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whoami: Dr. Giovanni Apruzzese . l

o Background:

* Did my academic studies (BSc, MSc, PhD) @ University of Modena, Italy. |
— Supervisor: Prof. Michele Colajanni “‘-’“’

* In 2019, spent 6 months @ Dartmouth College, USA.
— Supervisor: Prov. VS Subrahmanian

* Joined the University of Liechtenstein in July 2020 as a PostDoc Researcher.
— Supervisor: Prof. Pavel Laskov

*  Was “promoted” to Assistant Professor in September 2022.

o Interests:
* Cybersecurity, machine learning, and any network-related topic (+ £)
* | like talking, researching and teaching —in a “blunt” way ©

o Contact information:

* Email (work): giovanni.apruzzese@uni.li

*  Website (personal): www.giovanniapruzzese.com

* Feel free to contact me if you have any questions.
— I reply fast, and will happily do so!
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What | do

Machine Learning + Cybersecurity

o Applying ML to provide security of a given information system
 E.g.:using ML to detect cyber threats

o Attacking / Defending ML applications
 E.g.: evading a ML model that detects phishing websites

o Using machine learning offensively...
e ..against another system (e.g.: artificially generating “fake” images)
e ..against humans (e.g., violating privacy)

BONUS
o Using ML to attack an ML-based security system and harden it
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Outline of Today

o Fundamentals of Machine Learning and Cybersecurity

. Ref: Giovanni Apruzzese, et al. “The Role of Machine Learning in Cybersecurity.” ACM Digital Threats: Research and Practice (2022)

Using unlabelled data for Machine Learning in Cyberthreat Detection

. Ref: Giovanni Apruzzese, Pavel Laskov, Aliya Tastemirova. “SoK: The Impact of Unlabelled Data for Cyberthreat Detection.” IEEE European
Symposium on Security and Privacy (2022).

The security of Machine Learning-based Phishing Website Detectors

. Ref: Giovanni Apruzzese, Mauro Conti, Ying Yuan. “SpacePhish: The Evasion-space of Adversarial Attacks against Phishing Website
Detectors using Machine Learning”. Annual Computer Security Applications Conference (2022).

Machine Learning Security in the Real-World

. Ref: Giovanni Apruzzese, David Freeman, Savino Dambra, Hyrum S Anderson, Kevin Alexander Roundy, Fabio Pierazzi “’"Real Attackers
Don’t Compute Gradients’: Bridging the Gap Between Adversarial ML Research and Practice.” TBD

Using Machine Learning to violate the Privacy of Video Gamers

. Ref: Pier Paolo Tricomi, Giovanni Apruzzese, Lisa Facciolo, Mauro Conti. “Attribute Inference Attacks in Online Multiplayer Video Games:
a Case Study on Dota2.” TBD

Adversarial Attacks against Humans and Machine Learning

. Ref: Johannes Schneider, Giovanni Apruzzese. “Concept-based Adversarial Attacks: Tricking Humans and Classifiers alike.” IEEE
Symposium on Security and Privacy — Deep Learning and Security Workshop (2022)
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Fundamentals of Machine Learning and
Cybersecurity
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Machine Learning workflow: Training and Testing
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Do you think that training ML models is difficult?
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Do you think that training ML models is difficult? — Maths
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Do you think that training ML models is difficult? — More Maths
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Do you think that training ML models is difficult? — More Maths ©
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Do you think that training ML models is difficult? — One line

#train the classifier (rf _clf) using the training data (train[features]) with corresponding Labels (y)
print("Training...")

rf clf.fit(train[features],y)
print("Done")

- . UNIVERSITAT
LIECHTENSTEIN
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Do you think that training ML models is difficult? — The real problem

#train the classifier (rf _clf) using the training data (train[features]) with corresponding Labels (y)
print("Training...")

rf clf.fit(train[features],y)

print("Done")

- . UNIVERSITAT
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Do you think that training ML models is difficult? — The real problem

#train the classifier (rf _clf) using the training data (train[features]) with corresponding Labels (y)
print("Training...")

rf clf.fit(train[features],y)

print("Done")

Of course, you’re always free to go, learn and improve the fif function:
https://github.com/scikit-learn/scikit-learn/blob/batf828cal/sklearn/ensemble/ forest.py#[.297
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Common issues of ML in Cybersecurity

Applying Machine Learning requires data to train an ML model
Depending on the “problem” solved by such model, the data may require labels
Obtaining (any) data has a cost, and labelled data is (very) expensive

Machine Learning models are ultimately just a component within a system
Such ML models can be targeted by “Adversarial Attacks”
Such strategies ultimately aim to compromise the functionality of the ML model.

