

The Hague – September 25th, 2023

European Symposium On Research In Computer Security

Attacking Logo-based Phishing Website Detectors with Adversarial Perturbations

Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal, <u>Giovanni Apruzzese</u>, Dinil Mon Divakaran

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

1. We propose a **novel attack**

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

- 1. We propose a **novel attack**
- 2. We show that **it works**

- 1. We propose a **novel attack**
- 2. We show that **it works**
- 3. ...against both state-of-the-art systems and humans

- 1. We propose a **novel attack**
- 2. We show that **it works**
- 3. ...against both state-of-the-art systems and humans

• **Phishing** <u>websites</u> are everywhere

- 1. We propose a **novel attack**
- 2. We show that **it works**
- 3. ...against both state-of-the-art systems and humans

- **Phishing** <u>websites</u> are everywhere
- **Countermeasure**: visual similarity techniques reliant on <u>deep learning</u>
 - Trendy in research [7] but also deployed in practice [50]

[7] Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website detection by visual similarity. ACM CCS (2020)
[50] Apruzzese, G., et al.: "Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice. IEEE SaTML (2023)

- 1. We propose a **novel attack**
- 2. We show that **it works**
- 3. ...against both state-of-the-art systems and humans

- Phishing <u>websites</u> are everywhere
- **Countermeasure**: visual similarity techniques reliant on <u>deep learning</u>
 - Trendy in research [7] but also deployed in practice [50]
- **Problem**: the <u>security</u> of these defenses has not been scrutinized yet
 - Especially from a "human" perspective!

[7] Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website detection by visual similarity. ACM CCS (2020)
[50] Apruzzese, G., et al.: "Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice. IEEE SaTML (2023)

- 1. We propose a **novel attack**
- 2. We show that **it works**
- 3. ...against both state-of-the-art systems and humans

- Phishing websites are everywhere \bigcirc
- **Countermeasure:** visual similarity techniques reliant on deep learning Ο
 - Trendy in research [7] but also deployed in practice [50] ٠
- **Problem**: the <u>security</u> of these defenses has not been scrutinized yet Ο
 - Especially from a "human" perspective! ٠

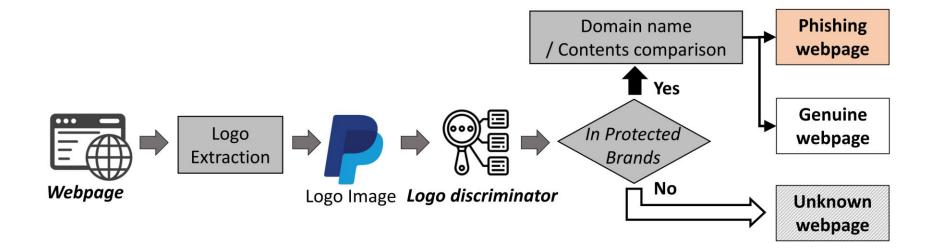
Disclaimer: non-technical talk! [7] Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website detection by visual similarity. ACM CCS (2020) [50] Apruzzese, G., et al.: "Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice. IEEE SaTML (2023)

