

"Are Adversarial Phishing Webpages a Threat in Reality?" Understanding the Users' Perception of Adversarial Webpages

Ying Yuan, Qingying Hao, Giovanni Apruzzese, Mauro Conti, Gang Wang

Would you give your information to this website?

Your account for everything Apple.

A single Apple ID and password gives you access to all Apple services. Learn more about Apple ID>

Create your Apple ID>

Landscape of Phishing

• Phishing websites are continuously increasing and polluting the Web

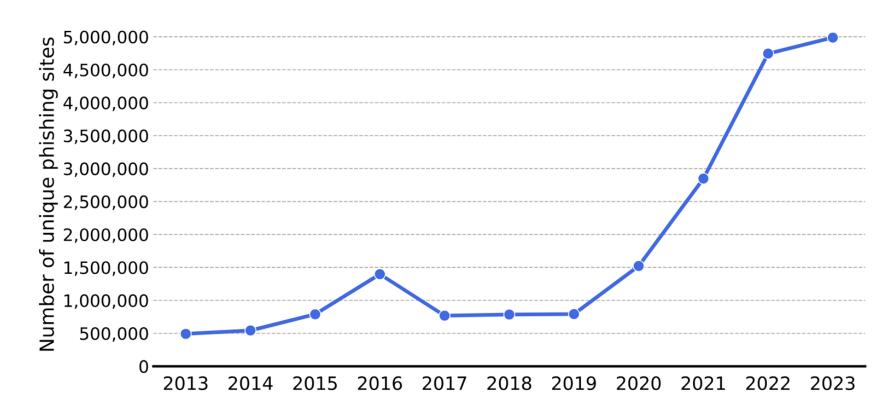
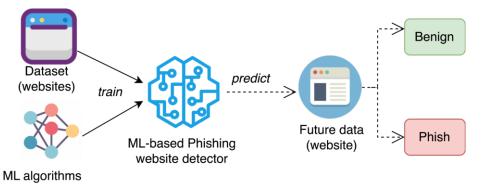


Image reference: APWG, Phishing activity trends report, 2013-2023

Landscape of Phishing – Countermeasures

• Blocklist-driven

- Low false positive rate, but cannot detect zero-day phishing [1]
- Data-driven (Machine Learning)
 - Detect previously unseen phishing
 - Even popular web-browser (Google Chrome) use it [2]



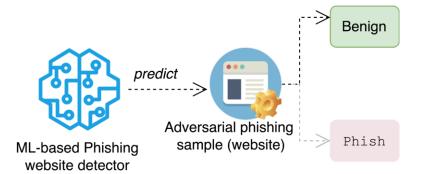
Ke Tian, et al. "Needlein a haystack: Tracking down elite phishing domains in the wild." In *IMC*, 2018
 Google product updates, <u>https://blog.google/products/chrome/building-a-more-helpful-browser-with-machine-learning/</u>. 2022

Adversarial Attacks Against ML-PWD

- ML-based Phishing website detector (ML-PWD) are good ...
- ...but prone to evasion attacks

SpacePhish: The Evasion-space of Adversarial Attacks against Phishing Website Detectors using Machine Learning [3]

Adversarial Sampling Attacks Against Phishing Detection [4]



[3] In ACSAC, 2022
[4] In DBSec, 2019
[5] In CCS, 2018
[6] In WWW, 2016
[7] International Journal of Intelligent Systems 36, 2021
[8] In SaTML, 2023

Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning [5]

> Cracking Classifiers for Evasion: A Case Study on the Google's Phishing Pages Filter [6]

Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers [7]

"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice [8]

Motivation

- Practitioners' viewpoint
 - "I never thought about securing my machine learning models" [9]
- To convince them
 - What is the impact of adversarial ML on the end-users in practice?

In the context of Phishing:

- Goal: trick a human user to input their sensitive data
- 'successful' evasion attack:
 - bypass the phishing detector...
 - and deceive human users

Research Questions

- 1. Do **adversarial webpages fool users** as much as they fool ML phishing detectors? (Are adversarial phishing webpages a threat in reality?)
- 2. Are some **perturbations** more likely to **deceive users**?
- How do users perceive adversarial phishing webpages?
 (e.g., What cues are indicative of users' suspicion, and What perturbations deceive also the human eye?)

