inspect its output without exposing them-
selves. For this reason, we consider the amount of
generated samples that are able to evade detection on
the first attempt and in less than five attempts. From
the results in Tables VI, we can observe that many

samples are capable of evading the detection mechanism
immediately (e.g., over 80% and 50% against RF(CTU)
and WnD(BOTNET), respectively). Moreover, for the
Sarsa agent, the majority requires few attempts in both
networks. These results confirm that detectors based on
machine learning are highly vulnerable to adversarial
attacks.

We compare the offensive capabilities of our proposal
against other automatic methods for evading ML detec-
tors [4], [13], [40], [41], [61]–[66]. In Table VII we
report the best results for each proposal. Our framework
can leverage agents that achieve a high success rate
through few queries, while other approaches generate
evasive samples that are either less effective or require
many more attempts.

Our proposal is also superior if we limit the compar-
ison to the botnet detection scenarios discussed in [4]
that consider only the CTU dataset. Successful evasion
is reached in 41% of the cases with Qavg=4, while
our 2DQN agent achieves an evasion rate of 99% with
Qavg=2.4 (Table Va).

The fact that even small and easily achievable alter-
ations affect the most important features of the consid-
ered detection models is a critical issue that demands
proper countermeasures. The effectiveness of the pro-
posed attacks is likely due to the high importance that
the modified features have for the baseline detectors.
Perturbations affecting these features are likely to pro-
duce samples that evade detection. A similar observation
was in [50]. Other studies on evasion attacks [4] do not
consider the feature importance of the baseline detectors.

C. Hardened defense

We now evaluate the effects of adversarial training
based on the samples generated by our agents. We report
the results of the hardened version of RF and WnD that
are obtained through re-training on datasets including the
generated malicious samples G2DQN and GSarsa. Let
us denote the hardened versions through RF and WnD.
We initially consider non-adversarial settings where Ψ is
set to 100% (see Section IV-C). The results are shown
in Tables VIII, which report the average and standard
deviation of the metrics for each botnet family and
network scenario, and also include the performance of
the baseline detectors in the bottom rows (taken from
Table IV). By comparing the results of the hardened
versions against those of their corresponding baselines,
we can appreciate that our method does not degrade
performance in the absence of evasion attacks. This is
an important improvement with respect to the state of
the art.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 9

By
te
sP
er
Se
c

To
tB
yte

s

Ds
tP
or
t_T

yp
e

Pk
tsP

er
Se
c

By
te
sP
er
Pk
t

0.00

0.05

0.10

Im
p
o
rt
a
n
c
e
s

RF(CTU)

Ra
tio
Ou

tIn

Ou
tB
yte

s

InB
yte

s

By
te
sP
er
Pk
t

To
tB
yte

s

RF(BOTNET)

Pk
tsP

er
Se
c

To
tP
kts

Ra
tio
Ou

tIn

By
te
sP
er
Se
c

InB
yte

s

WnD(CTU)

To
tP
kts Du

r

Pk
tsP

er
Se
c

Ou
tB
yte

s

By
te
sP
er
Pk
ts

WnD(BOTNET)

Figure 5: Top-5 important features for the baseline RF and WnD detectors on each network scenario.

Table V: Attack performance of the 2DQN and Sarsa agents for Qmax = 80.
Network CTU BOTNET
Malware Neris Rbot Virut Menti Murlo average Neris Rbot Virut Menti Murlo average
2DQN 97% (4.72) 99% (1.30) 99% (2.43) 100% (1.59) 100% (2.15) 99% (2.43) 95% (13.93) 99% (11.45) 92% (9.32) 99% (8.68) 99% (14.20) 96% (11.51)
Sarsa 97% (4.00) 99% (1.57) 96% (4.06) 99% (2.43) 100% (2.07) 98% (2.82) 90% (20.16) 95% (10.12) 98% (13.09) 100% (6.99) 92% (10.33) 95% (12.13)

(a) Evasion Rate (and Qavg) against the baseline RF detectors in both network scenarios.

Network CTU BOTNET
Malware Neris Rbot Virut Menti Murlo average Neris Rbot Virut Menti Murlo average
2DQN 82%(21.27) 96%(11.42) 80%(25.15) 100%(1.07) 100%(23.50) 91%(16.48) 96%(6.52) 100%(1.66) 98%(2.37) 99%(9.78) 100%(4.55) 98%(4.97)
Sarsa 92%(8.07) 95%(12.42) 70%(30.14) 99%(16.21) 100%(30.78) 91%(19.52) 99%(2.50) 99%(1.81) 98%(2.60) 100%(1.47) 72%(25.68) 93%(6.81)

(b) Evasion Rate (and Qavg) against the baseline WnD detectors in both network scenarios.

