Big Data Security Analytics: Opportunities and Issues

December 12th, 2019

Ing. Giovanni Apruzzese

PhD Candidate in Information and Communication Technologies

- 🗹 giovanni.apruzzese@unimore.it
- https://weblab.ing.unimo.it/people/apruzzese

Part 1 Introduction

CONTEXT

Cyber threats are on the rise...

More than 4 billion records compromised in 2016 \rightarrow a <u>566% increase</u> from 2015

...they become more advanced...

- BlackEnergy (2015)
- MEDJACK (2016)
- Archimedes (2017)
- Wannacry (2017)
- Meltdown & Spectre (2018)

• ...and the penalties are steep \$3.6 Million avg cost of a data breach

CONTEXT

•On average, it takes **191 days** to identify a threat, and **66 days** to triage it

At the same time, the volume of generated data is exploding

A medium-sized enterprise can easily produce **TB**s of <u>daily</u> network traffic data

CONTEXT

Example

Graph of internal communications eal data from department of large organization)

Clients and **servers** are easy to distinguish by analyzing traffic

Assumptions

Low number of internal communications

Reality

Many legit client-to-client communications (Windows NetBIOS, Dropbox, Skype), and also **server-to-server** communications (e.g., to DNS and storage servers)

- DING server

Many clients expose legitimate services (e.g., SSH server), servers are often used as clients (e.g., through SSH or as proxies)

Many internal communications: ~ 10M per day in a single department

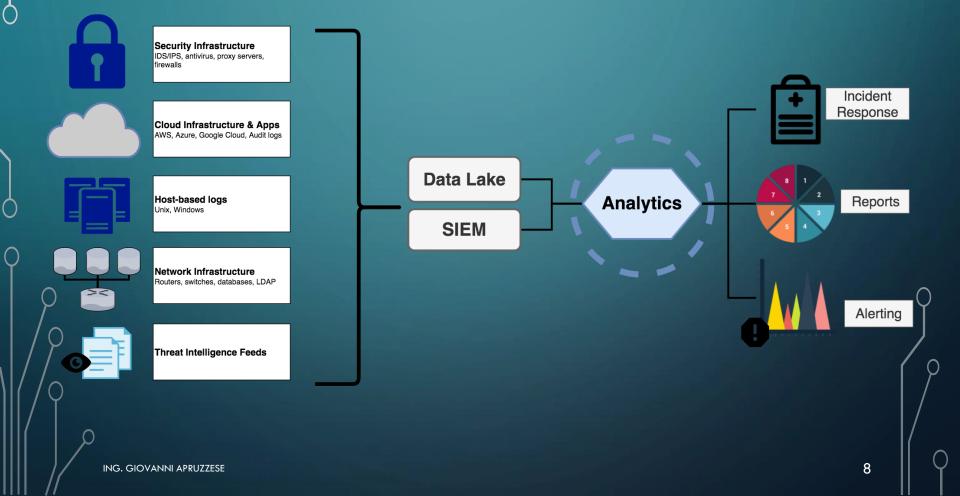
> To identify the **one or few hos** that are performing malicious activities