9

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

Logo-based Phishing Website Detection

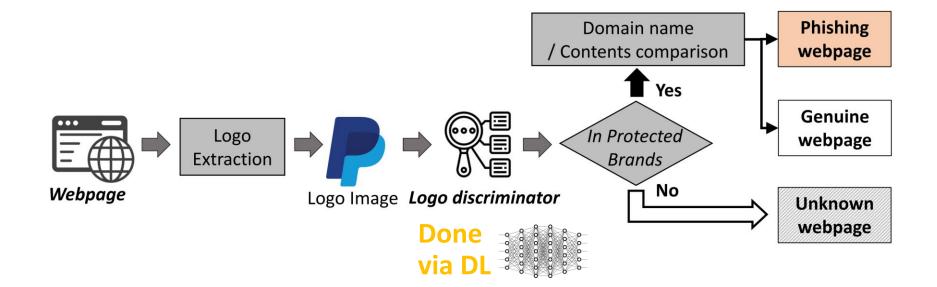
in a nutshell



Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

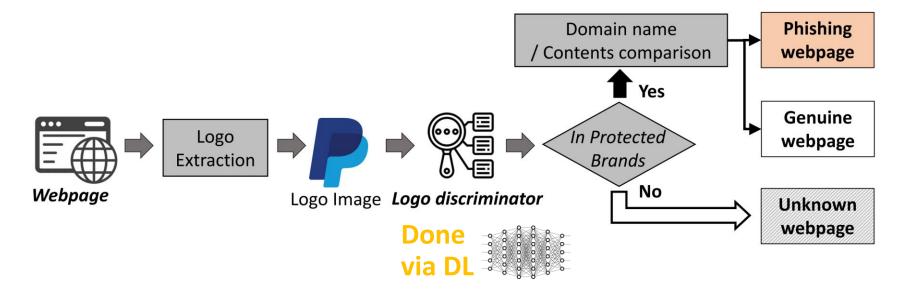
Logo-based Phishing Website Detection

in a nutshell



Logo-based Phishing Website Detection

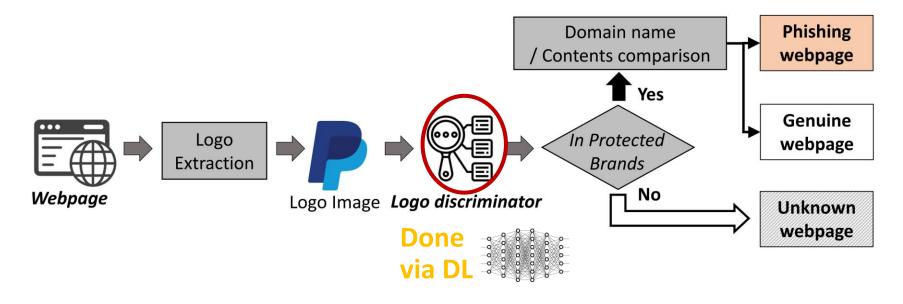
^{in a} nutshell



Problem: these systems are tweaked to minimize false positives.

Logo-based Phishing Website Detection

in a nutshell



Problem: these systems are tweaked to minimize false positives.

We focus on the Logo-discriminator.

Intuition: create an adversarial logo that is (i) minimally altered w.r.t. its original variant; and that (ii) misleads the logo discriminator.

Intuition: create an adversarial logo that is (i) minimally altered w.r.t. its original variant; and that (ii) misleads the logo discriminator.

1. Knowledge:

2. Capabilities:

3. Strategy:

Intuition: create an adversarial logo that is (i) minimally altered w.r.t. its original variant; and that (ii) misleads the logo discriminator.

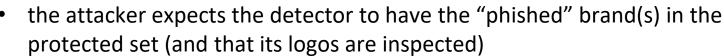
1. Knowledge:

- the attacker expects the detector to have the "phished" brand(s) in the protected set (and that its logos are inspected)
- 2. Capabilities:

3. Strategy:

Intuition: create an adversarial logo that is (i) minimally altered w.r.t. its original variant; and that (ii) misleads the logo discriminator.

1. Knowledge:



- 2. Capabilities:
 - the attacker can observe the decision of the detector
 - the attacker can manipulate their phishing webpages
- 3. Strategy:

Intuition: create an adversarial logo that is (i) minimally altered w.r.t. its original variant; and that (ii) misleads the logo discriminator.

- 1. Knowledge:
 - the attacker expects the detector to have the "phished" brand(s) in the protected set (and that its logos are inspected)
- 2. Capabilities:
 - the attacker can observe the decision of the detector
 - the attacker can manipulate their phishing webpages
- **3. Strategy:** Manipulate the logo so that the discriminator has a lower confidence \rightarrow the detector will default to a "unknown webpage"

The attacker can do nothing

to the training data.

