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Spoiler?

In the adversarial ML domain, have you ever read a research
paper showing an attack that has an effectiveness of 3%?
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Current Landscape of Phishing

o Phishing attacks are continuously increasing

o Most detection methods still rely on blocklists of malicious URLs
* These detection techniques can be evaded easily by “squatting” phishing websites!
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Current Landscape of Phishing — Countermeasures

o Countering such simple (but effective) strategies can be done via data-driven methods
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Current Landscape of Phishing — Countermeasures (ML)

o Countering such simple (but effective) strategies can be done via data-driven methods

Website Phishing Website Detector
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: t.»! Phishing

o Such methods (obviously ©) include (also) Machine Learning techniques:
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o Machine Learning-based Phishing Website Detectors (ML-PWD) are very effective [1]
* Even popular products and web-browsers (e.g., Google Chrome) use them! [2]
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[1]: Tian, Ke, et al. "Needle in a haystack: Tracking down elite phishing domains in the wild." Internet Measurement Conference 2018.
’ _ [2]: El Kouari, Oumaima, Hafssa Benaboud, and Saiida Lazaar. "Using machine learning to deal with Phishing and Spam Detection: An overview."
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Phishing in a nutshell

o Phishing websites are taken down quickly
« The moment they are reported in a blocklist, they become useless

o Even if a victim lands on a phishing website, the phishing attempt is not complete
* The victim may be “hooked”, but they are not “phished” yet!

Most phishing attacks end up in failure [3]
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Phishing in a nutshell (cont’d)

o Phishing websites are taken down quickly
« The moment they are reported in a blocklist, they become useless

o Even if a victim lands on a phishing website, the phishing attempt is not complete
* The victim may be “hooked”, but they are not “phished” yet!

Most phishing attacks end up in failure [3]

o Phishers are well aware of this fact... but they (clearly) keep doing it
* Hence, they “have to” evade detection mechanisms

(Remember: Real attackers operate with a cost/benefit mindset [4])
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, ¢, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find € s.t. M(Fyx) = y5 # yx
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, ¢, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

o Inthe context of a ML-PWD, such perturbation can be introduced in three ‘spaces’:
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

o Inthe context of a ML-PWD, such perturbation can be introduced in three ‘spaces’:
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

o Inthe context of a ML-PWD, such perturbation can be introduced in three ‘spaces’:
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L Question: Which ‘space’ do you think an attacker 1s most likely to use?
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Website-space Perturbations (WsP) in practice — original example

Figure 4: An exemplary (and true) Phishing website, whose
URL is https://www.63y3hfh-fj39f30-f30ifof-f392.weebly.com/.
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Website-space Perturbations (WsP) in practice — changing the URL

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/ |:> https://www.legitimate123.weebly.com/
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Website-space Perturbations (WsP) in practice — changing the HTML
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<div>
<form enctype="multipart/form-data" action="//www.weebly.com/weebly/apps/formSubmit.php" method=
"POST" id="form-723155629711391878">
<div 1d="723155629711391878-form-parent" class="wsite-form-container"
style="margin-top:10px;">
<ul class="formlist" id="723155629711391878-form-list">
<div><div class="wsite-form-field" style="margin:5px Opx 5px Opx;">
<label class="wsite-form-label" for="input-227982018179653776">Email Address <span
class="form-not-required">*</span></label>
<div class="wsite-form-input-container">
<input id="input-227982018179653776" class="wsite-form-input wsite-input
wsite-input-width-370px" type="text" name="_u227982018179653776" />
</div>
<div id="instructions-227982018179653776" class="wsite-form-instructions" style=
"display:none;"></div>
</div></div>

<a href="./fake-link-to-nonexisting-resource">

<font style="visibility:hidden">Resource</font></a> <:I 8 (WSP)

<a href="#' style='display:none'> can not see</aﬂ

<div><div class="wsite-form-field" style="margin:5px Opx 5px Opx;">
<label class="wsite-form-label" for="input-435728988405554593">Enter Password <span
class="form-not-required">*</span></label>
<div class="wsite-form-input-container">
<textarea id="input-435728988405554593" class="wsite-form-input wsite-input