I IIIUI UNICUIVO

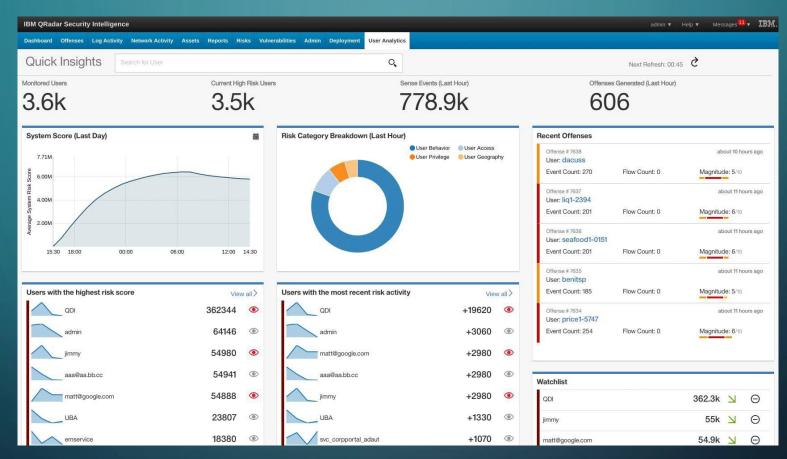
SOLUTION

•(Big Data) Security Analytics

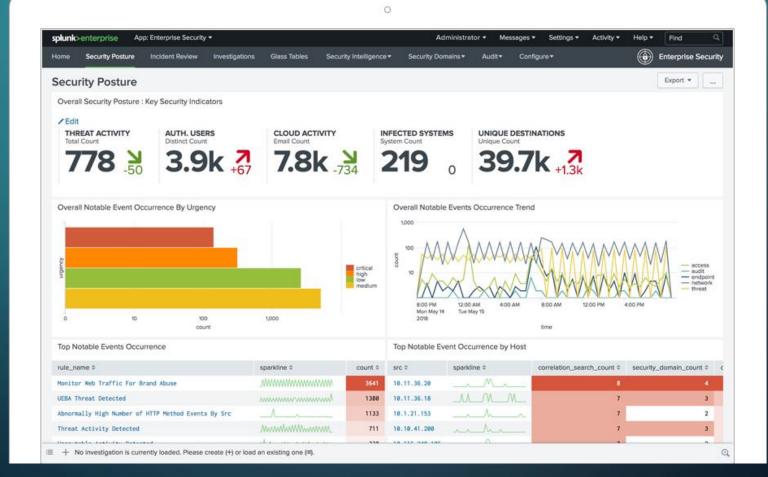
Definition: process of using data collection, aggregation, and analysis tools for security monitoring and threat detection


EVOLUTION OF SECURITY ANALYTICS

1995-2000 (SEM)	2005-2014 (SIM)	2014+ Security Analytics
 Focus on network security Event filtering and basic correlation Single layer inspection Log management and retention Events per second: <5000 Storage: Gigabytes Manual breach response Limited scalability 	 Reporting Information sources: various log formats Advanced correlation Signature-based alerting Increasing devices: >1000 Events per second: >10000 Storage: Terabytes Focus on threat detection and response, breach response slow, dependent on security analyst skills 	 Feeds from applications, databases, endpoints Threat detection Advanced analytics with additional security context User and network behavior Heterogeneous data: Netflow, threat intelligence feeds, multiple log sources Huge number of devices: >5000 Events per second:


- >100000
- Storage: Petabytes
- Near real-time breach response

Sophistication, volume, velocity, scalability, complexity


STATE-OF-THE-ART SECURITY ANALYTICS

EXAMPLES: QRADAR

EXAMPLES: SPLUNK

EXAMPLES: APACHE SPOT

I Ivew Time Series Destroya C O localhost:8889/files/ui/flow/suspicious.html#date=2016-07-08 4 \$ - 63 E Open Network Insight .: Nethow .: Suspicious FIOWS -Proxy -UNS C a Data Date: 2016-07-08 IP: 0.0.0.0 O X O X **Network View** Suspicious Source Destination Input Protocol Rank Time Source IP **Destination IP** Port Port Packets 0 2016-172.30.0.46 10.0.0.183 DO 52234 119 UDP 213454 07-08 0:31 1 2016-10.13.77.49 DO 172,10,0,40 a 47131 80 TCP 206 07-08 17:16 2 2016-10.13.77.49 DO 172.10.0.3 a 35579 25 TCP 112 07-08 14:56 10.70.68.127 DQ TCP 3 2016-172.30.0.4 6395 80 278 07-08 15:10 × Details Notebook * 4000 Source IP: Dest IP: Src Port: Dst Port: Quick IP scoring - Select -- Select -- Select -- Select -172.30.0.46 10.0.0.183 52234 119