Table VI: Attack performance of the 2DQN and Sarsa agents for Qmax = 1 and Qmax = 5.

Network CTU BOTNET
Family Neris Rbot Virut Menti Murlo average Neris Rbot Virut Menti Murlo average
Qmax=1 73.3% 86.2% 93.3% 58.6% 7.9% 80.4% 11.7% 2.1% 43.7% 23.5% 15.1% 15.1%2DQN Qmax=5 89.7% 99.7% 96.6% 98.1% 99.3% 93.4% 37.3% 18.7% 72.4% 33.8% 64.9% 40.5%

Qmax=1 78.6% 86.1% 89.9% 31.2% 6.7% 81.2% 10.9% 3.2% 41.4% 9.2% 15.9% 12.3%Sarsa Qmax=5 91.8% 98.1% 92.7% 93.8% 100% 93.3% 20.9% 57.8% 57.8% 85.5% 67.7% 57.9%

(a) Evasion Rate against the baseline RF detectors in both network scenarios.

Network CTU BOTNET
Family Neris Rbot Virut Menti Murlo average Neris Rbot Virut Menti Murlo average
Qmax=1 25.9% 2.9% 11.8% 93.4% 12.3% 19.5% 80.8% 86.1% 94.2% 6.7% 43.3% 56.4%2DQN Qmax=5 32.8% 13.1% 11.8% 100% 12.3% 25.4% 86.7% 93.4% 97.5% 85.2% 89.2% 90.3%

Qmax=1 85.5% 2.5% 11.1% 8.1% 12.3% 50.2% 90.8% 83.9% 94.6% 90.9% 15.1% 71.5%Sarsa Qmax=5 89.7% 12.7% 11.4% 16.3% 15.1% 55.4% 95.5% 98.6% 97.2% 94.4% 64.9% 88.7%

(b) Evasion Rate against the baseline WnD detectors in both network scenarios.

Table VII: Comparison of ER and Qavg of our proposal
with related approaches.

Framework ER Qavg

[4] 41% 4
[13] 95% 12
[40] 16% 7
[41] 46% 7
[62] 79% > 200
[63] 15% 7
[64] 100% 7
[61] 52% 7
[65] 100% > 100
[66] 100% > 40 000

Ours 97% 9

We now evaluate the efficacy of our proposal at

countering the three considered attack scenarios. We also
compare the effects of training performed on the basis of
the generated samples with samples manually crafted to
replicate the patterns of existing attacks. Moreover, we
carry out a sensitivity analysis by varying the percentages
of adversarial samples (Ψ parameter) introduced in the
training dataset by evaluating the Detection Rate.

We initially analyze the defensive capabilities against
the attacks scenario E1. The results are reported in
Tables IX, where cells show the average Detection
Rate for increasing values of Ψ. The cells with a gray
background refer to mechanisms hardened through our
proposal, and numbers in bold denote the results obtained
by the best approach for the corresponding value of Ψ.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 10

Table VIII: Performance of the hardened detectors in
non-adversarial settings.

Network CTU BOTNET

Metric F1-score
(std. dev.)

Recall
(std. dev.)

Precision
(std. dev.)

F1-score
(std. dev.)

Recall
(std. dev.)

Precision
(std. dev.)

2DQN 0.988
(0.009)

0.993
(0.006)

0.984
(0.017)

0.995
(0.005)

0.998
(0.002)

0.992
(0.008)

H
ar

de
ni

ng

Sarsa 0.989
(0.010)

0.993
(0.005)

0.985
(0.017)

0.996
(0.003)

0.999
(0.001)

0.994
(0.006)

Baseline 0.991
(0.005)

0.993
(0.003)

0.991
(0.008)

0.998
(0.002)

0.998
(0.001)

0.998
(0.002)

(a) Results of the hardened RF detectors.

Network CTU BOTNET

Metric F1-score
(std. dev.)

Recall
(std. dev.)

Precision
(std. dev.)

F1-score
(std. dev.)

Recall
(std. dev.)

Precision
(std. dev.)

2DQN 0.928
(0.062)

0.967
(0.030)

0.901
(0.112)

0.896
(0.085)

0.968
(0.045)

0.845
(0.129)

H
ar

de
ni

ng

Sarsa 0.903
(0.086)

0.985
(0.007)

0.848
(0.149)

0.918
(0.069)

0.969
(0.040)

0.883
(0.118)

Baseline 0.935
(0.047)

0.980
(0.006)

0.898
(0.082)

0.902
(0.135)

0.970
(0.034)

0.864
(0.179)

(b) Results of the hardened WnD detectors.

The Detection Rate achieved by the baseline detectors is
reported in the caption of each table, which corresponds
to setting Ψ = 0%. From Tables IX, we can appreciate
that the detectors hardened through our methods signifi-
cantly improve the capabilities of the baseline detectors.
Moreover, they always outperform the results of those
manually trained.