15
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Website-space Perturbations (WsP) in practice — changing URL+HTML

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/

https://www.legitimate123.weebly.com/
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<div>
<form enctype="multipart/form-data" action="//www.weebly.com/weebly/apps/formSubmit.php" method=
"POST" id="form-723155629711391878">
<div 1d="723155629711391878-form-parent" class="wsite-form-container"
style="margin-top:10px;">
<ul class="formlist" id="723155629711391878-form-list">
<div><div class="wsite-form-field" style="margin:5px Opx 5px Opx;">
<label class="wsite-form-label" for="input-227982018179653776">Email Address <span
class="form-not-required">*</span></label>
<div class="wsite-form-input-container">
<input id="input-227982018179653776" class="wsite-form-input wsite-input
wsite-input-width-370px" type="text" name="_u227982018179653776" />
</div>
<div id="instructions-227982018179653776" class="wsite-form-instructions" style=
"display:none;"></div>
</div></div>

<a href="./fake-link-to-nonexisting-resource">

<font style="visibility:hidden">Resource</font></a> <:I 8 (WSP)

<a href="#' style='display:none'> can not see</aﬂ

<div><div class="wsite-form-field" style="margin:5px Opx 5px Opx;">
<label class="wsite-form-label" for="input-435728988405554593">Enter Password <span
class="form-not-required">*</span></label>
<div class="wsite-form-input-container">
<textarea id="input-435728988405554593" class="wsite-form-input wsite-input
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Why do we need all of this anyway? (first reason)

2020 IEEE Symposium on Security and Privacy

Intriguing Properties of Adversarial ML Attacks
in the Problem Space

Fabio Pierazzi*', Feargus Pendlebury*"#3, Jacopo Cortellazzi', Lorenzo Cavallaro
T King’s College London, i Royal Holloway, University of London, 3 The Alan Turing Institute

“This paper focuses on test-time evasion attacks in the so-called problem space, where the
challenge lies in modifying real input-space objects that correspond to an adversarial
feature vector. The main challenge resides in the inverse feature-mapping problem since in
many settings it is not possible to convert a feature vector into a problem-space object
because the feature mapping function is neither invertible nor differentiable.”
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Why do we need all of this anyway? (first reason) [cont’d]

2020 IEEE Symposium on Security and Privacy

Intriguing Properties of Adversarial ML Attacks
in the Problem Space

Fabio Pierazzi*', Feargus Pendlebury*"+%, Jacopo Cortellazzi', Lorenzo Cavallaro’
T King's College London, * Royal Holloway, University of London, ¥ The Alan Turing Institute

“This paper focuses on test-time evasion attacks in the so-called problem space, where the
challenge lies in modifying real input-space objects that correspond to an adversarial
feature vector. The main challenge resides in the inverse feature-mapping problem since in
many settings it is not possible to convert a feature vector into a problem-space object
because the feature mapping function is neither invertible nor differentiable.”

o This observation is well-founded, however...
o ...if the attacker has access to the feature space, then such “problem” does not apply.

Perturbations in the feature space are not unrealistic: they simply require the
attacker to compromise the ML system.

* This is possible [5], but it has a high cost!

 All past work considering “feature space” perturbations can be made
! valuable by assuming that the attack has a higher cost!

7
ACSAC'22 — Dec. 7th’ 202 2[5]: Eugene Bagdasaryan and Vitaly Shmatikov. 2021. Blind backdoors in deep learning models. In USENIX Sec. Symp 18
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Why do we need all of this anyway? (second reason)

o Most existing work in the ML-PWD domain has shortcomings, among which:
« Some craft perturbations in the “feature” space (not impossible, but costly!)

e Others assume strong attackers (full knowledge, or massive queries)
— Liang et al. [57] took days!
* No statistical validation (crucial for a fair evaluation!)

Paper Year Evasion ML-PWD ML Defense Datasets Stat.