Rating: 0 1

0 2

• 3

Save

ING. GIOVANNI APRUZZESE

172.10.0.40

172.10.0.3

172.30.0.4

172.10.0.2

172.20.0.3

10.0.4.16

10.0.5.25

172.30.0.3

172.30.0.2

47131

35579

6395

55759

61783

46032

3247

61471

0

80

25

3840

3389

81

808

22

21

0

10.13.77.49

10.70.68.127

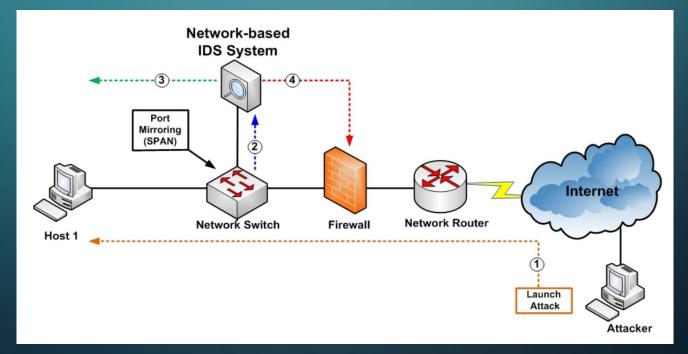
172,30.0.70

10.200.20.2

10.138.235.111

10.78.100.150

123.151.42.61


10.10.11.102

10.17.15.10

BRIEF RECAP

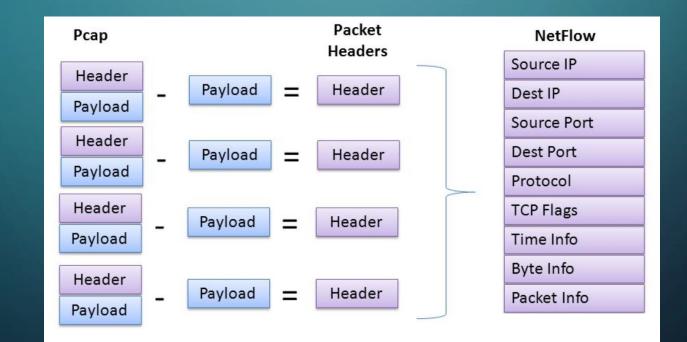
Intrusion Detection System (IDS)

Host-based Intrusion Detection System (HIDS) Network-based Intrusion Detection System (NIDS)

ING. GIOVANNI APRUZZESE

BRIEF RECAP

Network Traffic – Full Packet Capture (PCAP)


File Edit View Go Capture Analyze Statis		pturing - Wire	shark							
	stics <u>H</u> elp									
	è 🚔 🗟 🔶 🚽	💊 🔈 🗸 ,	- - -	(¥ 🖌	2 📠	2	
					0 0					•
Eilter:	•	+ <u>E</u> xpression	🛛 🦂 <u>C</u> lear 🛛 🥪 <u>A</u> p	pply						
0 Time Source	Destination	Protocol	Info							
47 139.931463 ThomsonT 08:35:4f	Wistron 07:07:ee	ARP	192.168.1.254					,		
48 139.931466 192.168.1.68	192.168.1.254	DNS	Standard query							
49 139.975406 192.168.1.254	192.168.1.68	DNS	Standard query				.aooal	e.com	A 66.	102.9.9
50 139.976811 192.168.1.68	66.102.9.99	TCP	62216 > http [
51 140.079578 66.102.9.99	192.168.1.68	TCP	http > 62216 [SYN, AC	K] Seq=	0 Ack=1	Win=5	5720 Le	en=0 M	SS=1430
52 140.079583 192.168.1.68	66.102.9.99	TCP	62216 > http [ACK] Se	q=1 Ack	=1 Win=	65780	Len=0		
53 140.080278 192.168.1.68	66.102.9.99	HTTP	GET /complete/	search?	hl=en&c	lient=s	uggest	:&js=tr	ue&q=	m&cp=1
54 140.086765 192.168.1.68	66.102.9.99	TCP	62216 > http [
55 140.086921 192.168.1.68	66.102.9.99	TCP	62218 > http [2
56 140.197484 66.102.9.99	192.168.1.68	TCP	http > 62216 [
57 140.197777 66.102.9.99	192.168.1.68	TCP	http > 62216 [
58 140.197811 192.168.1.68	66.102.9.99	TCP	62216 > http [
			ATTA S & 7710 1		RI COM-	ACK-1	w1 6-5		15-13 M	
Address Resolution Protocol (request)										
· · · · · · · · · · · · · · · · · · ·	0e 08 06 00 01)8								
00 ff ff ff ff ff ff 00 0c 29 38 eb)8								
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb	0e c0 a8 39 80									
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb	0e c0 a8 39 80)8								
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb 20 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.				Pr	rofile: D	efault		
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb 20 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.				Pr	rofile: D	efault		
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb 20 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.		32	bits —	Pr	rofile: D	efault		
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb 20 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.	9.			8.11	▶	efault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.				Pr tination Po	▶	Default		
00 ff ff ff ff ff ff 00 0c 29 38 eb 10 08 00 06 04 00 01 00 0c 29 38 eb 20 00 00 00 00 00 00 c0 a8 39 02	Oe cO a8 39 80)8 9.	9. Source Po			tination Po	▶	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se	ort	Des Numi	tination Po per	▶	efault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se Acknow	ort equence viedgemen	Des Numb t Num	tination Po per iber	► rt	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	Oe cO a8 39 80)8 9. ed: 0	9. Source Po Se	ort equence	Des Numb t Num	tination Po per	► rt	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se Acknow Data Offset Reserved	ort equence vle dgemen Flags	Des Numł t Num Windov	tination Po per iber w (sliding wir	rt ndow)	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se Acknow	ort equence vle dgemen Flags	Des Numł t Num Windov	tination Po per iber	rt ndow)	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se Acknow Data Offset Reserved Checksur	ort equence vle dgemen Flags	Des Numł t Num Windov	tination Po per iber w (sliding wir	rt ndow) r	pefault		
000 ff ff ff ff ff ff ff 00 0c 29 38 eb 010 08 00 06 04 00 01 00 0c 29 38 eb 020 00 00 00 00 00 00 c0 a8 39 02 th0: <live capture="" in="" progress=""> Fil Packets:</live>	0e c0 a8 39 80)8 9. ed: 0	9. Source Po Se Acknow Data Offset Reserved Checksur	ort equence vledgemen Flags n ptions	Des Numł t Num Windov	tination Po per iber w (sliding wir gent Pointer	rt ndow) r	efault		1

