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Introduction

— The 5G Network Infrastructure (NI) requires to support millions of devices while guaranteeing
optimal quality of service.

— ML is expected to play a crucial role in 5G NI.

— Problem: lack of realistic security assessments of specific threats to ML in 5G scenarios.
> Conventional security aspects: v/
> ML-specific security: X

— Challenge: addressing ML-specific threats in 5G NI is difficult.
> ML methods can be deployed anywhere in the 5G NI
—> necessity of providing a general threat model

> The currently deployed 5G NI does not use ML yet, and available data is scarce
—> how to evaluate realistic adversarial attacks?

In this talk:

* we propose a generic threat model of feasible ML attacks against the 5G NI.

* we present a realistic framework for the evaluation of such adversarial attacks.

* we assess adversarial attacks using the proposed threat model and evaluation framework.

- - UNIVERSITAT
LIECHTENSTEIN



Background

Giovanni Apruzzese

Pavel Laskov

— The primary goal of ML in 5G is to ensure the guaranteed levels of Quality of Service (QoS)

> At the foundation of 5G, are Service Level Agreements (SLA) between the providers of
the 5G NI and its tenants (service providers).

> If the 5G NI cannot meet the QoS in the SLA, then the 5G providers will incur in

substantial penalties ($SS).

— Network management is crucial to ensure that User Equipment (UE) receive proper QoS.
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Fig. 1: The 5G Ecosystem. The clients transparently use the network infrastructure deployed by the 5G tenants to reach the service providers.

— Prototype applications of ML in 5G Nl include Network Slicing or Power Allocation
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Motivation

— Using ML in 5G exposes to specific security risks: adversarial attacks.
> Tiny perturbations in the input data cause a given ML model to predict an incorrect output.

— The threat of Adversarial Examples has been recognized at many levels (e.g., NIST [1] or EU [2]).
— Existing threat models are inadequate: adversarial attacks are usually very effective...

...but the underlying assumptions portray extremely strong attackers.
— Attacks with high impact but little feasibility are irrelevant and misleading for practical deployment

- Thereis a need of a proper assessment. This requires the definition of a realistic threat model.
- The multiple applications of ML in 5G require the threat model to be general.
- The effects of attacks conforming to the threat model must also be evaluated in a realistic way.
—  Evaluations are difficult: the current 5G NI hardly uses ML yet.

>  Which ML method to consider?

> Which data to use?

> How to craft realistic adversarial samples?
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Source: [1] Tabassi, Elham, et al. "A taxonomy and terminology of adversarial machine learning." NIST IR (2019).
[2] https://www.enisa.europa.eu/news/enisa-news/enisa-ai-threat-landscape-report-unveils-major-cybersecurity-challenges
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Myopic Threat Model — Application Scenario
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Myopic Threat Model — Definition

— The attacker can be characterized as follows:
> Goal. Cause damage to the 5G NI provider through untargeted adversarial attacks.

> Knowledge. Limited to: (i) there is a ML component M performing a network-related task; and (ii)
the data-type analyzed by M -> used to identify a subset of its features F € F

> Capability. Constrained: can only control the UE she owns; no control on the 5G NI; cannot inspect
the specific output of M; can only consciously influence a subset of known features F € F in the
problem space = such changes will affect also features beyond the attacker’s knowledge F 2 F

> Strategy. Guessing a perturbation by altering the normal behaviour of her UE(s), thus resulting in
an adversarial example that may fool M.

— We define this type of attacks as “myopic” adversarial attacks.
TABLE I: Myvopic threat model vs existing ‘box’ threat models.
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Source: [No box attacks] Chen, Pin-Yu, et al. "Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute
models." Proceedings of the 10th ACM workshop on artificial intelligence and security. 2017.
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Myopic Threat Model — Generality

— The myopic threat model can be used to design hundreds of different adversarial scenarios.
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Realistic Evaluation Framework - Challenges
— Evaluating real adversarial attacks requires to operate in the problem-space [3].
— In the case of myopic attacks, this requires to:
> manipulate the UE owned by the attacker (easy!);
> have the corresponding data collected by the 5G infrastructure (tough!); and
> analyzed by some ML model (impossible!)