Evaluation: Discriminators

- We propose two novel methods for logo-identification: ViT and Swin
 - Both ViT and Swin leverage transformers [23, 36].

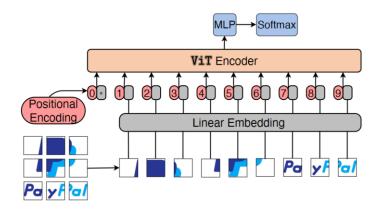


Fig. 2: ViT-based Model Architecture

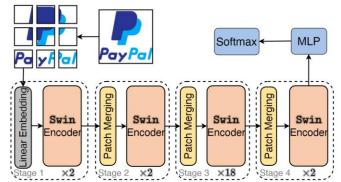


Fig. 3: Swin-based Model Architecture

[23] Dosovitskiy, A., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)
[36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021)

We are the first to use

Evaluation: Discriminators

- We propose two novel methods for logo-identification: ViT and Swin Ο
 - Both ViT and Swin leverage transformers [23, 36]. ٠

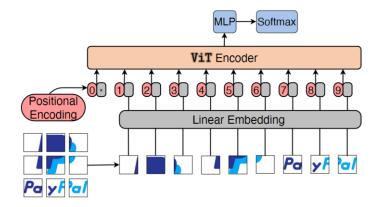


Fig. 2: ViT-based Model Architecture

UNIVERSITA

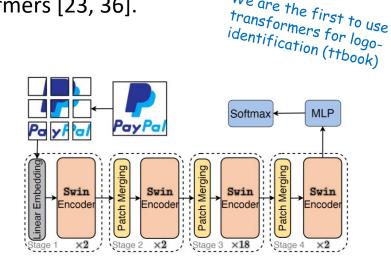


Fig. 3: Swin-based Model Architecture

We will show that these methods reach state-of-the-art performance (currently 0 obtained by Siamese networks [34])

LIFCHTENSTEIN [23] Dosovitskiy, A., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020) [36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021) [34]: Lin, Y., et al.: Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. USENIX Security (2021)

We are the first to use

Evaluation: Discriminators

- We propose two novel methods for logo-identification: ViT and Swin Ο
 - Both ViT and Swin leverage transformers [23, 36]. ٠

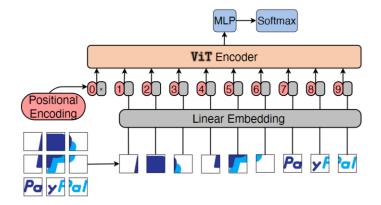


Fig. 2: ViT-based Model Architecture

UNIVERSITA

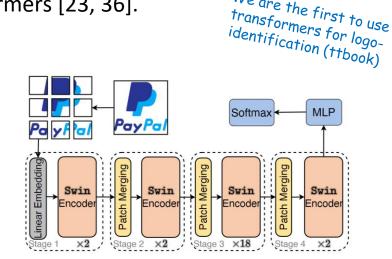


Fig. 3: Swin-based Model Architecture

- We will show that these methods reach state-of-the-art performance (currently 0 obtained by Siamese networks [34])
 - Siamese networks have been assessed in white-box settings •

…but our attacker <u>is not</u> a white-box!

LIFCHTENSTEIN [23] Dosovitskiy, A., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020) [36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021) [34]: Lin, Y., et al.: Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. USENIX Security (2021)

Evaluation: Attack

Our attack applies a "Generative Adversarial Perturbations" (GAP)

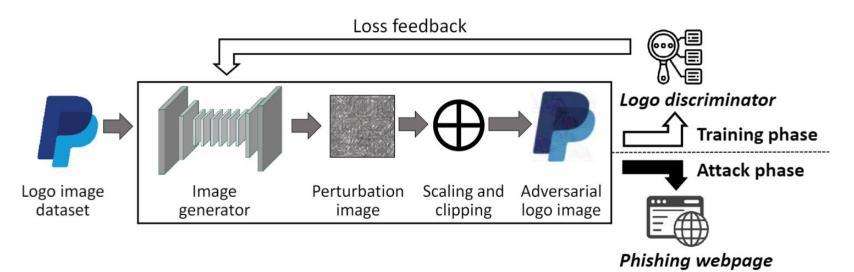


Fig. 4: Generative adversarial perturbation workflow

Evaluation: Attack

Our attack applies a "Generative Adversarial Perturbations" (GAP)