BRIEF RECAP

Network Traffic – Network Flow (NetFlow)

Network flow: **sequence** of packets that share:

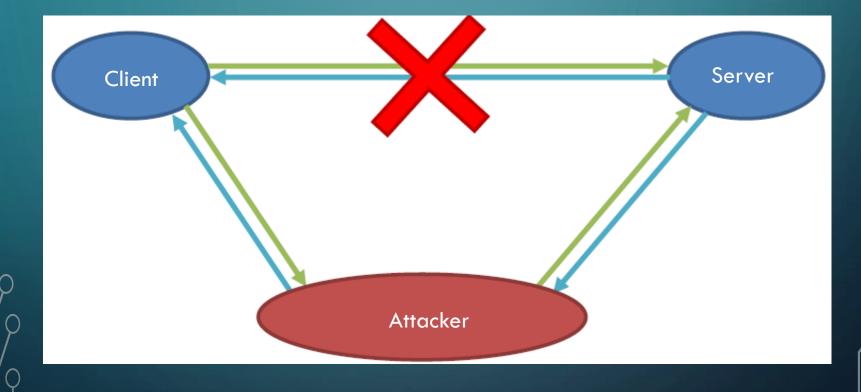
- Source IP address
- Destination IP address
- IP protocol
- Source port
- Destination port
- IP Type of Service (ToS)