We then test the hardened detectors against E2 that
represents the manually crafted attacks, and report the
results in Tables X. We observe that all proposed ap-
proaches improve the baseline detection rate against
existing attacks and that for high values of Ψ the manual
approach tends to be more effective because these sam-
ples exactly match those used to attack the detectors.
Our method, however, requires to inject a significantly
smaller amount of samples than the manual approach as
shown by the column Ψ=1% in Table Xa for the BOTNET
network, and in Table Xb for the CTU network. These
results show that, to be effective, training through human-
crafted samples requires not only to predict all the attack
patterns that can be used to evade the detectors, but also
the necessity to craft a significant amount of samples
with high manual effort.

Finally, we show that our framework is also effective
in protecting the detectors against previously unforeseen
attacks in scenario E3. The results in Tables XI show
that in the case of the hardened RF detector in the
BOTNET network scenario (Table XIa) our proposal
outperforms the manual approach for the majority of
the considered percentages Ψ. The same conclusion is
valid for the hardened WnD2DQN in the CTU network
(Table XIb). We can observe that hardening a detector
through manually crafted samples is effective only for
a very large number of injected samples in the order of

Ψ=100%. This means that all malicious samples should
be generated with a considerable effort.

In Table XII we compare the results of the proposed
approach against those of existing defensive mechanisms
to evasion attacks. In this table, we report the perfor-
mance of the best classifier as reported by each paper
before and after the hardening procedure in adversarial
and non-adversarial scenarios. (The authors in [67] use
a custom metric denoted as resistance.) We note that
some approaches [13], [61], [68] do not evaluate the
performance of the hardened detector in non-adversarial
settings. Addressing this lack is a contribution of this
paper. The method in [69] is used only to enhance the
detector but it does not consider adversarial scenarios.
Other approaches (denoted with a gray background in
Table XII) are affected by significant performance degra-
dation in the absence of adversarial attacks [29], [67],
[70]–[72]. This problem does not affect our proposal and
the approach presented in [12]. Nevertheless, its initial
performance in non-adversarial settings is poor (F1-score
of only 0.69), and the improvement in adversarial sce-
narios is considerably smaller than the results achieved
by our method (2% against 30%).

VI. RELATED WORK

The literature has demonstrated that even small adver-
sarial perturbations can impact severely the performance
of detectors based on machine learning models, but the
solutions are still at an early stage [2], [3], [9], [11], [24].
Existing countermeasures conform to either the security-
by-design or the security-by-obscurity paradigms [8].
Here, we focus on the former group because of the unreli-
ability of security-by-obscurity defensive strategies [73].
Security-by-design strategies against evasion attacks can
be divided into three groups [10]: feature manipulation,
defensive distillation, and adversarial training.

Several studies have shown that approaches leveraging
altered feature sets may be effective at mitigating [8],
[67] or even nullifying [11] attacks that involve the
manipulation of the involved features. However, train-
ing the model on different sets of features may cause
significant performance degradation in the absence of
adversarial attacks [12], [72]. The same drawback also
affects countermeasures based on defensive distillation.
As evidenced in [29], [70], these approaches tend to
increase the false positive rate. Furthermore, they are
tailored to algorithms based on neural networks that are
not the best choice in network intrusion detection [2],
[4], [12], [53], [54].

Adversarial training aims to harden the detector
through an augmented dataset containing samples with

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 11

Table IX: Performance against E1 of the hardened detectors for varying Ψ values.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.948 0.973 0.991 0.978 0.965 0.845 0.971 0.995 0.984 0.964
Sarsa 0.919 0.954 0.966 0.959 0.953 0.679 0.834 0.965 0.967 0.944
Man 0.523 0.772 0.779 0.958 0.604 0.309 0.761 0.978 0.956 0.807

(a) Average DR of the hardened RF detectors against E1. Baseline DR on E1: RF(CTU)=0.065,
RF(BOTNET)=0.591.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.901 0.906 0.908 0.924 0.933 0.786 0.813 0.919 0.921 0.924
Sarsa 0.877 0.908 0.853 0.907 0.911 0.581 0.657 0.921 0.824 0.631
Man 0.718 0.717 0.760 0.877 0.729 0.329 0.812 0.903 0.812 0.830

(b) Average DR of the hardened WnD detectors against E1. Baseline DR on E1: WnD(CTU)=0.456,
WnD(BOTNET)=0.097.