This cannot be done today ®

— How to overcome such limitation and provide realistic assessments?
> Use prototype SotA ML components for 5G
> Devise such ML components though publicly available datasets containing raw data
> Apply the adversarial perturbation on raw data contained in such datasets

» Once the perturbed raw data is transformed into its feature representation, we will
obtain the corresponding adversarial example.

» We define such perturbation as a “Raw-data space Perturbation” (RsP)
- i UNIVERSITAT
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Source: [3] Pierazzi, Fabio, et al. "Intriguing properties of adversarial ml attacks in the problem space." IEEE Symposium on Security and Privacy (SP). 2020.
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Realistic Evaluation Framework - Workflow
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Fig. 3: Workflow of the proposed 5G ML security evaluation framework.
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Case Study — Power Allocation
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Power Allocation: the distance between a UE and its gNB can be analyzed by DL to predict how
much power to allocate to the gNB. This is done by adjusting the spectral efficiency.

A myopic attacker can “spoof” his geographical position, faking the true distance to the gNB.

- When such data is analyzed by the target DL model, it will be subject to a myopic attack
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The result of such simple attack show that even a state of the art DL model can be fooled with
such simple strategies — which require almost no preparation by the attacker!

Interestingly, a myopic attacker would be successful through unsuccessful adversarial examples!
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Source: L. Sanguinetti, A. Zappone, and M. Debbah, “Deep Learning for Power Allocation in massive MIMO,” Proc. IEEE Asilomar Conf. Sig. Syst. Comp., 2018
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Case Study — Network Slicing through NetFlows

— Network Slicing aims at “slicing” the network resources to suit the demands of the environment.

— We consider a case study where network traffic (in the form of NetFlows) is analyzed by a RF to
predict if it is “active” or “background” (which should be given higher/lower priority).

— A myopic attacker can influence a similar system by modifying the behavior of her UEs., e.g., by
increasing the payload or duplicating packets.

- The attack occurs when the packets are converted to NetFlows and analyzed by the RF.
- The attack can also occur if the “myopic flows” are used to retraining (expected in 5G).
- We also evaluate Defensive Distillation as a defense to Myopic Attacks
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— In some cases, the myopic attacks are not very effective, but in others they can significantly
decrease the performance — of single UEs, or of the whole network.
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Conclusions

— The 5G infrastructure will greatly benefit from ML methods.

— For real deployments, it is crucial to evaluate the robustness of ML to adversarial examples.
> Existing adversarial ML threat models are inadequate
> Realistic assessments are difficult

— We proposed a realistic and general threat model that can be used to design adversarial
attack scenarios against the 5G network infrastructure.

— We showed a realistic framework for the evaluation of adversarial attacks.
— We assess the impact of attacks conforming to the proposed threat model.

— We show that even small changes can effectively fool state of the art ML approaches.
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Myopic Threat Model — Application Scenario

— Multiple heterogeneous devices that are receiving the services provided by the 5G network
infrastructure

— The data generated by the environment is then received, collected and analyzed by the
organization managing the 5G services

— Such data is analyzed by some ML method to assist some network function
— The environment receives the “feedback” of the 5G infrastructure

— Such feedback is the result of the combined effects of the entire 5G infrastructure to the
operations performed by the entire environment

— The attacker is a client in the 5G network infrastructure, with full control on her UE but that is
subject to realistic constraints; she has limited visibility into the 5G infrastructure.

Environment

- . UNIVERSITAT
LIECHTENSTEIN 16

I 1
' 1
' . 1
: t 4 : ,

: Y o M(x) classification Y :
: Network e I
. Function - :
y S &
x Output & |
' 1
. ' analysis'
N (M) N (M) .
7 ‘ , 7 2= feature X
extraction = .

e — Fx !

+=O :

e Pre-processed :

Data sample .

'

'

)