The cybersecurity domain implicitly assumes the presence of attackers.
Attackers are human beings, and hence operate with a cost/benefit mindset
Such considerations must be made when analyzing the security of (any) IT system

— “There is no such thing as a foolproof system. If you believe you have one, then you
failed to take into account the creativity of fools” [source]
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Common issues of ML in Cybersecurity (cond’d)
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Fig. 9. Machine Leaning in the presence of Concept Drift. The ML model expects that the data will not deviate from the one
seen during its training. In cybersecurity, however, the environment evolves, and adversaries also become more powerful.
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Unlabelled data for Machine Learning in
Cyberthreat Detection
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Once upon a time...

o At the beginning of 2021, | was having a meeting with Prof. Pavel Laskov,
brainstorming about new research directions on Machine Learning (ML)

o Pavel: “We should look at Semisupervised Learning, it’s very trendy now!”

- . UNIVERSITAT
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Semisupervised Learning

o Labelled data is expensive, but unlabelled data is cheap(er)

- Why not using unlabelled data to improve the proficiency of ML models?

Mixing labelled with unlabelled data is a ML approach denoted as
“Semisupervised Learning” (SsL)
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- & The assumptions of SsL appears to be enticing for Cyberthreat Detection (CTD)
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Once upon a time... (cont’d)

o At the beginning of 2021, | was having a meeting with Prof. Laskov,
brainstorming about new research directions on Machine Learning (ML)

o Pavel: “We should look at Semisupervised Learning, it’s very trendy now!”

o It was the first time | directly tackled SsL, so | did what most researchers do
when they start focusing on a new topic:

* |looked into existing literature on SsL applications for CTD...
e ...and started to replicate (basic) SsL methods on public CTD datasets

- . UNIVERSITAT
LIECHTENSTEIN
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All that glitters is not gold...

o My initial results portrayed SsL to be bad.
* Like, really bad ©

o As a sanity check, | asked a MSc. student (Aliya Tastemirova) to:
* independently replicate the SsL methods | developed
e and evaluate their performance on different CTD datasets

o Her results confirmed my initial findings.

o We (Pavel, Aliya, and I) had a joint meeting, and we decided to dig deeper:
e either all of us were wrong...
e ...or something odd was going on between the lines.

- . UNIVERSITAT
LIECHTENSTEIN
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Bad performance?

o In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score
by using ~100 labels and thousands of unlabelled samples.

o One could claim such performance to be good...

- . UNIVERSITAT
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Bad performance? (cont’d)

o In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score
by using ~100 labels and thousands of unlabelled samples.

o One could claim such performance to be good...

o ..unless a (traditional) supervised learning classifier using only 100 labels
(without any unlabelled data) achieved an F1-score of 0.91
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If SsL is bad, then why is it so trendy in research?

o We investigated all (ttbook) existing literature on SsL for CTD, asking ourselves:
“What are the benefits of unlabelled data in SsL?”

- . UNIVERSITAT
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If SsL is bad, then why is it so trendy in research?
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o We investigated all (ttbook) existing literature on SsL for CTD, asking ourselves:
“What are the benefits of unlabelled data in SsL?”
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Revealing the impact of unlabelled data in CTD

The state-of-the-art does not allow to determine whether using unlabelled data is truly beneficial in CTD

o As a constructive step, in our paper we:
* Provide a set of requirements to estimate the benefits (if any) of using unlabelled data in CTD
* Propose a framework, CEF-SsL, that allows to meet all such requirements in research
* We experimentally evaluate CEF-SsL on 9 CTD datasets by considering 9 SsL methods.
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The security of Machine Learning-based Phishing
Website Detectors
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Current Landscape of Phishing

o Phishing attacks are continuously increasing

o Most detection methods still rely on blacklists of malicious URLs
* These detection techniques can be evaded easily by “squatting” phishing websites!

