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Spoiler?

In the adversarial ML domain, have you ever read a research 
paper showing an attack that has an effectiveness of 3%?
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Current Landscape of Phishing 

o Phishing attacks are continuously increasing

o Most detection methods still rely on blocklists of malicious URLs

• These detection techniques can be evaded easily by “squatting” phishing websites!

Image source: https://www.tessian.com/blog/phishing-statistics-2020/
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Current Landscape of Phishing – Countermeasures

o Countering such simple (but effective) strategies can be done via data-driven methods
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Current Landscape of Phishing – Countermeasures (ML)

o Countering such simple (but effective) strategies can be done via data-driven methods

o Such methods (obviously ☺) include (also) Machine Learning techniques:

o Machine Learning-based Phishing Website Detectors (ML-PWD) are very effective [1] 

• Even popular products and web-browsers (e.g., Google Chrome) use them! [2]

[1]: Tian, Ke, et al. "Needle in a haystack: Tracking down elite phishing domains in the wild." Internet Measurement Conference 2018.

[2]: El Kouari, Oumaima, Hafssa Benaboud, and Saiida Lazaar. "Using machine learning to deal with Phishing and Spam Detection: An overview." 

International Conference on Networking, Information Systems & Security. 2020.
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Phishing in a nutshell

o Phishing websites are taken down quickly

• The moment they are reported in a blocklist, they become useless

o Even if a victim lands on a phishing website, the phishing attempt is not complete

• The victim may be “hooked”, but they are not “phished” yet!

[3] Adam Oest, et al  “Sunrise to sunset: Analyzing the end-to-end life cycle and effectiveness of phishing attacks at scale.” In Proc. USENIX Secur. Symp. (2020)

Most phishing attacks end up in failure [3]

ACSAC’22 – Dec. 7th, 2022

mailto:giovanni.apruzzese@uni.li


7

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Phishing in a nutshell (cont’d)

o Phishing websites are taken down quickly

• The moment they are reported in a blocklist, they become useless

o Even if a victim lands on a phishing website, the phishing attempt is not complete

• The victim may be “hooked”, but they are not “phished” yet!

o Phishers are well aware of this fact… but they (clearly) keep doing it

• Hence, they “have to” evade detection mechanisms

(Remember: Real attackers operate with a cost/benefit mindset [4])

[3] Adam Oest, et al  “Sunrise to sunset: Analyzing the end-to-end life cycle and effectiveness of phishing attacks at scale.” In Proc. USENIX Secur. Symp. (2020)

[4] Kelce S Wilson and Müge Ayse Kiy. 2014. Some fundamental Cybersecurity concepts. IEEE Access (2014).

Most phishing attacks end up in failure [3]
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but…

o …the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, 𝜀, that induces an ML model, ℳ, to 
misclassify a given input, 𝐹𝑥, by producing an incorrect output (𝑦𝑥

𝜀 instead of 𝑦𝑥)
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𝜀 instead of 𝑦𝑥)

o In the context of a ML-PWD, such perturbation can be introduced in three ‘spaces’:
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Problem Statement: Adversarial Attacks against ML-PWD

Question: Which ‘space’ do you think an attacker is most likely to use?

o ML-PWD are good but…

o …the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, 𝜀, that induces an ML model, ℳ, to 
misclassify a given input, 𝐹𝑥, by producing an incorrect output (𝑦𝑥

𝜀 instead of 𝑦𝑥)

o In the context of a ML-PWD, such perturbation can be introduced in three ‘spaces’:
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Website-space Perturbations (WsP) in practice – original example
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Website-space Perturbations (WsP) in practice – changing the URL

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/ https://www.legitimate123.weebly.com/
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Website-space Perturbations (WsP) in practice – changing the HTML
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Website-space Perturbations (WsP) in practice – changing URL+HTML

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/ https://www.legitimate123.weebly.com/
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Why do we need all of this anyway? (first reason)

“This paper focuses on test-time evasion attacks in the so-called problem space, where the
challenge lies in modifying real input-space objects that correspond to an adversarial
feature vector. The main challenge resides in the inverse feature-mapping problem since in
many settings it is not possible to convert a feature vector into a problem-space object
because the feature mapping function is neither invertible nor differentiable.”
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Why do we need all of this anyway? (first reason) [cont’d]

o This observation is well-founded, however…

o …if the attacker has access to the feature space, then such “problem” does not apply.

“This paper focuses on test-time evasion attacks in the so-called problem space, where the
challenge lies in modifying real input-space objects that correspond to an adversarial
feature vector. The main challenge resides in the inverse feature-mapping problem since in
many settings it is not possible to convert a feature vector into a problem-space object
because the feature mapping function is neither invertible nor differentiable.”

Perturbations in the feature space are not unrealistic: they simply require the
attacker to compromise the ML system.
• This is possible [5], but it has a high cost!
• All past work considering “feature space” perturbations can be made

valuable by assuming that the attack has a higher cost!
[5]: Eugene Bagdasaryan and Vitaly Shmatikov. 2021. Blind backdoors in deep learning models. In USENIX Sec. Symp
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Why do we need all of this anyway? (second reason)

o Most existing work in the ML-PWD domain has shortcomings, among which:

• Some craft perturbations in the “feature” space (not impossible, but costly!)

• Others assume strong attackers (full knowledge, or massive queries)

‒ Liang et al. [57] took days!

• No statistical validation (crucial for a fair evaluation!)

What is the true impact of realistic adversarial attacks against ML-PWD?
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Evaluation – Workflow 

o Are “cheap” perturbations (i.e., blind WsP) effective? Let’s assess their impact!

o First, we develop proficient ML-PWD (high tpr, low fpr)
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Evaluation – Baseline 

o Are “cheap” perturbations (i.e., blind WsP) effective? Let’s assess their impact!

o First, we develop proficient ML-PWD (high tpr, low fpr)

o Results comparable to the
state-of-the-art ☺

o Let’s attack such ML-PWD

• The tpr will decrease!

ACSAC’22 – Dec. 7th, 2022
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Results – Are WsP effective?

o In some cases, NO

• This is significant because most past studies show ML-PWD being bypassed “regularly”!

o In some cases, VERY LITTLE

• This is also significant, because even a 3% decrease in detection rate can be problematic 
when dealing with thousands of samples!

o In other cases (not shown here), YES 

• This is very significant, because WsP are cheap and are likely to be exploited by attackers

ACSAC’22 – Dec. 7th, 2022
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Results – What about attacks in the other spaces?

In general, attacks in the other spaces (via PsP and MsP) are more disruptive…
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However, such attacks also have a higher cost!
Will real attackers truly use them just to evade a ML-PWD?
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Demonstration: competition-grade ML-PWD

o https://spacephish.github.io (https://tinyurl.com/spacephish-demo)
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Demonstration: competition-grade ML-PWD

o https://spacephish.github.io (https://tinyurl.com/spacephish-demo)
o https://nbviewer.org/github/hihey54/acsac22_spacephish/blob/main/mlsec_folder/mlsec_artifact-manipulate.ipynb
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