Table X: Performance against E2 of the hardened detectors for varying Ψ values.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.681 0.689 0.684 0.692 0.712 0.858 0.886 0.898 0.906 0.914
Sarsa 0.657 0.680 0.689 0.738 0.710 0.848 0.878 0.893 0.901 0.908
Man 0.466 0.589 0.681 0.709 0.789 0.677 0.784 0.821 0.859 0.884

(a) Average DR of the hardened RF detectors against E2. Baseline DR on E2: RF(CTU)=0.327,
RF(BOTNET)=0.679.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.748 0.753 0.755 0.756 0.801 0.475 0.570 0.564 0.601 0.761
Sarsa 0.704 0.682 0.694 0.703 0.853 0.531 0.532 0.567 0.582 0.681
Man 0.587 0.656 0.674 0.717 0.937 0.457 0.623 0.672 0.712 0.881

(b) Average DR of the hardened WnD detectors against E2. Baseline DR on E2: WnD(CTU)=0.514,
WnD(BOTNET)=0.413.

Table XI: Performance against E3 of the hardened detectors for varying Ψ values.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.717 0.674 0.658 0.671 0.677 0.731 0.766 0.784 0.791 0.851
Sarsa 0.713 0.686 0.669 0.671 0.679 0.714 0.754 0.775 0.788 0.834
Man 0.396 0.545 0.660 0.718 0.765 0.552 0.705 0.756 0.807 0.391

(a) Average DR of the hardened RF detectors against E3. Baseline DR on E3: RF(CTU)=0.253,
RF(BOTNET)=0.526.

Network CTU BOTNET
Ψ 1% 5% 10% 20% 100% 1% 5% 10% 20% 100%

2DQN 0.728 0.738 0.741 0.742 0.805 0.461 0.543 0.544 0.566 0.719
Sarsa 0.664 0.656 0.672 0.676 0.822 0.503 0.504 0.531 0.551 0.648
Man 0.549 0.650 0.671 0.719 0.941 0.422 0.598 0.652 0.698 0.876

(b) Average DR of the hardened WnD detectors against E3. Baseline DR on E3: WnD(CTU)=0.496,
WnD(BOTNET)=0.408.

adversarial perturbations. This approach comes with two
challenges: obtaining appropriate adversarial samples
and planning the re-training operations. It may be possi-
ble to manually craft samples that reflect realistic attacks,
but similar methods are time consuming; they can only
protect against predictable attacks that comply to the gen-
erated samples. Although adversarial training works even
in non-adversarial contexts, the results in [13] suggest the
need of studying the effects of the augmentation process.

To the best of our knowledge, we are the first to evaluate
the impact of adversarial training by varying the amounts
of injected samples in adversarial and non-adversarial
botnet detection scenarios.

Reinforcement learning is often associated with adver-
sarial machine learning in different contexts and goals.
These mechanisms can be a target of adversarial at-
tacks [74], but also as a means to conceive attacks [4],
[13], [40], [41], [62]–[64], and as a countermeasure to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 12

Table XII: Performance comparison against evasion at-
tacks.

Framework Non-adversarial settings Adversarial settings
Initial Hardened Initial Hardened

[4] Acc: 0.99 7 DR: 0.59 7
[13] F1: 0.89 7 DR: 0.56 DR: 0.84
[41] AUC: 0.96 7 DR: 0.54 7
[62] Acc: 0.88 7 DR: 0.31 7
[63] AUC: 0.96 7 DR: 0.85 7
[64] Acc: 0.99 7 Acc: 0.15 7
[61] AUC: 0.97 7 DR: 0.68 DR: 0.70
[29] Acc: 0.98 Acc: 0.94 DR: 0.35 DR: 0.61
[67] Acc: 0.96 Acc: 0.93 Res: 0.36 Res: 0.62
[11] F1: 0.96 F1: 0.82 DR: 0.34 DR: 0.61
[12] F1: 0.69 F1: 0.71 F1: 0.63 F1: 0.65
[70] Acc: 0.88 Acc: 0.78 DR: 0.02 DR: 0.03
[72] Acc: 0.96 Acc: 0.93 Acc: 0.70 Acc: 0.77
[68] Acc: 0.99 7 Acc: 0.68 Acc: 0.84
[69] F1: 68.5 Acc: 70.5 7 7
[71] Acc: 91.9 Acc: 90.8 DR: 0.03 DR: 0.31

Ours F1: 0.99 F1: 0.99 DR: 0.58 DR: 0.88

these threats through adversarial training [13], [40], [61].
Few papers consider cyber security problems related

to network intrusion detection which is the focus of our
proposal. The authors in [33] and [69], [75] propose
methods to generate flows for training NIDS, but they do
not evaluate their performance in adversarial scenarios.
The method in [13] based on reinforcement learning
tends to degrade the baseline performance of the detector.
The papers in [40], [63], [65] consider reinforcement
learning agents that operate on binary malware detectors,
while we operate on network traffic. The proposal in [61]
focuses on hardening detectors of Domain Generation
Algorithms but does not consider the performance in
non-adversarial scenarios. The approach in [4] does
not evaluate adversarial training and operates on packet
captures, while we focus on network flows that nowadays
are preferred by modern detectors [15].