—— Malware sites  —— Phishing sites
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0 e ——
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Current Landscape of Phishing — Countermeasures

o Countering such simple (but effective) strategies can be done via data-driven methods

Website Phishing Website Detector
-y Benign
> Preprocessing > —O output
‘ ) Phishing
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Current Landscape of Phishing — Countermeasures (ML)

o Countering such simple (but effective) strategies can be done via data-driven methods

Website Phishing Website Detector

- Benign
Preprocessing -—Ooutput
: t.»! Phishing

o Such methods (obviously ©) include (also) Machine Learning techniques:

future
Dataset data
2D
( ML model »-----
M predict
Algorithm
A

o Machine Learning-based Phishing Website Detectors (ML-PWD) are very effective! [1]
* Even popular products and web-browsers (e.g., Google Chrome) use them! [2]
- . UNIVERSITAT
LIECHTENSTEIN
[1]: Tian, Ke, et al. "Needle in a haystack: Tracking down elite phishing domains in the wild." Internet Measurement Conference 2018.

[2]: El Kouari, Oumaima, Hafssa Benaboud, and Saiida Lazaar. "Using machine learning to deal with Phishing and Spam Detection: An overview." 29
Proceedings of the 3rd International Conference on Networking, Information Systems & Security. 2020.
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find € s.t. M(Fyx) = y5 # yx

- . UNIVERSITAT
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
F Benign
- ' :
H ;
a
- _>< Feature
[ ] X E .
Xtraction .
H .

Phishing

Website space Preprocessing space Machine Learning space Output space
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
F Benign
- ' :
H ;
a
- _>< Feature
[ ] X E .
Xtraction .
H .

Phishing

Website space Preprocessing space Machine Learning space Output space
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
F Benign
- ' :
H ;
a
- _>< Feature
[ ] X E .
Xtraction .
H .

Phishing

Website space Preprocessing space Machine Learning space Output space
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
...the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
F Benign
| | T
H ;
a
— ) Feature
X .
- < Extraction +==
H .

Phishing

Website space Preprocessing space Machine Learning space Output space
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Problem Statement: Adversarial Attacks against ML-PWD

o ML-PWD are good but...
o ..the detection of ML methods can be bypassed via (adversarial) evasion attacks!

o Adversarial Attacks exploit a perturbation, &, that induces an ML model, M, to
misclassify a given input, E,, by producing an incorrect output (y¢ instead of y,)

find ¢ s.t. M(Fx) = v # yx

o In the context of a ML-PWD, such & can be introduced in three ‘spaces’:

Website Machine Learning-based Phishing Website Detector
Feature set i
F Benign
- ' :
H :
a
- —><:., Feature
- ‘ Extraction +==
H .

Phishing

Website space Preprocessing space Output space

Machine Learning space

L Question: Which ‘space’ do you think an attacker 1s most likely to use?
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Website-space Perturbations (WsP) in practice — original example

Figure 4: An exemplary (and true) Phishing website, whose
URL is https://www.63y3hfh-fj39f30-f30ifof-f392.weebly.com/.

& atat e

~ Currently | yohoo! %MT
| BETTER e
= .ro GETHER g Email Address

Enter Password
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Website-space Perturbations (WsP) in practice — changing the URL

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/ |:> https://bit.ly/3MZHjt7

- . UNIVERSITAT
LIECHTENSTEIN

38


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Website-space Perturbations (WsP) in practice — changing the HTML

