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WHY?
o Phishing websites are everywhere

o Countermeasure: visual similarity techniques reliant on deep learning

• Trendy in research [7] but also deployed in practice [50]

[7] Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website detection by visual similarity. ACM CCS (2020)
[50] Apruzzese, G., et al.: “Real Attackers Don’t Compute Gradients”: Bridging the Gap Between Adversarial ML Research and Practice. IEEE SaTML (2023)
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Logo-based Phishing Website Detection

We focus on the Logo-discriminator.

Done 
via DL

Problem: these systems are tweaked to minimize false positives.
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Our attack: adversarial logos
Intuition: create an adversarial logo that is

(i) minimally altered w.r.t. its original variant; 
and that (ii) misleads the logo discriminator.

mailto:giovanni.apruzzese@uni.li


14

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li
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1. Knowledge:

• the attacker expects the detector to have the “phished” brand(s) in the 
protected set (and that its logos are inspected)

2. Capabilities: 

• the attacker can observe the decision of the detector

• the attacker can manipulate their phishing webpages

3. Strategy: Manipulate the logo so that the discriminator has a lower 
confidence → the detector will default to a “unknown webpage”

Our attack: adversarial logos
Intuition: create an adversarial logo that is

(i) minimally altered w.r.t. its original variant; 
and that (ii) misleads the logo discriminator.
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o We propose two novel methods for logo-identification: ViT and Swin

• Both ViT and Swin leverage transformers [23, 36].

Evaluation: Discriminators

[23] Dosovitskiy, A., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)
[36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021)
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o We propose two novel methods for logo-identification: ViT and Swin

• Both ViT and Swin leverage transformers [23, 36].

o We will show that these methods reach state-of-the-art performance (currently 
obtained by Siamese networks [34])

• Siamese networks have been assessed in white-box settings
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o Our attack applies a “Generative Adversarial Perturbations” (GAP)

o The GAP automatically “learns” to craft adversarial logos that mislead the logo 
discriminator – while being minimally altered.

Evaluation: Attack
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Takeaways:

1. Our baselines “work well” (in the absence of attacks!)

2. ViT and Swin are slightly worse than Siamese…

Results: Baseline
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o We ask ourselves the following research question (RQ):

Results: Humans?

Given a pair of logos (i.e., an ‘original’ one,  and an 
‘adversarial’ one), can the human spot any difference?
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o We ask ourselves the following research question (RQ):

o We carry out two user-studies to answer our RQ:

• Vertical Study: small population (N=30) of similar users; 10 questions, but 
different for every participant.

• Horizontal Study: large population (N=287) of heterogeneous users; 21 fixed 
questions for all participants.

Results: Humans?

Given a pair of logos (i.e., an ‘original’ one,  and an 
‘adversarial’ one), can the human spot any difference?
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o For every question, users had to say how “similar” the two logos were 
(5= very similar, 1= not similar at all)

Results: Humans? Deceived!

mailto:giovanni.apruzzese@uni.li


32

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

o For every question, users had to say how “similar” the two logos were 
(5= very similar, 1= not similar at all)

Results: Humans? Deceived!

Takeaways:

1. Vertical Study: over 85% of participants rated >=3 similarity

2. Horizontal Study: the average similarity per question was >=3
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o Can adversarial logos be countered? 

• If so, can an adversary launch a counterattack?

Countermeasures?
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o Can adversarial logos be countered? → Yes ☺

• If so, can an adversary launch a counterattack? → Yes 

Countermeasures?
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1. We proposed a novel attack…

2. We showed that it works

3. …against both state-of-the-art systems and humans.

Future research: consider other elements of a phishing detector, and assess 
the response of humans to the evasive samples!

Conclusions

We focus on the Logo-discriminator.

All of our resources are publicly available [1]
[1]: https://github.com/JehLeeKR/Adversarial-phishing-logos
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