The primary focus of most proposals related to the
generation of attack samples is just on the rate of success-
ful evasions [26], [41], [61], [64] and not on the number
of required queries issued to the target detector. Neglect-
ing this characteristic is unrealistic because attackers can
only perform limited amounts of queries if they want
to avoid detection. For example, the methods presented
in [62] and [66] allow their agents to submit hundreds
or even thousands of queries. Even the proposal in [4],
[65] achieves evasion through dozens of attempts against
the target detector. Unlike these papers, we propose the
first framework based on deep reinforcement learning
that hardens existing flow botnet detectors in realistic
scenarios, even against attackers that are capable of
issuing some queries to the considered detectors.

Other papers on adversarial attacks leverage Gener-

ative Adversarial Networks (GANs). Such approaches
require two components: a generator, aiming to gen-
erate realistic samples from the original data; and a
discriminator, which decides whether the output of the
generator appears similar to legitimate traffic [13]. GANs
are similar to DRL approaches, but these latter have
the advantage of controlling more precisely the sample
generating procedure. In practice, DRL methods allow
to define the detailed action space that is used by the
model to create the samples [43]. On the other hand,
in GANs the generator network does not consent such
a fine-grained control. We consider DRL to be more
suitable to simulate realistic attacks that involve precise
and small modifications because excessive or improper
modifications may trigger detection of defensive mecha-
nisms.

VII. CONCLUSIONS

Modern detectors based on machine learning classi-
fiers are increasingly able at identifying malicious net-
work traffic, but they can be exploited by adversarial
samples that allow attackers to evade detection. Existing
solutions are affected by several drawbacks that do
not guarantee a reliable defense. We address the issue
of evasion attacks against flow-based botnet detectors
by proposing the first defensive approach that relies
on deep reinforcement learning to mitigate adversarial
perturbations against network intrusion detection systems
based on machine learning. We consider the character-
istics of a realistic cybersecurity scenario: small and
feasible perturbations to the input samples; high degree
of evasion with a limited number of queries; assessments
of several configurations for defensive purposes. The
implementation of our proposal results in a framework
that autonomously generates evasive samples against
a target botnet detector, and then uses these samples
for hardening the detector through adversarial training.
An extensive experimental campaign replicating realistic
network scenarios of modern organizations shows the
quality of our proposal over state-of-the-art methods for
multiple reasons. It increases the detection rate against
known and novel evasion attacks; it does not degrade
performance in non-adversarial settings; the procedure
of malicious sample generation can bypass detection
through few queries issued to the detector. Our study may
pave the way to future researches aiming to face evasion
attacks by devising robust detectors that preserve their
performance regardless of the presence of adversarial
perturbations.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 13

REFERENCES

[1] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp.
1285–1298.

[2] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion detection,”
IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1153–1176,
2016.

[3] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Sok:
Security and privacy in machine learning,” in Proc. IEEE Europ.
Symp. Secur. Privacy, Apr. 2018, pp. 399–414.

[4] D. Wu, B. Fang, J. Wang, Q. Liu, and X. Cui, “Evading
machine learning botnet detection models via deep reinforcement
learning,” in Proc. IEEE Int. Conf. Commun., 2019, pp. 1–6.

[5] G. Apruzzese, M. Colajanni, and M. Marchetti, “Evaluating the
effectiveness of adversarial attacks against botnet detectors,” in
Proc. IEEE Int. Symp. Netw. Comput. Appl., Oct. 2019, pp. 1–8.

[6] H. Kettani and P. Wainwright, “On the top threats to cyber
systems,” in Proc. IEEE Int. Conf. Inf. Comp. Tech., Mar. 2019,
pp. 175–179.

[7] G. Banga, “Why is cybersecurity not a human-scale problem
anymore?” Commun. ACM, vol. 63, no. 4, p. 30–34, Mar. 2020.

[8] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Elsevier Pattern Recogn., vol. 84,
pp. 317–331, 2018.

[9] J. Gardiner and S. Nagaraja, “On the security of machine learning
in malware C&C detection: A survey,” ACM Comput. Surv.,
vol. 49, no. 3, p. 59, 2016.

[10] N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial
machine learning applied to intrusion and malware scenarios: a
systematic review,” IEEE Access, 2020.

[11] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti,
“Addressing adversarial attacks against security systems based
on machine learning,” in Proc. IEEE Int. Conf. Cyber Conflicts,
May 2019, pp. 1–18.

[12] S. Calzavara, C. Lucchese, and G. Tolomei, “Adversarial training
of gradient-boosted decision trees,” in Proc. ACM Int. Conf. Inf.
Knowledge Manag, 2019, pp. 2429–2432.