(1st Author) space types (F) Algorithms (reprod.) Val.
Liang [57] 2016 | Problem F¢ SL X 1(X) X
Corona [30] 2017 Feature F", F€ SL 1( X
Bahnsen [20] | 2018 | Problem F4 DL X 1(X) X

Shirazi [79] 2019 Feature F¢ SL X 4 (
Sabir [77] 2020 | Problem F SL, DL 1(X) X
Lee [55] 2020 Feature F¢ SL 1( X
Abdelnabi [8] | 2020 Problem F" DL 1( X
Aleroud [11] 2020 Both F* SL X 2 ( X
Song [81] 2021 Problem F¢ SL 1( X
Bac [18] 2021 Feature F SL, DL X 1(X) X
Lin [59] 2021 Feature F¢ DL 1( X
O’Mara [67] 2021 Feature F" SL X 1( X
Al-Qurashi [10] | 2021 Feature F" F€ SL, DL X 4 ( X
Gressel [36] 2021 Feature F¢ SL, DL 1(X) X
Ours | Both | F“F,F° | DLSL | |2 |

‘ M | FCHTENSTEIN

What is the true impact of realistic adversarial attacks against ML-PWD?

ACSAC’2 19
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Evaluation — Workflow

o Are “cheap” perturbations (i.e., blind WsP) effective? Let’s assess their impact!
o First, we develop proficient ML-PWD (high tpr, low fpr)

(1) Setup . (2) Training

Benign

Train
Feature

Extraction
Source :
Dataset RRREEEEEEEES r »»»»»»»»»»»»
(raw) :
Feature
Inference Extraction
(20%) o ,
(3) Testing tpr | for | :
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Evaluation — Baseline

o Are “cheap” perturbations (i.e., blind WsP) effective? Let’s assess their impact!
o First, we develop prof|C|ent ML-PWD (high tpr, Iowfpr)

(1) Setup i (2) Training FE] [!E! b ain
Benign

Train B :

(80%) :

j:|_> Feature F> 5 :

Extraction

Phishing
: Pt \ 4 :
: | Source T :
| Do G T e {ny-
: spli : :

(raw) Benign

B Benign
= oy :
= Feature test o

Inference Extraction :

(20%) Phishing ot

P; (3) Testing g

Table 3: Performance in non-adversarial settings, reported as the
average (and std. dev.) {pr and fpr over the 50 trials.

o Results comparable to the T spich
state-of-the-art © A For tpr for

F4 0.96x0.008 0.021+0.0077 0.55x0.030 0.037+0.0076
CN | F" 0.88+0.018  0.155=x0.0165 0.81+0.019  0.008=0.0020
o Let’s attack such ML-PWD FC | 0970006 0.018x00088 || 0.93s0013  0.005:0.0025

° The tpr WI” decrease! F% 0.98+0.00¢  0.007=0.0055 0.45+0.022  0.003=0.0014
RF FT 0.93+0.013 0.025=0.0118 0.94+0.016 0.006=0.0025

F¢ 0.98+0.006 0.007=x0.0046 0.97+0.007 0.001x0.0011

.UN|VERS|TAT F4 0.95x0.009 0.037x0.0100 0.24+0.017 0.011+0.0026
- LIECHTENSTEIN LR | F" | 0.82+0017 0.1440.0171 0.74+0.025  0.018+0.0036

F¢ 0.96+0.007 0.025x0.0077 0.81+0.020 0.013x0.0037
ACSAC’22 — Dec. 7th, 2022 21
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Results — Are WsP effective?

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
. 0.6 _ 0.6
80'5 E—E.S
0.4 040 o BEEs
0.3 0.3
0.2 | MW no-atk . 0.2 | W no-atk - o
0.1 | W atk(WsP) 0.1 | mmm atk(WsP)
0.0 0.0
CN RF LR CN RF LR

{a) ¥enodo. The plot shows the tpr before and after our WsP attack. The WsP  (b) 6Phish. The plot shows the ¢pr before and after our WsP attack. The WsP
entail invisible manipulations of the HTML. We repeat the experiments 50 times. entail invisible manipulations of the HTML. We repeat the experiments 50 times.

o Insome cases, NO
* This is significant because most past studies show ML-PWD being bypassed “regularly
o Insome cases, VERY LITTLE

* This is also significant, because even a 3% decrease in detection rate can be problematic
when dealing with thousands of samples!