REMINDER

Analysis

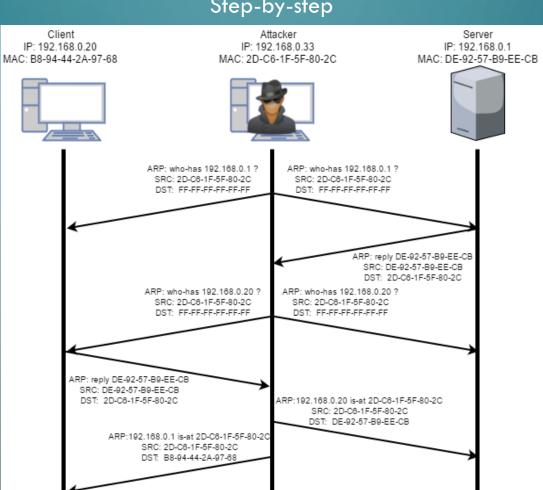
Analytics

ING. GIOVANNI APRUZZESE


Part 2 Use-cases

 \square

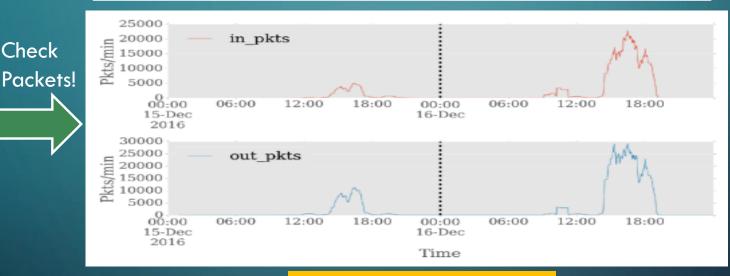
 \cap


MAN-IN-THE-MIDDLE

through ARP Spoofing

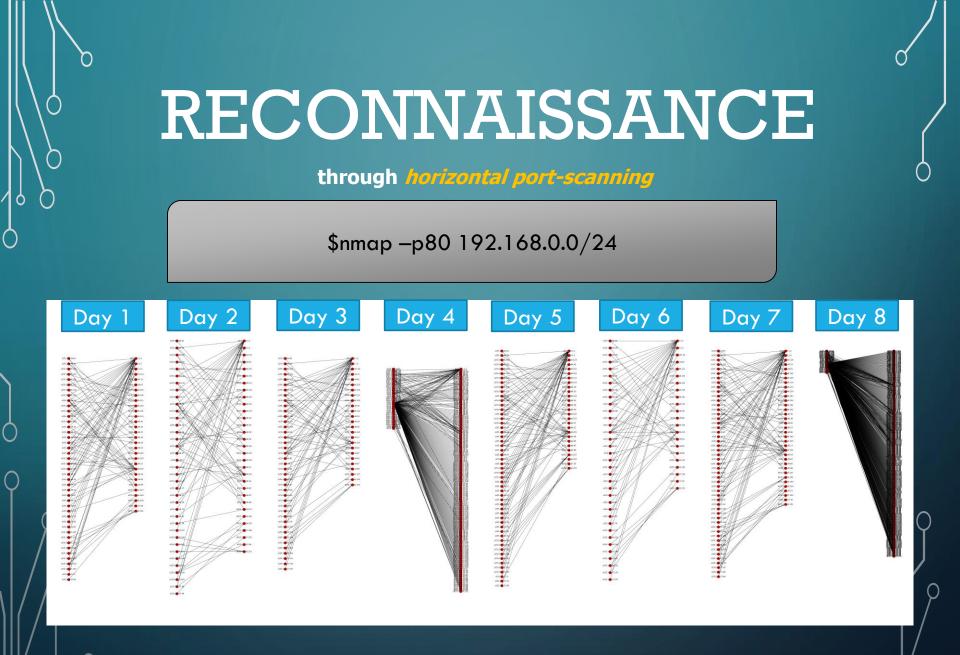
MAN-IN-THE-MIDDLE

through ARP Spoofing



Step-by-step

MAN-IN-THE-MIDDLE


through ARP Spoofing

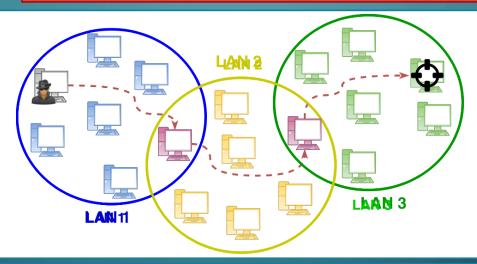
Intuition: all packets are <u>doubled</u>!

HOWEVER!

To avoid false positives that correspond to an increased network activity, we need to check in the ARP logs if the the IPs of Server and Client have been associated to a new MAC (possibly corresponding to the attacker)

RECONNAISSANCE

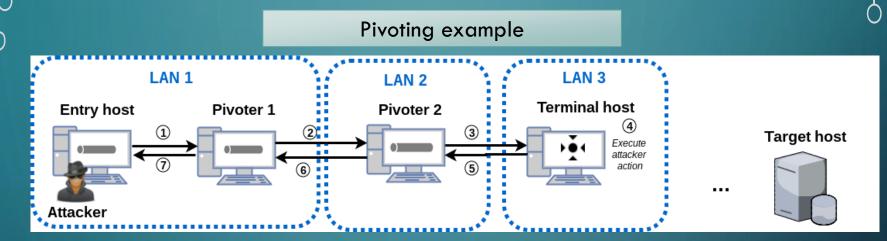
through horizontal port-scanning


Intuition: the average duration of the scanner-host's connections <u>decreases</u>, while the *number* of flows and contacted hosts <u>increase</u>.

