

Seminar of Computer Security Thursday, December 12th 2019 Modena

Adversarial Attacks against Machine Learning

Giovanni Apruzzese

PhD Candidate in Information and Communication Technologies University of Modena and Reggio Emilia

giovanni.apruzzese@unimore.it

https://weblab.ing.unimo.it/people/apruzzese

Scuola di Ingegneria Dipartimento di Ingegneria "Enzo Ferrari"

Past Applications of Machine Learning...

OCR for bank cheque sorting and validation

Aerial photo recognition

Specialised applications for <u>few professional</u> users...

Applications of Machine Learning today...

• *Object recognition* for self-driving cars

Video from: https://www.youtube.com/watch?v=OOT3UIXZztE

Applications of Machine Learning today...

• Speech recognition and text-to-speech for AI assistants

Applications of Machine Learning today...

Social Media analysis

Applications of Machine Learning today...

• Multiple applications in *Healthcare*...

Data Flair	Machine Learning in Healthcare				
	Diseases Identification & Diagnosis	Personalized Medicine/ Treatment			
	Drug Discovery & Manufacturing	Smart Health Records			
	Medical Imaging	Diseases Prediction			

... it's a promising scenario!

Al is going to transform industry and business as electricity did about a century ago (Andrew Ng, Jan. 2017)

Andrew Ng:

- Co-founded and led Google Brain
- Former Vice President and Chief Scientist at Baidu
- Adjunct professor at Stanford University
- Co-founded Coursera

Al is the new electricity.

...maybe not?

• iPhone 5s with Fingerprint Reader, released on September 20th, 2013...

...maybe not?

• iPhone 5s with Fingerprint Reader, released on September 20th, 2013

• ...cracked after 3 days

iPhone 5S fingerprint sensor hacked by Germany's Chaos Computer Club

Biometrics are not safe, says famous hacker team who provide video showing how they could use a fake fingerprint to bypass phone's security lockscreen

Follow Charles Arthur by email

Charles Arthur theguardian.com, Monday 23 September 2013 08.50 BST Imp to comments (306)

...maybe not?

• iPhone 5s with Fingerprint Reader, released on September 20th, 2013

• ... cracked after 3 days

...maybe not?

• Bus + "noise" = Ostrich

Szegedy et al., "Intriguing properties of neural networks", ICLR 2014

...maybe not?

• Are self driving cars safe?

Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

...maybe not?

• What about speech recognition?

Audio

Transcription by Mozilla DeepSpeech

"without the dataset the article is useless"

"okay google browse to evil dot com"

https://nicholas.carlini.com/code/audio_adversarial_examples/

...maybe not?

WHO WOULD WIN?

ONETIICCED

Takeaway

- Machine Learning technologies are flourishing
- From few, specialized applications, they are now becoming available to everyone
- This opens up new big possibilities, but also <u>new security risks</u>

REMEMBER: attackers are attracted by what is "popular"!

What is an Adversarial Attack?

Bathing tub

Image Reference: Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural networks." IEEE Transactions on Evolutionary Computation (2019).

Standard Machine Learning approach

- Approach that relies on two assumptions:
 - The source of data is neutral, and it does not depend on the classifier
 - Noise affecting data is *stochastic*

An Example: Spam Filtering

• ...but in reality, the data source of spam filtering is not neutral!

An Example: Spam Filtering

• Typical spammer trick: adding "good words" [Z. Jorgensen et al., JMLR 2008]

• Spammers corrupt patterns with a *noise* that is *not random*..

Machine Learning in Adversarial settings

- The data source is *not neutral:* it depends on the classifier
- Noise is not stochastic, it is *adversarial*, crafted to thwart the classification

Standard approaches do not work in adversarial settings!

- They assume that:
 - the process that generates data is independent from the classifier
 - the training/test (and "production") data follow the same distribution
- This does not apply to adversarial envinroments!