)
!

o In other cases (not shown here), YES
* This is very significant, because WsP are cheap and are likely to be exploited by attackers
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In general, attacks in the other spaces (via PsP and MsP) are more disruptive...

1.0

0.9
0.8
0.7

_ 0.6
go0s5
0.4
0.3

1.0

0.9 |
0.8
0.7

_ 0.6

go5
0.4
0.3

0.2 e no-atk FoEel 0.2 || N no-atk 0 8=l
0.1 || mmm atk(PsP) 0.1 | W= atk(PsP)
0.0 0.0
CN RF LR CN RF LR
(a) Zenodo. The plot shows the fpr before and after our (blind) PsP attack. (b) 5Phish. The plot shows the tpr before and after our (blind) PsP attack.
1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
_ 0.6 _ 0.6
805 805
0.4 0.4
R e — : 03| == B .
0.2 B no-atk 0.2 BN no-atk
LT e RS B atk(MsP) PR e S ] atk{MsP]
0.0 — 0.0 —
CN RF LR CN RF LR
(a) Zenodo. The plot s HsP attack.

W LIECHTENSTE
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However, such attacks also have a higher cost!
Will real attackers truly use them just to evade a ML-PWD?

23
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Demonstration: competition-grade ML-PWD

o https://spacephish.github.io (https://tinyurl.com/spacephish-demo)
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Demonstration: competition-grade ML-PWD

o https://spacephish.github.io (https://tinyurl.com/spacephish-demo)

(©)
def websiteAttacks html(in html,string,num):
ind=in_html.find( '</body>")
content=""
for 1 in range(®, num):
content=content+string
out _html=in_ html[:ind]+content+in html[ind: ]
return out html
In [6]: | # TEST ORIGINAL In [8]: # TEST ADVERSARIAL
with open{original fil with open(output_file,
original data = f. adversarial_data =
original response = re adversarial response =
print(original respons print(adversarial respo
{ {
"n_models™: 8, “n_models™: 8,
"p_mod _00": ©.891, "p_mod_@8": ©.426,
"p_mod_01": ©.811, "p_mod_@1": ©.794,
"p_mod _©2": ©.891, "p mod @2": ©.426,
"p_mod_@3": 0.811, "p_mod ©3": ©.794,
"p_mod_04": ©.806, "p_mod_@4": 0.864,
5 "p_mod _@5": ©.741, "p_mod_@5": ©.774,
- | UNIVERSITAT "p mod @6": ©.806, "p mod_@6": ©.794,
LIECHTENSTEIN "p_mod 07": ©.741 "p_mod_07": 0.741
ACSAC’22 — Dec. 7th, 2022 ; ; 25
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Demonstration: competition-grade ML-PWD

o https://spacephish.github.io (https://tinyurl.com/spacephish-demo)

o
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for 1 in range(®, num):
content=content+string

out _html=in_ html[:ind]+content+in html[ind: ]

return out html

def websiteAttacks html(in html,string,num):
ind=in_html.find("</body>")
content=

In [6]:

# TEST ORIGINAL

with open(original fil

original data
original response

f.
re

print(original respons

{

In [8]:

# TEST ADVERSARIAL

with open(output file
adversarial data
adversarial response
print(adversarial respo

"0 mndelg™: 3 { "nondslete 2
"p_mod _@8": ©.891, "p_mod 88": ©.426,
P_ﬁﬁﬂ_lﬂl L1 =] I, 1n_mnr1_rf-1| L1
"p_mod @2": ©.891, "p_mod @2": @.432]
p_mod o= . 9.811, p_mod 82 . 9./794,
"p_mod @4": ©.806, "p_mod_@4": ©.864,
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def websiteAttacks html(in html,string,num):
ind=in_html.find("</body>")
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file, and the repo's result files.

The code and dataset are well documented in the repo. The scripts and dataset are easily reused. All
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