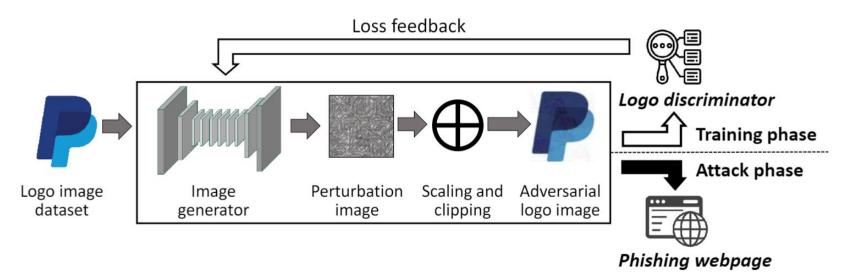
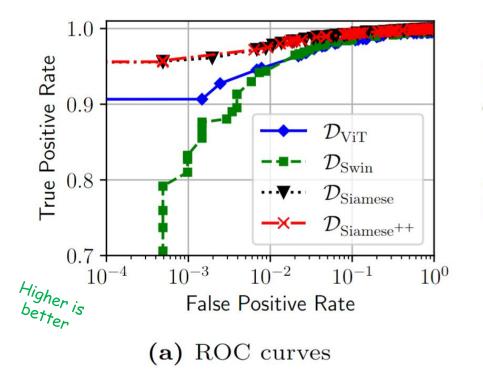


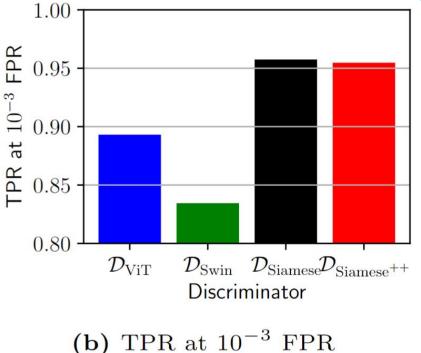
Fig. 4: Generative adversarial perturbation workflow

 The GAP automatically "learns" to craft adversarial logos that mislead the logo discriminator – while being minimally altered.