The Cybersecurity domain is a continuous arms-race between attackers and defenders ("concept drift")

Typical Cybersecurity scenario

Arms Race: The Case of Image Spam

- In the early 2000s, spam emails were very popular, so most providers started to adopt anti-spam filters.
- In 2004 a new trick became popular for evading anti-spam filters:

 \rightarrow embedding spam content into <u>images</u> included in the email corpus

• Current filters did not analyze the content of attached images...

Your orolog	ical prescription appointment starts September 30th
From: "Co	onrad Stern" <rjlfm@berlin.de></rjlfm@berlin.de>
To: utente	@emailserver.it
bergstrom	mustsquawbush try bimini , maine see
woodwind	in con or patagonia or scrapbook but.
patriarcha	I and tasteful must advisory not thoroughgoing
the frowzy	not ellwood da jargon and.
beresford	! arpeggio must stern try disastrous ! alone ,
wear da e	sophagi try autonomic da clyde and taskmaster
tideland tr	y cream see await must mort in.
Viag	a \$3.44
Valiu	m \$1.21
Prop	ecia
Amb	ien
Xana	ix
Som	ra a • \$3.75

Arms Race: The Case of Image Spam

- Defenders responded by implementing OCR techniques:
 - Text embedded in images is read by Optical Character Recognition (OCR)
 - Combine the text detected by OCR with the remaining content to discriminate spam and legitimate email

Arms Race: The Case of Image Spam

• The reaction of spammers was to counter the OCR by obfuscating the image with noise (similar to CAPTCHAs)

• This allowed to fool the OCR without affecting the human readability of the spam content

How to counter adversarial attacks?

- Key point: do not aim to fight <u>all</u> attacks
- *Divide et Impera*: focus on countering "individual" problems!
- This requires to define a THREAT MODEL!

Summary of Adversarial Threat Models

At	tacker's Goal			
	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users	
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality	
Test data	Evasion (a.k.a. adversarial examples)	-	Model extraction / stealing Model inversion (hill-climbing) Membership inference attacks	
Training data	Poisoning (to allow subsequent intrusions) – e.g., backdoors or neural network trojans	Poisoning (to maximize classification error)	-	

Biggio, Battista, and Fabio Roli. "Wild patterns: Ten years after the rise of adversarial machine learning." Pattern Recognition (2018)

Evasion of Deep Networks for EXE Malware Detection

• MalConv: convolutional deep neural network trained on raw bytes to

detect EXE malware...

• Easily fooled by adding few extra-bytes

Kolosnjaji, Bojan, et al. "Adversarial malware binaries: Evading deep learning for malware detection in executables." 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018.

Evasion of Phishing Webpage detectors

• Most detectors are trained to recognize Phishing Webpages by using the following features:

URL features	REP features	HTML features		
IP address [-1, 1]	SSL [-1, 0, 1]	External SFH [-1, 0, 1]		
"@" symbol (at) [-1, 1]	Abnormal [-1, 1]	Suspicious Anchors [-1, 0, 1]		
"-" symbol (dash) [-1, 1]	Age of Domain [-1, 0, 1]	External CSS [-1, 1]		
dataURI [-1, 1]	DNS record [-1, 1]	External Favicon [-1, 1]		
Fake HTTPS [-1, 1]	PageRank [-1, 0, 1]	iFrame [-1, 1]		
Long URL [-1, 0, 1]	Port status [-1, 0, 1]	Suspicious Mail Form [-1, 1]		
Subdomains (dots) [-1, 0, 1]	Redirections [-1, 0, 1]	External Meta-Scripts [-1, 0, 1]		
		Right-Click disabled [-1, 1]		
		External Objects [-1, 0, 1]		
		Pop Up windows [-1, 1]		
		Status-bar modification [-1, 1]		

Evasion of Phishing Webpage detectors

- Idea1: exploit the HTML-based features.
- Attackers can easily modify the HTML content of a phishing webpage to evade classifiers that leverage the inspection of the underlying HTML-code.
- This procedure can be performed while ensuring that the malicious webpage retains its phishing characteristics.
- Example: inserting a lot of resources that point to "internal" locations, but which do not actually exist.
 - Doing so would impact those features that evaluate the ratio of internal/external resources contained in a webpage

Giovanni Apruzzese

Attack

Abstract: This dataset collected mainly from: PhishTank archive, MillerSmiles archive, Google's searching operators.