[13] M. Usama, M. Asim, S. Latif, J. Qadir et al., “Generative adver-
sarial networks for launching and thwarting adversarial attacks
on network intrusion detection systems,” in Proc. Int. IEEE Conf.
Wireless Commun. Mobile Comput., 2019, pp. 78–83.

[14] “Checkpoint 2020 security report,” https://pages.checkpoint.com/
cyber-security-report-2020.html, Accessed in March 2020.

[15] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Elsevier Computers & Security,
vol. 70, pp. 238–254, 2017.

[16] A. Pektaş and T. Acarman, “Deep learning to detect botnet via
network flow summaries,” Springer Neural Comput. Appl., pp.
1–13, 2018.

[17] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet
detection using supervised machine learning,” in Proc. IEEE Int.
Conf. Comput., Netw. and Commun., Feb. 2014, pp. 797–801.

[18] S. Nõmm and H. Bahşi, “Unsupervised anomaly based botnet
detection in iot networks,” in Proc. IEEE Int. Conf. Machin.
Learn. Appl., 2018, pp. 1048–1053.

[19] S. Lagraa, J. François, A. Lahmadi, M. Miner, C. Hammer-
schmidt, and R. State, “Botgm: Unsupervised graph mining to
detect botnets in traffic flows,” in Proc. IEEE Conf. Cyber Secur.
Netw., 2017, pp. 1–8.

[20] Z. Qiu, D. J. Miller, and G. Kesidis, “Flow based botnet detection
through semi-supervised active learning,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Sign. Process., 2017, pp. 2387–2391.

[21] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio,
A. Oprea, C. Nita-Rotaru, and F. Roli, “Why do adversarial at-
tacks transfer? Explaining transferability of evasion and poisoning
attacks,” in Proc. USENIX Secur. Symp.), 2019, pp. 321–338.

[22] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine
learning at test time,” in Joint Europ. Conf. Mach. Learn. and
Knowl. Discov. Databases. Springer, Sept. 2013, pp. 387–402.

[23] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., 2019.

[24] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in Proc. IEEE Europ. Symp. Secur. Privacy, Mar. 2016,
pp. 372–387.

[25] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted
attacks on speech-to-text,” in Proc. IEEE Secur. Privacy Work-
shops. IEEE, 2018, pp. 1–7.

[26] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo:
Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models,” in Proc. ACM
Workshop Artif. Intel. Secur., 2017, pp. 15–26.

[27] D. Jakubovitz and R. Giryes, “Improving DNN robustness to
adversarial attacks using jacobian regularization,” in Proc. Europ.
Conf. Comp. Vision, 2018, pp. 514–529.

[28] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “In-
triguing properties of adversarial ml attacks in the problem space,”
in IEEE Symp. Secur. Privacy, 2020.

[29] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial examples for malware detection,” in Proc.
Springer Europ. Sympo. Res. Comput. Secur., 2017, pp. 62–79.

[30] P. Laskov et al., “Practical evasion of a learning-based classifier:
A case study,” in Proc. IEEE Symp. Secur. Privacy, 2014, pp.
197–211.

[31] G. Apruzzese and M. Colajanni, “Evading botnet detectors based
on flows and random forest with adversarial samples,” in Proc.
IEEE Int. Symp. Netw. Comput. Appl., Oct. 2018, pp. 1–8.

[32] D. J. Miller, Z. Xiang, and G. Kesidis, “Adversarial learning
targeting deep neural network classification: A comprehensive
review of defenses against attacks,” Proc. IEEE, vol. 108, pp.
402–433, 2020.

[33] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based
network traffic generation using generative adversarial networks,”
Computers & Security, vol. 82, pp. 156–172, 2019.

[34] Z. M. Algelal, E. A. Ghanialdhaher, D. N. Abdul-Wadood et al.,
“Botnet detection using ensemble classifiers of network flow,”
IAES Int. J. Electr. Comput. Eng., vol. 10, no. 3, p. 2543, 2020.

[35] I. Letteri, G. Della Penna, and P. Caianiello, “Feature selection
strategies for http botnet traffic detection,” in Proc. IEEE Europ.
Symp. Secur. Priv., 2019, pp. 202–210.

[36] B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E. Brown,
and M. Veeraraghavan, “A comparison of machine learning
approaches to detect botnet traffic,” in Proc. IEEE Int. Conf. Neur.
Netw., 2018, pp. 1–8.

[37] M. Alauthaman, N. Aslam, L. Zhang, R. Alasem, and M. A.
Hossain, “A p2p botnet detection scheme based on decision
tree and adaptive multilayer neural networks,” Springer Neural
Computing and Applications, vol. 29, no. 11, pp. 991–1004, 2018.