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

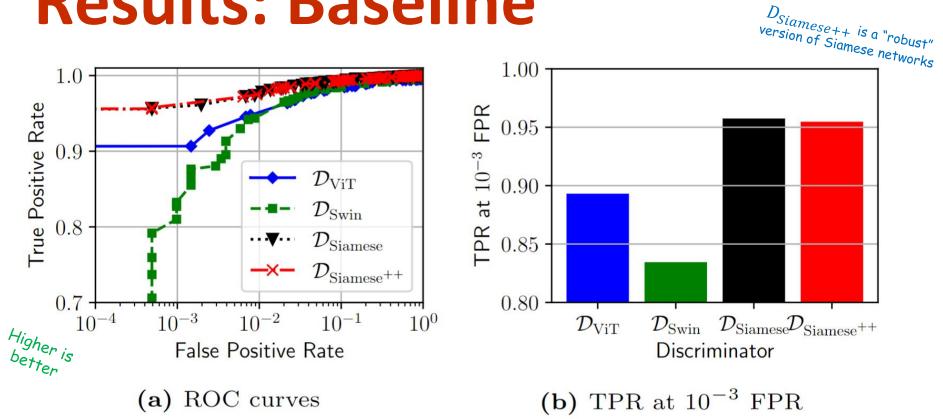
Results: Baseline





Giovanni Apruzzese, PhD qiovanni.apruzzese@uni.li

Results: Baseline



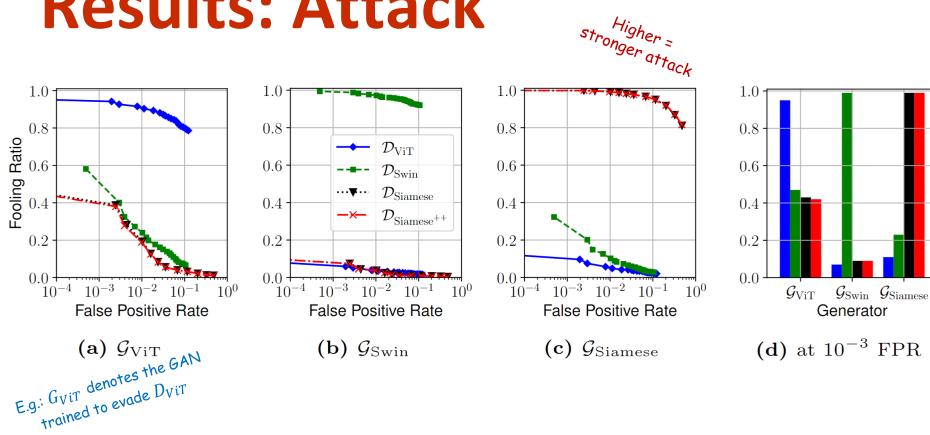
Takeaways:

- 1. Our baselines "work well" (in the absence of attacks!)
- 2. ViT and Swin are slightly worse than Siamese...

True Positive Rate

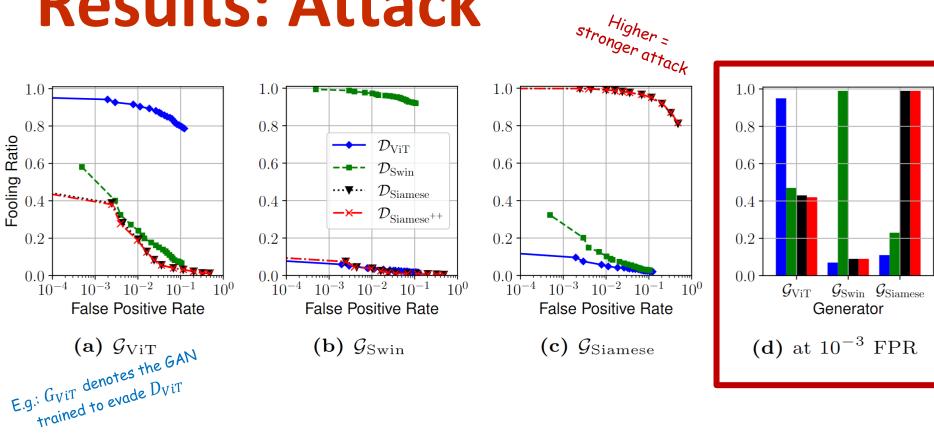
Giovanni Apruzzese, PhD qiovanni.apruzzese@uni.li

Results: Attack



Giovanni Apruzzese, PhD qiovanni.apruzzese@uni.li

Results: Attack

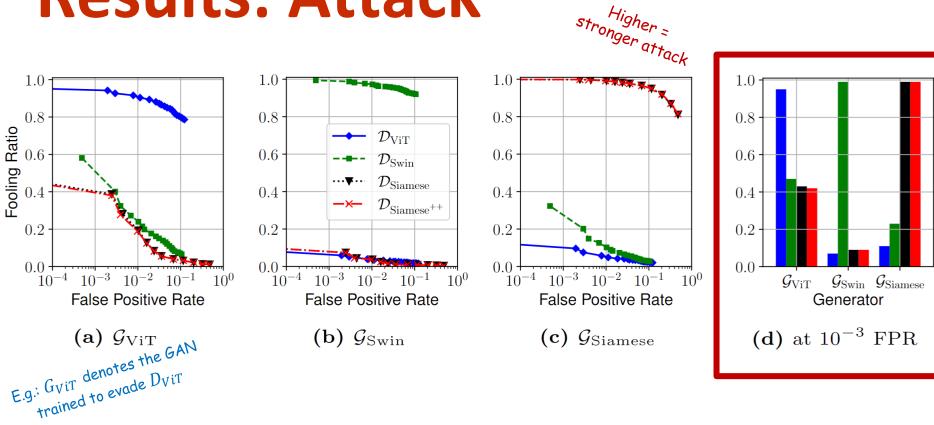


Takeaways:

- When the attacker and defender use the same model, the attack is ~100% effective 1.
- 2. ViT is the "more robust" detector! (if the attacker is blind)

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

Results: Attack



Takeaways:

- 1. When the attacker and defender use the same model, the attack is ~100% effective
- 2. ViT is the "more robust" detector! (if the attacker is blind)

Table 1: Training time for the perturbation generator	rs
---	----

	9ViT	9Swin	9 Siamese	_
Avg. training time per epoch (min.)	12	23	8	_
No. of epochs for 0.9 fooling ratio	62	12	1	
Training time for 0.9 fooling ratio (min.)	744	277	8	

Come Come Com

Training G_{Vit}is very expensive!

Results: Humans?

• We ask ourselves the following research question (RQ):

Given a pair of logos (i.e., an 'original' one, and an 'adversarial' one), can the human spot any difference?

Results: Humans?

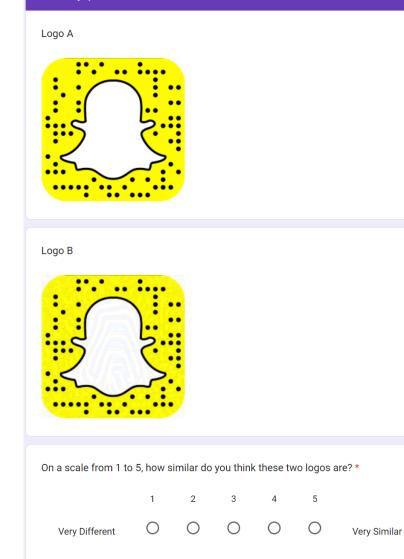
• We ask ourselves the following research question (RQ):

Given a pair of logos (i.e., an 'original' one, and an 'adversarial' one), can the human spot any difference?

- We carry out <u>two user-studies</u> to answer our RQ:
 - Vertical Study: small population (N=30) of similar users; 10 questions, but different for every participant.
 - Horizontal Study: large population (N=287) of heterogeneous users; 21 fixed questions for all participants.

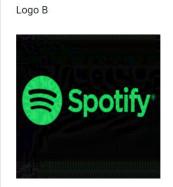
Results: Humans?

Look at these two images for no more than 5 seconds, and then answer the similarity question.



Look at these two images for no more than 5 seconds, and then answer the similarity question.

Logo A

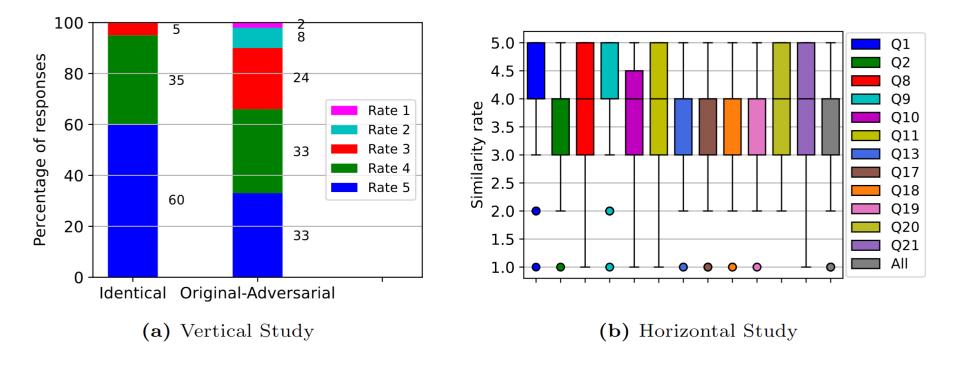


On a scale from 1 to 5, how similar do you think these two logos are? $\ensuremath{^*}$

	1	2	3	4	5	
Very Different	0	0	0	0	0	Very Similar

Results: Humans? Deceived.