Methodology



- •30k benign & phish
- •100 real adversarial sample
- Custom ML-PWD
 Commercial ML-PWD
- Phish. (APW-Lab)
 - •Real Adversarial Phish. (APW-Wild)

Custom Adversarial

- •Baseline study
- Adversarial study
- •Recruited N=470
- •Thematic analysis
- •Statistical analysis

Candidate Webpages

We consider **fifteen popular brands** (commonly targeted by phishers)

 Adobe, Amazon, Apple, AT&T, Bank of America, DHL, Dropbox, eBay, Facebook, Google, Microsoft, Outlook, Paypal, Wells Fargo, Yahoo

Classes of Webpages

- Legitimate
- Unperturbed Phishing
- Custom Adversarial Phish.
 - APW-Lab_img, APW-Lab_typo, APW-Lab_pswd, APW-Lab_bg
- Real Adversarial Phish. [8]

Candidate Webpages – Unperturbed Phishing

	PayPal
Email a	lddress
Enter y	our password
	Log In
	Having trouble logging in?
	Sign Up

Candidate Webpages – Custom Adversarial Phish.

PayPal	PayPal
Email	Email address
Password Log In	Enter your password
Forgot your email or password?	Log In
Sign Up	
	Havong trouble logging in?
About Account Types Fees Privacy Security Contact Legal Developers	Siyn Up
Or In Q ■ Q Q Q D I P Q A Q Q D B O I B Q A Q Q D B O I B Q A Q Q D B O I B Q A Q Q D B B A A A A B B O I B A A A A A A A B B A A A A A A A A A	

(a) APW-Lab_img

(b) APW-Lab_typo

Candidate Webpages – Custom Adversarial Phish.

PayPal Email address	PayPal
123456	Email address Enter your password
	Log In
Log In	Having trouble logging in?
Having trouble logging in?	Sign Up
Sign Up	
	Contact Us Privacy Legal Worldwide

(d) APW-Lab bg

Participant Task

- Participate once
- Review 15 webpages
 - Rate the legitimacy
 - Provide reasons (open-text)

How do you rate the legitimacy of this webpage?

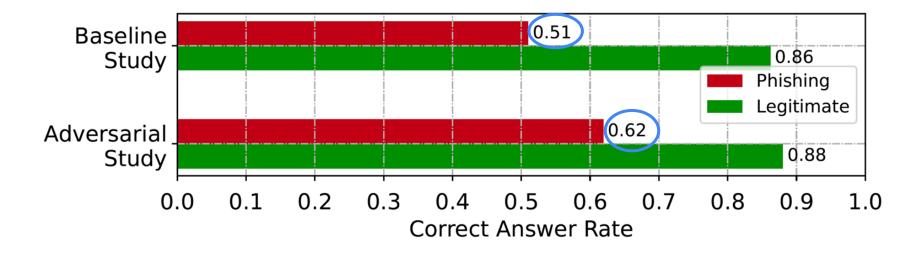
1 (definitely	2 (very probably	3 (probably phishing,	4 (probably legitimate,	5 (very probably	6 (definitely
phishing)	phishing)	but not sure)	but not sure)	legitimate)	legitimate)

What specific components/indicators on the webpage have influenced your choice?

Research Questions

- 1. Do **adversarial webpages fool users** as much as they fool ML phishing detectors? (Are adversarial phishing webpages a threat in reality?)
- 2. Are some **perturbations** more likely to **deceive users**?
- How do users perceive adversarial phishing webpages?
 (e.g., What cues are indicative of users' suspicion, and What perturbations deceive also the human eye?)

Overall Correct Answer Rate (RQ1)

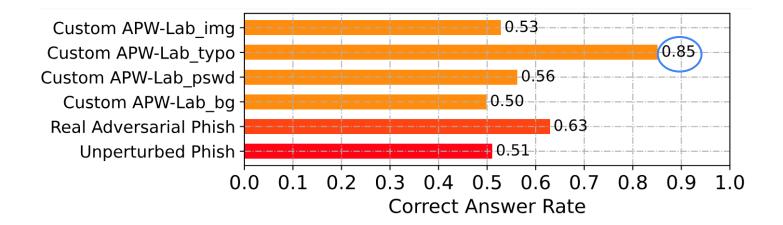


- Respondents can more easily discern adversarial phishing webpages (62%) than "unperturbed" ones (51%)
- However, 38% of adversarial webpages can still fool users

Research Questions

- 1. Do **adversarial webpages fool users** as much as they fool ML phishing detectors? (Are adversarial phishing webpages a threat in reality?)
- 2. Are some **perturbations** more likely to **deceive users**?
- How do users perceive adversarial phishing webpages?
 (e.g., What cues are indicative of users' suspicion, and What perturbations deceive also the human eye?)