LATERAL MOVEMENT

through *Pivoting*

Attackers want to control hosts with **higher privileges** or **more valuable data**.

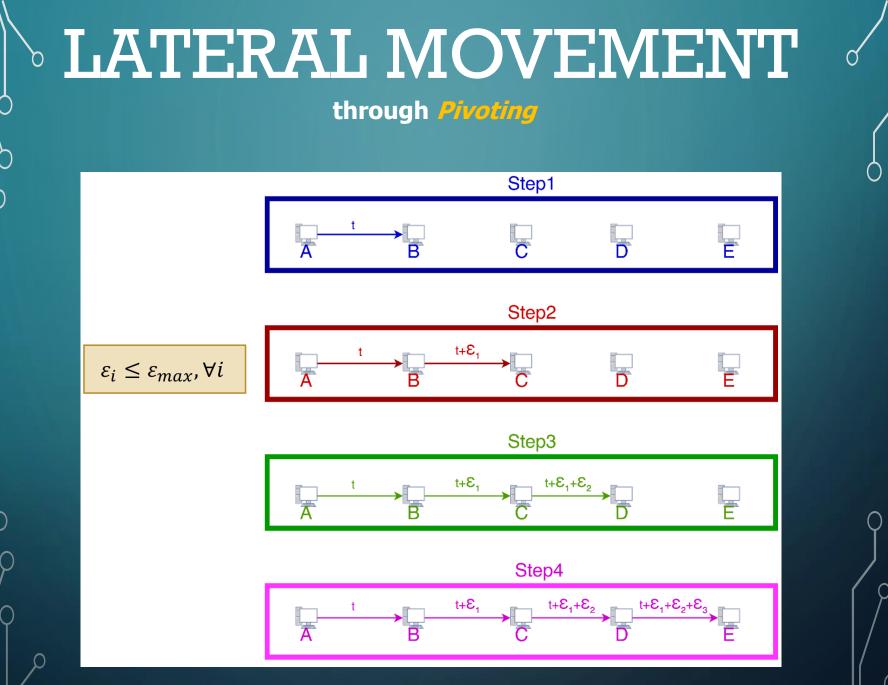

Pivoting: any action in which a command propagation tunnel is created among <u>three</u> or more hosts

NB: Pivoting activities are not necessarily malicious.

ING. GIOVANNI APRUZZESE

LATERAL MOVEMENT

through *Pivoting*



Intuition: pivoting activities can be modelled through Flow-sequences

Flow-sequence

<u>Ordered</u> set of flows where consecutive flows are:

- Chronologically ordered
- Separated by at most ε_{max} time units
- Adjacent
- Not cyclical