1 H<div>
2 % <form enctype="moltipart/form-data” action=
° f fwew cweebly . com/fweebly /apps/formSubmi t . php" mechod="POST" id=
"form-723155629711351878" >
3 <giv id="T231556297113921878-form-parent” class="wsite-form-container”
4 gtyle="margin-top:10px; ">
5 ul clazs="formliet" id="T2315562571139%1878-form-list">
S - [ <divr<div class="waite-form-field" style="margin:Spx Opx Spx Opx:;">
T <label class="wsite-form-label"” for="input-2279820181T79653776"»Email
S Address <span class="form-not-required">4</spans</labels
3 H <div class="wsite-lform-inpot-contaliner">
Exelpginss ] <input id="input-227982018179653776" class="wsite-form-input
waite-input wsite-inpot-width-3T70px" type="text" name=
i " wm2279820181796537T6" />
10 F <fdiv>
- 11 <div id="instructions-22798201B1796537T6" clazs="wsite-form-instructions"
style="display:none:"></div>
12 = <SfdivsCfdive
13
14 ::| <& href=", . /fake-link-to-nonexisting-resource"> @ 8 (WSP)
15 F <font styls="vizibility:hidden">Resonrce</font></a>
0
17 H<div><div class="wsite-form-field" style="margin:5px Opx Spx Opx;">
18 <label class="wsite-form-label"” for="input-435728588405554553"»Enter
UNIVERSITAT Password <span class="form-not-required">*</span></label>
- . 12 =] <div class="wsite-form-input-container">
LlECHTENSTEIN 20 <CeXxtarea 1d="inpot-433T28988405354593" clazs="wslite-form-input
wzite-input weite-inpont-width-370px" nams=" nd357T2H9884055545353" =tyle
="haight: 50px"></textarea>
21 = oy
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Website-space Perturbations (WsP) in practice — changing URL+HTML

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/ https://bit.ly/3MZHjt7

& atat

Email Address.

Entar Password

UNIVERSITAT
LIECHTENSTEIN

noule o

<

Hedivs
= <form enctype="moltipart/form-data” action=
° f fwew cweebly . com/fweebly /apps/formSubmi t . php" mechod="POST" id=
"form-723155629711351878" >
<giv id="T231556297113921878-form-parent” class="wsite-form-container”
E] gtyle="margin-top:10px; ">
E] <ul class="formlist" id="T23158629711391878-form-liet">
=] <divr<div class="waite-form-field" style="margin:Spx Opx Spx Opx:;">
<label class="wsite-form-label"” for="input-2279820181T79653776"»Email
| Address <span class="form-not-reguired">&</span></label>
H <div class="wsite-lform-inpot-contaliner">
input 1d="inpot-2279820181796533776" class="wsite-form-inpunt
waite-input wsite-inpot-width-3T70px" type="text" name=
" wm2279820181796537T6" />
</div>
<div id="instructions-22798201B1796537T6" clazs="wsite-form-instructions"
style="display:none:"></div>
{ <SfdivsCfdive

<& href=", . /fake-link-to-nonexisting-resource"> @ S WSP
F <font style="vizibility:hidden">Resource</font></a>

<div><div class="wesite-form-field" style="margin:S5px Opx Spx Opx;">
<label class="wsite-form-label"” for="input-435728588405554553"»Enter
Password <span class="form-not-required"»%*</span></label>
<div class="wsite-form-input-container">
<CeXxtarea 1d="inpot-433T28988405354593" clazs="wslite-form-input
w2l te-inpot weite-inpot-width-37T0px" nams=" nd357289884053554593" =tyle
="haight: 50px"></textarea>

Pl N T
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Evaluation — Workflow

o Such attacks appear cheap, but are they effective? Let’s assess their impact!
o We develop proficient ML-PWD (high tpr, low fpr)

(1) Setup . (2) Training

Benign

Train

Feature
Extraction

Source

Dataset R r ,,,,,,,,,,,,
(raw) :
Feature
Inference Extraction
(20%) o ,
(3) Testing tpr | for | :

- . UNIVERSITAT
LIECHTENSTEIN
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Evaluation — Baseline

o Such attacks appear cheap, but are they effective? Let’s assess their impact!
o We develop prof|C|ent ML-PWD (high tpr, low fpr)

(1) Setup i (2) Training EZ EE! b train
rain ‘
% : Feature p ™

Extraction 2

Source T
 Batase , e R (#)-
(raw) Benign .
: B

Feature
Extraction

(3) Testing

Inference
(20%)