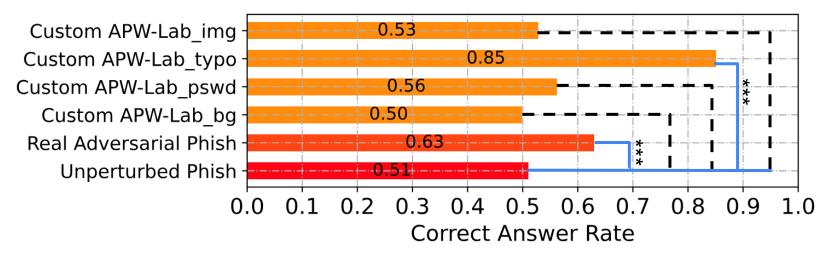
Detection Rate for Phishing (RQ2)



- Not all adversarial perturbations equally deceive users
- Adversarial phishing webpages with typos are more likely to be perceived

User's Strategies (RQ3) 17/22

Detection Rate for Phishing (RQ1/RQ2) – Statistical Analysis



Statistical significance is denoted by *** (*P* < 0.001), **(*P* < 0.01), and * (*P* < 0.05) under binary mixed effect regression

Except for APW-Lab_typo, adversarial phishing webpages still deceive users

Threat of APW (RQ1)

Perturbation's Deceptiveness (RQ2)

User's Strategies (RQ3) 18/22

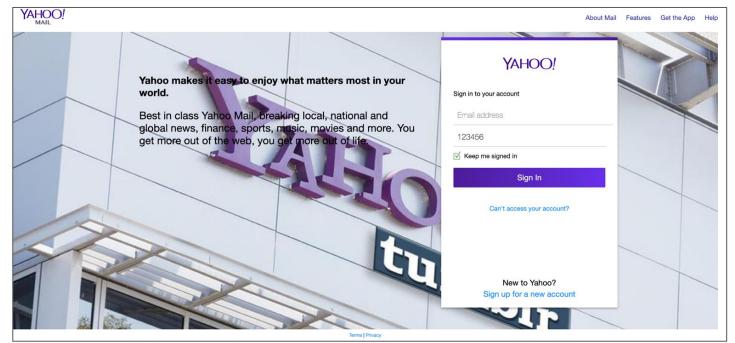
Research Questions

- 1. Do **adversarial webpages fool users** as much as they fool ML phishing detectors? (Are adversarial phishing webpages a threat in reality?)
- 2. Are some **perturbations** more likely to **deceive users**?
- 3. How do users **perceive adversarial phishing webpages**? (e.g., What cues are indicative of users' suspicion, and What perturbations

deceive also the human eye?)

Users' Assessment Strategies – Exemplary (RQ3)

What specific components/indicators on the webpage have influenced your choice?



"icons, photo and sign in info look correct" – P560

Thematic analysis

• coding 1,307 (37%) answers

Threat of APW (RQ1)

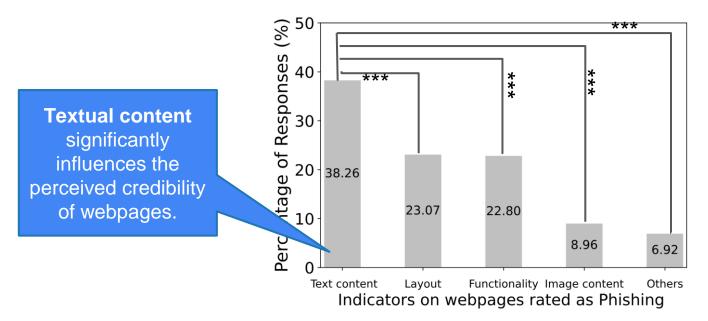
Perturbation's Deceptiveness (RQ2)

User's Strategies (RQ3)

20/22

Users' Assessment Strategies – Rated as Phishing (RQ3)

- Text content is the most prevalent factor
- Few answers mention image content



Statistical significance is denoted by *** (P < 0.001), **(P < 0.01), and * (P < 0.05) under pairwise Chi-squared tests

Threat of APW (RQ1)

Perturbation's Deceptiveness (RQ2)

User's Strategies (RQ3)

21/22

Summary

Adversarial Phishing Webpages

- A threat in reality
- Vary in artifacts

Perturbations

- Typos increase suspicion
- Visual perturbation deceive users

User Perception

- Mostly rely on textual, layout, functionality
- Rarely based on image/misinformed cues
- Affect by phishing knowledge & visiting frequency

<u>Ying Yuan</u>, Qingying Hao, Giovanni Apruzzese, Mauro Conti, Gang Wang

Thanks!

Check out our paper!

https://threatadvphish.github.io

ying.yuan@phd.unipd.it