ING. GIOVANNI APRUZZESE

LATERAL MOVEMENT

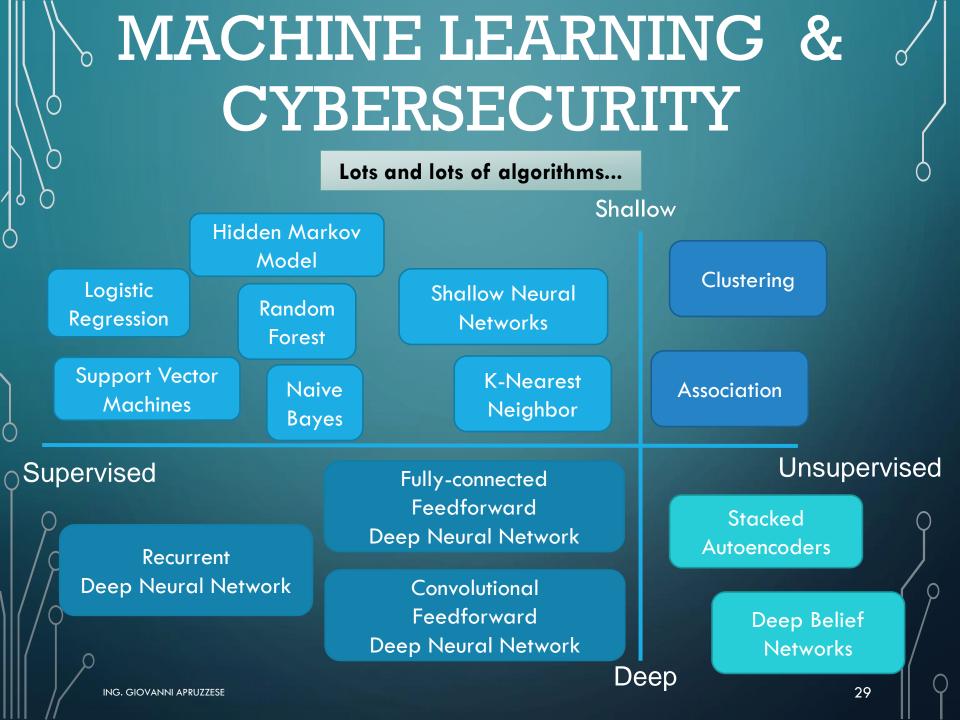
- Reminder: pivoting activities are not necessarily malicious
- Need to discriminate between "benign" and "malicious" pivoting

Intuition: Rank the detected pivoting activities on the basis of threatening characteristics displayed

• Characteristics that can be considered:

- Novelty of the pivoting activity
- Prior-reconnaissances
- Usage of uncommon Ports
- LANs involved
- Anomalous Data Transfers

Part 3 Machine Learning


MACHINE LEARNING

The popularity of machine learning is skyrocketing.

Machine learning algorithms are effective...

...but how do they behave or cyber security

MACHINE LEARNING & CYBERSECURITY

Several criticalities

Model training

• Where and how to find high quality and labeled training dataset?

Model deployment

• Is a pre-trained model applicable to my environment?

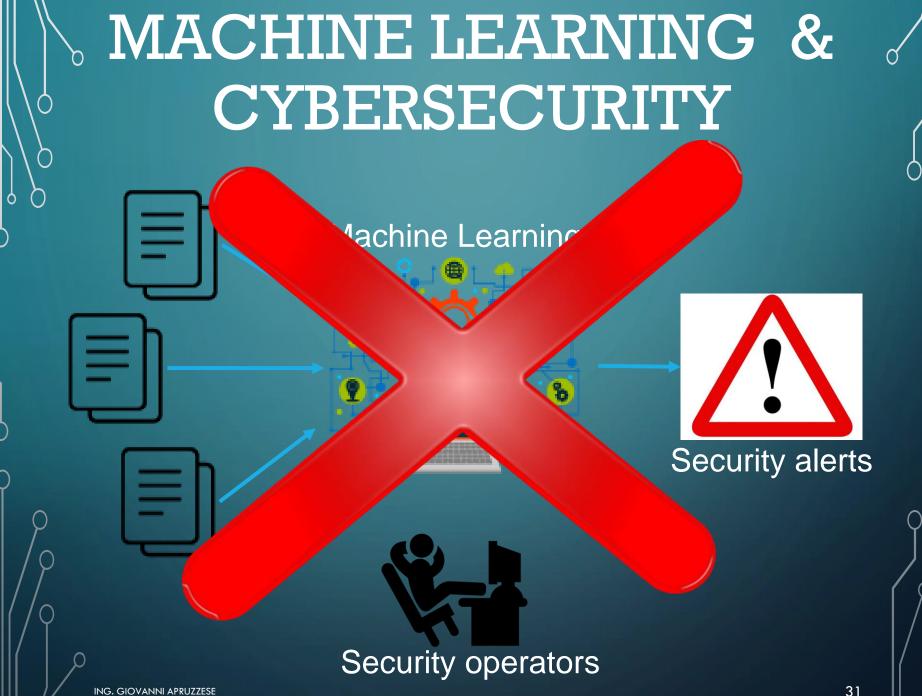
Model evaluation and selection

• How to compare different ML approaches?

Evolution over time (concept drift)

• How frequently should the model be re-trained?

Explainability


• Results are not explainable (yet)

False positives and false negatives

• 1% false positive rate in large organization = thousands of daily false alarms

Adversarial attacks

• More on this later...