Number of Instances:

Number of Attributes:

Missing Values?

2456

30

N/A

Area:

Date Donated

Number of Web Hits:

Computer Security

2015-03-26

113645

Data Set Characteristics:

Attribute Characteristics:

Associated Tasks:

N/A

Integer

Classification

giovanni.apruzzese@dartmouth.edu

Modern adversarial attacks against Cybersecurity applications

Evasion of Phishing Webpage detectors

	▼
Original	▼ «span class="heading">
▼	▼ == \$0
▼ 	▼ <i></i>
 desares	Download
v == \$0	
▼ <i></i>	<pre>▼</pre>
Download	Data Folder
▼ <fort =="" style="marking: MarkGoDNIND COUPD: #FEFEA" tran="databases/u032"></fort>	▼
	<pre>Data Set Description</pre>
▼ 	a the bard of the database
Data Set Description	Via nicit
	<totic #ffffaa="" size="4" slyle="DACKGROUND-CULDR:">LINK LO INTERNAL TESOUTCE</totic>
	<t< td=""></t<>
<pre><pre><pre>vp class="normal"></pre></pre></pre>	
<pre></pre>	v <pre>class="normal"></pre>
": This dataset collected mainly from: PhishTank archive, MillerSmiles archive, Googleâ€‴s searching operators."	Abstract
	": This dataset collected mainly from: PhishTank archive, MillerSmiles archive, Google候s searching operators.
UCI Machine Learning Repository	UCI Machine Learning Repository
Center for Machine Learning and Intelligent Systems Phishing Websites Data Set Download: Data Folder, Data Set Description	Center for Machine Learning and Intelligent Systems Phishing Websites Data Set Download: Data Folder, Data Set Description, Link to "internal" resource

Abstract; This dataset collected mainly from: PhishTank archive, MillerSmiles archive, Google's searching operators.

Data Set Characteristics:	N/A	Number of Instances:	2456	Area:	Computer Security	
Attribute Characteristics:	Integer	Number of Attributes:	30	Date Donated	2015-03-26	
Associated Tasks:	Classification	Missing Values?	N/A	Number of Web Hits:	113645	

Evasion of Phishing Webpage detectors

- Idea2: exploit the length of the URL.
- Attackers can easily employ techniques to shrink the length of a malicious URL, bringing it to "more reasonable" lengths (while retaining its phishing characteristics).
- Example: adoption of a URL-shortener (goo.gl, tinyurl)

TinyURL was created!
The following URL:
http://zpowerma- v33.tk/sdc/AbSa/46124b7120907c1e91679247aa4d2219/lo gin.php? cmd=login_submit&id=6d794af920ad89b4c02a3d792e1071f6 6d794af920ad89b4c02a3d792e1071f6&session=6d794af920 ad89b4c02a3d792e1071f66d794af920ad89b4c02a3d792e107 1f6
has a length of 232 characters and resulted in the following TinyURL which has a length of 30 characters
https://tinyurl.com/phishing12

Giovanni Apruzzese

Modern adversarial attacks against Cybersecurity applications

Evasion of Botnet detectors

Attacker Model

33

- <u>Goal</u>: evade the botnet detector
- Knowledge: Limited
- <u>Capabilities</u>: Limited
- <u>Strategy</u>: alter the bot(s) communications

Realistic assumptions

Giovanni Apruzzese

Modern adversarial attacks against Cybersecurity applications

Evasion of Botnet detectors

Evaluation Outline:

I. Develop botnet detectors with good performance

➢ (F1-score, Precision, Recall) > 90%

		Multiple ML Algorithins	•
	Random Forest (RF)	Bagging (Bag)	Support Vector Machine (SVM)
	Stochastic Gradient Descent (SGD)	Deep Neural Network (DNN)	Logistic Regression (LR)
	Decision Tree (DT)	Naive Bayes (NB)	Gradient Boosting (GB)
	AdaBoost (AB)	K-Nearest Neighbor (KNN)	Extra Trees (ET)
-			

Multiple ML Algerithms

II. Generate realistic adversarial samples

III. Evaluate the detectors against the generated adversarial samples

> Measured through the (AS): $AS = 1 - \frac{Recall (attack)}{Recall (no attack)}$

Modern adversarial attacks against Cybersecurity applications

Evasion of Botnet detectors

Experiments II: Generating Adversarial samples

Goal: generate adversarial samples through <u>small</u> and <u>easily attainable</u> modifications

Group	Altered features					
1a	Duration (s)	Step	Duration	Src_bytes	Dst_bytes	Tot_pkts
1b	Src_bytes	I	+1	+1	+1	+1
1c	Dst_bytes	II	+2	+2	+2	+2
ld 2a	Tot_pkts Duration_Src_bytes	III	+5	+8	+8	+5
2b	Duration, Dst_bytes	IV	+10	+16	+16	+10
2c	Duration, Tot_pkts	V	+15	+64	+64	+15
2e 2d	Src_bytes, Tot_pkts Src_bytes, Dst_bytes	VI	+30	+128	+128	+20
2f	Dst_bytes, Tot_pkts	VII	+45	+256	+256	+30
3a	Duration, Src_bytes, Dst_bytes	VIII	+60	+512	+512	+50
3D 3C	Duration, Src_bytes, Tot_pkts Duration Dst_bytes_Tot_pkts	IX	+120	+1024	+1024	+100
3d 4a	Src_bytes, Dst_bytes, Tot_pkts Duration, Src_bytes, Dst_bytes, Tot_pkts					

Giovanni Apruzzese

Modern adversarial attacks against Cybersecurity applications

Experiments III: Impact of the attack Recall Recall Attack baseline adversarial Severity Dataset (std. dev) (std. dev) (std. dev) 0.956 0.3720.609CTU-13 (0.028)(0.112)(0.110)0.993 0.6560.327IDS2017 (0.003)(0.102)(0.103)0.9990.5640.436CIC-IDS2018 (< 0.001)(0.112)(0.112)0.9910.5880.328UNB-CA Botnet (0.017)(0.218)(0.212)0.9850.5450.425Average (0.011)(0.136)(0.134)

Apruzzese Giovanni, Michele Colajanni, Mirco Marchetti "Evaluating the Effectiveness of Adversarial Attacks against Botnet Detectors." in *IEEE International Symposium on Network Computing and Applications (NCA)*, 2019.

Giovanni Apruzzese

Evasion of Botnet detectors

Experiments III: Impact of the attack

Detailed results on the detector for the NERIS botnet (included in the CTU-13 Dataset)

Apruzzese Giovanni, and Michele Colajanni. "Evading Botnet Detectors Based on Flows and Random Forest with Adversarial Samples." in *IEEE International Symposium on Network Computing and Applications (NCA)*, 2018.

Solutions? Yes, but at a cost...

Re-training with adversarial samples (Adversarial Learning)

Requires the availability and mainteance of a realistic adversarial dataset.

• Use different features that cannot be modified by the attacker

Seminar of Computer Security Thursday, December 12th 2019 Modena

Adversarial Attacks against Machine Learning

Giovanni Apruzzese

PhD Candidate in Information and Communication Technologies University of Modena and Reggio Emilia

giovanni.apruzzese@unimore.it

https://weblab.ing.unimo.it/people/apruzzese

Scuola di Ingegneria Dipartimento di Ingegneria "Enzo Ferrari"