[38] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tianning,
“Andbot: towards advanced mobile botnets,” in Proc. USENIX
Conf. Large-scale Exploits and Emergent Threats, 2011, pp. 11–
11.

[39] S. Cesare, Y. Xiang, and W. Zhou, “Malwise—an effective
and efficient classification system for packed and polymorphic
malware,” IEEE T. Comput., vol. 62, no. 6, pp. 1193–1206, 2012.

[40] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth,
“Learning to evade static pe machine learning malware models
via reinforcement learning,” arXiv:1801.08917, 2018.

[41] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading
anti-malware engines with deep reinforcement learning,” IEEE
Access, vol. 7, pp. 48 867–48 879, 2019.

[42] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for
cyber security,” arXiv:1906.05799, 2019.

https://pages.checkpoint.com/cyber-security-report-2020.html
https://pages.checkpoint.com/cyber-security-report-2020.html

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 14

[43] K. Malialis and D. Kudenko, “Distributed response to network
intrusions using multiagent reinforcement learning,” Elsevier Eng.
Appl. Artif. Int., vol. 41, pp. 270–284, 2015.

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Os-
trovski et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[45] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Int. Conf. Machin. Learn., 2016, pp.
1928–1937.

[46] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. AAAI Conf. Artif. Int.,
2016, pp. 2094–2100.

[47] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and
G. Fortino, “Task offloading and resource allocation for mobile
edge computing by deep reinforcement learning based on sarsa,”
IEEE Access, vol. 8, pp. 54 074–54 084, 2020.

[48] H. Jiang, R. Gui, Z. Chen, L. Wu, J. Dang, and J. Zhou, “An
improved sarsa reinforcement learning algorithm for wireless
communication systems,” IEEE Access, vol. 7, pp. 115 418–
115 427, 2019.

[49] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” Elsevier Comput. Se-
cur., vol. 45, pp. 100–123, 2014.

[50] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani,
“Towards effective feature selection in machine learning-based
botnet detection approaches,” in Proc. IEEE Conf. Comm. Netw.
Secur., 10 2014.

[51] M. Stevanovic and J. M. Pedersen, “An analysis of network traffic
classification for botnet detection,” in Proc. IEEE Int. Conf. Cyber
Situat. Awar., Data Analyt., Assessment, Jun. 2015, pp. 1–8.

[52] B. Biggio, I. Corona, Z.-M. He, P. P. Chan, G. Giacinto, D. S.
Yeung, and F. Roli, “One-and-a-half-class multiple classifier
systems for secure learning against evasion attacks at test time,”
in Proc. Springer Int. Workshop Multiple Classifier Syst., 2015,
pp. 168–180.

[53] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and
M. Marchetti, “On the effectiveness of machine and deep learning
for cybersecurity,” in Proc. IEEE Int. Conf. Cyber Conflicts, May
2018, pp. 371–390.

[54] O. Fajana, G. Owenson, and M. Cocea, “Torbot stalker: Detecting
tor botnets through intelligent circuit data analysis,” in Proc. IEEE
Int. Symp. Netw. Comput. Appl., Oct. 2018, pp. 1–8.

[55] A. Karasaridis, B. Rexroad, D. A. Hoeflin et al., “Wide-scale
botnet detection and characterization.” HotBots, vol. 7, pp. 7–7,
2007.

[56] Z. Li, Z. Qin, and P. Shen, “Intrusion detection via wide and deep
model,” in Proc. Springer Int. Conf. Artif. Neural Netw., 2019,
pp. 717–730.

[57] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Eval-
uation of machine learning algorithms for intrusion detection
system,” in Proc. IEEE Int. Symp. Intel. Syst. Inf., 2017, pp. 277–
282.

[58] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi, and
X. Yin, “Practical traffic-space adversarial attacks on learning-
based nidss,” arXiv preprint arXiv:2005.07519, 2020.

[59] A. Chernikova and A. Oprea, “Fence: Feasible evasion attacks
on neural networks in constrained environments,” arXiv preprint
arXiv:1909.10480, 2020.

[60] S. Sen, E. Aydogan, and I. A. Aysan, “Coevolution of mobile
malware and anti-malware,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 10, pp. 2563–2574, 2018.

[61] H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga:
Adversarially-tuned domain generation and detection,” in Proc.
ACM Workshop Artif. Intell. Secur., Oct. 2016, pp. 13–21.

[62] Y. Senzaki, S. Ohata, and K. Matsuura, “Simple black-box
adversarial examples generation with very few queries,” IEICE

Transactions on Information and Systems, vol. 103, no. 2, pp.
212–221, 2020.

[63] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading
machine learning malware detection,” Black Hat, 2017.