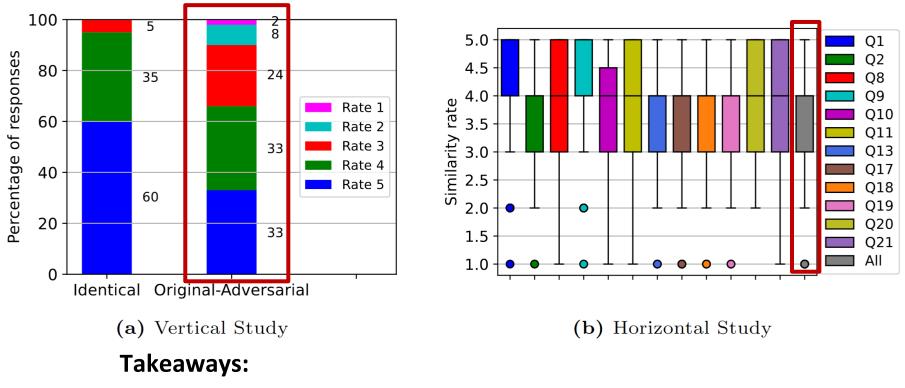
 For every question, users had to say how "similar" the two logos were (5= very similar, 1= not similar at all)



Giovanni Apruzzese, PhD

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li Results: Humans? Deceived

 For every question, users had to say how "similar" the two logos were (5= very similar, 1= not similar at all)



1. Vertical Study: over 85% of participants rated >=3 similarity

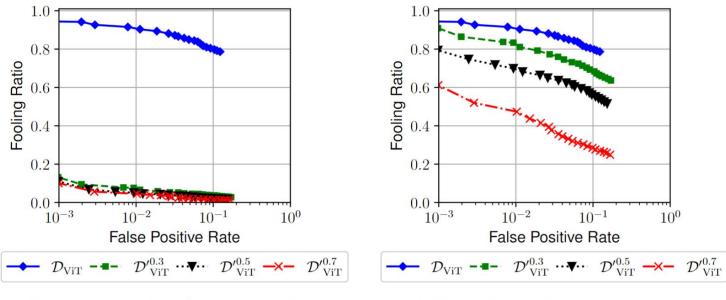
2. Horizontal Study: the average similarity per question was >=3

Countermeasures?

- Can adversarial logos be countered?
 - If so, can an adversary launch a counterattack?

Countermeasures?

- Can adversarial logos be countered?
 - If so, can an adversary launch a counterattack?



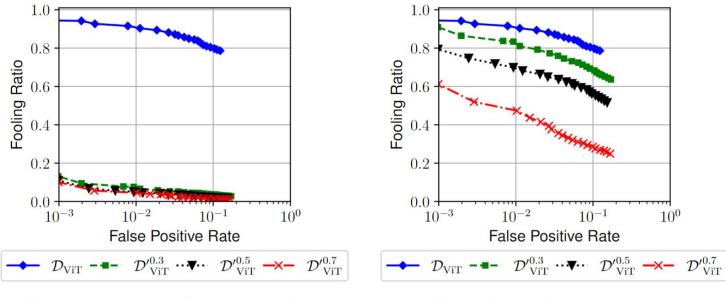
- (a) Against original generator \mathcal{G}_{ViT}
- (b) Against adaptive generators

Fig. 8: Performance of discriminator and generator due to adversarial training

We use the logos generated by Gvit for retraining

Countermeasures?