MACHINE LEARNING & CYBERSECURITY

Security

alerts

MACHINE LEARNING & CYBERSECURITY

Use-case:

Identifying malicious hosts involved in periodic communications

The defense of large information systems is still based on Network Intrusion Detection Systems (**NIDS**)

NIDS are currently affected by two major issues:

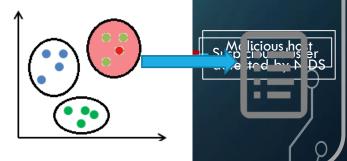
Incapability of detecting all attacks
 Excessive amount of info generated

Necessity to support the security analyst with:

- Automatic and timely security analyses
- Concise information
- Knowledge of ongoing novel attack
 variants

MACHINE LEARNING & CYBERSECURITY

Novel malware variants are likely to evade detection...


...but some features of malware behavior persist and are shared even by novel variants

External hosts behaving similarly to a known malicious external host are likely to also be malicious

USE ONE TO FIND MANY:

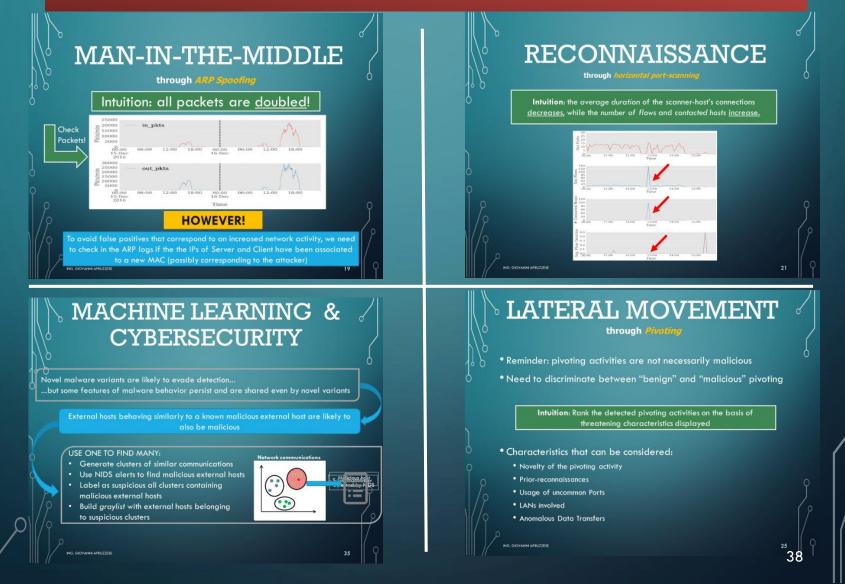
- Generate clusters of similar communications
- Use NIDS alerts to find malicious external hosts
- Label as suspicious all clusters containing malicious external hosts
- Build graylist with external hosts belonging to suspicious clusters

Network communications

MACHINE LEARNING & CYBERSECURITY

Results for 7 days of traffic inspection in a large organization

	Day	External hosts	External hosts with periodic behavior	External hosts in graylist	Malicious hosts in graylist	Malicious hosts detected by NIDS
	1	296 943	3139	127	19 (14.96%)	3 (2,36%)
	2*	105 884	2284	90	17 (18,89%)	3 (3,33%)
	3*	89 283	2123	70	6 (8,57%)	3 (4,29%)
	4	298 241	3194	31	3 (9,68%)	3 (9,68%)
	5	314 313	3288	120	17 (14,17%)	4 (3,33%)
/	6	249 768	3044	119	7 (5,58%)	3 (2,52%)
/	7	258 439	3034	115	15 (13,04%)	4 (3,48%)
		ING. GIOVANNI APRUZ	2ZESE	L	Much more mai	nageable! 36


QUESTION

We showed several use-cases of CyberDetection:
Man in the Middle
Reconnaissance
Lateral Movement
Periodic Communications

If you were an *attacker*, what would you do against these detection schemes?

QUESTION

If you were an *attacker*, what would you do against these detection schemes?

Big Data Security Analytics: Opportunities and Issues

December 12th, 2019

Ing. Giovanni Apruzzese

PhD Candidate in Information and Communication Technologies

- giovanni.apruzzese@unimore.it
- https://weblab.ing.unimo.it/people/apruzzese