[64] J. Zhang, Q. Yan, and M. Wang, “Evasion attacks based on
wasserstein generative adversarial network,” in Proc. IEEE Conf.
Comput., Commun. and IoT Appl. IEEE, 2019, pp. 454–459.

[65] H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by
morphing in the dark,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 119–133.

[66] Y. Ren, Q. Zhou, Z. Wang, T. Wu, G. Wu, and K.-K. R. Choo,
“Query-efficient label-only attacks against black-box machine
learning models,” Elsevier Computers & Security, vol. 90, p.
101698, 2020.

[67] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, X. Liu,
and C. L. Giles, “Adversary resistant deep neural networks with
an application to malware detection,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2017, pp. 1145–1153.

[68] Y. Ji, B. Bowman, and H. H. Huang, “Securing malware cognitive
systems against adversarial attacks,” in Proc. IEEE Int. Conf.
Cognitive Comput., 2019, pp. 1–9.

[69] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, “An enhancing
framework for botnet detection using generative adversarial net-
works,” in Proc. IEEE Int. Conf. Artif. Int. and Big Data, 2018,
pp. 228–234.

[70] M. Soll, T. Hinz, S. Magg, and S. Wermter, “Evaluating defensive
distillation for defending text processing neural networks against
adversarial examples,” in Proc. Springer Int. Conf. Artif. Neur.
Netw., 2019, pp. 685–696.

[71] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly,
“Adversarial deep learning for robust detection of binary encoded
malware,” in Proc. IEEE Secur. Privacy Workshops, 2018, pp.
76–82.

[72] S. Calzavara, C. Lucchese, F. Marcuzzi, and S. Orlando, “Feature
partitioning for robust tree ensembles and their certification in
adversarial scenarios,” arXiv:2004.03295, 2020.

[73] D. Pavlovic, “Gaming security by obscurity,” in Proc. ACM New
Secur. Paradigms Workshop. ACM, 2011, pp. 125–140.

[74] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement
learning to policy induction attacks,” in Proc. Springer Int. Conf.
Machin. Learn. Data Mining Pattern Recogn., 2017, pp. 262–275.

[75] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, “Enhancing net-
work intrusion detection classifiers using supervised adversarial
training,” Springer Journal of Supercomputing, pp. 1–30, 2019.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020 15

Giovanni Apruzzese is a Post-Doctoral re-
searcher within the Hilti Chair of Data and
Application Security at the University of
Liechtenstein since 2020. He received the
PhD Degree and the Master’s Degree in
Computer Engineering (summa cum laude) in
2020 and 2016 respectively at the Department
of Engineering “Enzo Ferrari”, University of
Modena and Reggio Emilia, Italy. In 2019
he spent 6 months as a Visiting Researcher
at Dartmouth College (Hanover, NH, USA)

under the supervision of Prof. VS Subrahmanian. His research interests
involve all aspects of big data security analytics with a focus on
machine learning, and his main expertise lies in the analysis of Network
Intrusions, Phishing, and Adversarial Attacks.

Mauro Andreolini is currently an Assis-
tant Professor at the Department of Physics,
Computer Science and Mathematics of the
University of Modena and Reggio Emilia,
Italy. He received his Master Degree (summa
cum laude) at the University of Roma, Tor
Vergata in January, 2001 and his PhD in May,
2005 from the same institution. His research
focuses on design, evaluation and security of
distributed and cloud-based systems, malware
analysis and secure software design.

Mirco Marchetti received the Ph.D. degree
in Information and Communication Technolo-
gies in 2009. He is currently an Associate
Professor with the Department of Engineering
“Enzo Ferrari”, University of Modena and
Reggio Emilia, Italy. His research interests
include all aspects of system and network
security, security for cyber physical systems,
automotive security, cryptography applied to
cloud security, and outsourced data and ser-
vices.

Andrea Venturi is a PhD student at the
Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia,
Italy. From the same institution, he received
the Master’s Degree in Computer Engineering
summa cum laude in 2020 with a thesis on
cybersecurity analytics, and the Bachelor’s
Degree in Computer Science in 2017, with
a thesis on data analysis for scalable and
distributed networked systems. His research
interests are on machine and deep learning

applications for cybersecurity.
Michele Colajanni is Full Professor in
computer engineering at the University of
Bologna. He received the Master degree from
the University of Pisa, and the Ph.D. de-
gree from the University of Rome. He was
researcher at the University of Rome, and
visiting researcher at the IBM Research Cen-
ter, Yorktown Heights in 1996. From 1998
to 2020, he was with the Department of
Engineering “nzo Ferrari” at the University
of Modena and Reggio Emilia. He founded

the Interdepartment Research Center on Security and Safety (CRIS),
and the Cyber Academy on cybersecurity training. His research inter-
ests include cybersecurity, performance and prediction models, cloud
systems.