- Can adversarial logos be countered? → Yes ☺
 - If so, can an adversary launch a counterattack? → Yes ⊗



(a) Against original generator \mathcal{G}_{ViT}

(b) Against adaptive generators

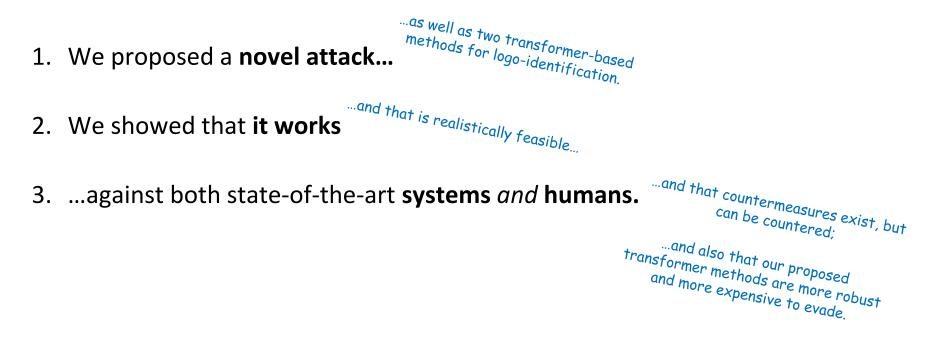
Fig. 8: Performance of discriminator and generator due to adversarial training

We use the logos generated by Gvit for retraining

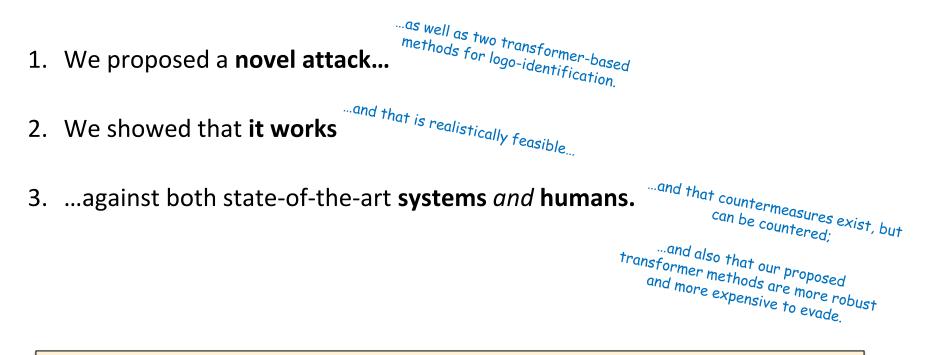
Conclusions

- 1. We proposed a **novel attack...**
- 2. We showed that **it works**
- 3. ...against both state-of-the-art systems and humans.

Conclusions



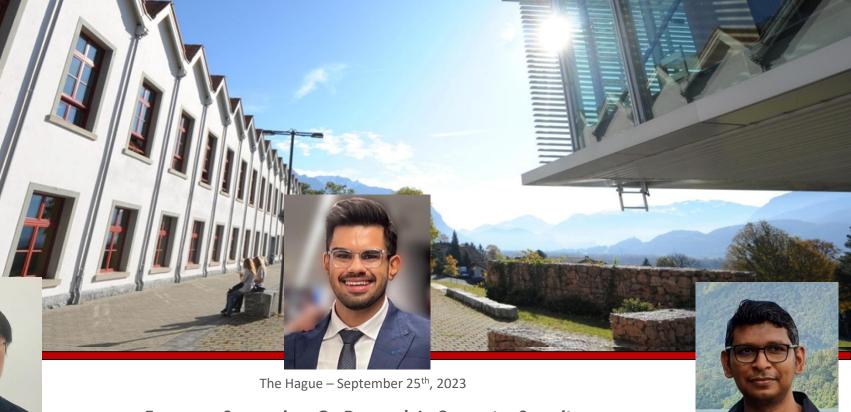
Conclusions



We focus on the Logo-discriminator.

Future research: consider other elements of a phishing detector, and assess the response of humans to the evasive samples!

All of our resources are publicly available [1]



European Symposium On Research In Computer Security

Attacking Logo-based Phishing Website Detectors with Adversarial Perturbations

Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal, <u>Giovanni Apruzzese</u>, Dinil Mon Divakaran