Table 3: Performance in non-adversarial settings, reported as the
average (and std. dev.) {pr and fpr over the 50 trials.

o Results comparable to the —— J—
enoao phnisn
state-of-the-art © ANE tpr for tpr for

F4 0.96x0.008 0.021+0.0077 0.55x0.030 0.037+0.0076
CN | F" 0.88+0.018  0.155=x0.0165 0.81+0.019  0.008=0.0020
o Let’s attack such ML-PWD FC | 0970006 0.018x00088 || 0.93s0013  0.005:0.0025

° The tpr WI” decrease! F% 0.98+0.00¢  0.007=0.0055 0.45+0.022  0.003=0.0014
RF FT 0.93+0.013 0.025=0.0118 0.94+0.016 0.006=0.0025

F¢ 0.98+0.006 0.007=x0.0046 0.97+0.007 0.001x0.0011

.UN|VERS|TAT F4 0.95x0.009 0.037x0.0100 0.24+0.017 0.011+0.0026
- LIECHTENSTEIN LR | F" | 0.82+0017 0.1440.0171 0.74+0.025  0.018+0.0036

F¢ 0.96+0.007 0.025x0.0077 0.81+0.020 0.013x0.0037
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Results — Are WsP effective?

C

mam no-atk
WA

. AT

. WAC

N LR

1.0
0.9
0.8
0.7
0.6

805
0.4
0.3
0.2
0.1
0.0/

FC FL‘ Fr FC FU Fr FC FLJ FF 00 FC Fu‘ Fr FC FLJ FJ" FC FL‘ Fr

(a) Impact of WA on the ML-PWD trained on Zenodo. (b) Impact of WA on the ML-PWD trained on §Phish.

o Insome cases, NO
* This is significant because most past studies show ML-PWD being bypassed “regularly

o Insome cases, VERY LITTLE

* This is also significant, because even a 1% decrease in detection rate can be problematic when
dealing with millions of samples!

)
!

o In other cases, YES
e Thisis very significant, because WsP are cheap and are likely to be exploited by attackers!

- I UNIVERSITAT Bottom line: no free lunch!
LIECHTENSTEIN
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In general, attacks in the other spaces (via PsP and MsP) are more disruptive...

1.0
0.8
_ 0.6
o
0.4
0.2
0.0

1.0
0.8

_ 0.6

o

+= 0.4
0.2
0.0

1.0

0.8
= 0.6
A

0.4

0.2

0.0

LR, F© (true baseling)

LR, F¥ {robust vs repr)

LR, F" {robust ws url)

=

A PA A
RF, F© {true baseline)

WA PA MA

RF, FY {robust vs repr)

Atk F
urf

- repr

- b -

Wa [ MA
RF, F" (robust vs url)

A FA M
CN, F* {true baseling)

wa PA MA
CN, FY (robust vs repr)

111!
'ggaf‘

WA PA M
CM, F" (robust vs urf)

=

WA PA MA

Wwa PA MA

F

Atk
el
repr
cmb
WA

R
FA MA

1.0
0.8
_ 0.6
[= N
0.4
0.2
0.0

1.0
0.8
_ 0.6
[= R
0.4
0.2
0.0

1.0

0.8
= 0.6
E=

0.4

0.2

0.0

LR, F (true baseling)

LR, F“ (robust vs repr)

LR, F" (robust vs url)

‘ ‘ i I i
ek F
ur!
m— rqpr
—cmt
WA PA MA WA  PA MA WA PA MA
RF, F* (true baseline) RF, FY (rebust vs repr)  RF, F" (robust vs url)

Wi P MA
CM, F* (true baseline)

WA PA MA
CM, FY (robust vs repr)

MA

WA PA
CM, F" {robust vs urf)

wa PA MA

WA PA MA

F

| | |
g
url

- repr
 emb

Wa PA

MA

(a) Zenodo. Each plot reports the #pr resulting from the 9 advanced attacks (i.e., (b) dphish. Each plot reports the tpr resulting from the 9 advanced attacks (i.e.,
WA, PA, MA) across the 50 trials. Colors denote the targeted features (u, r, c). o

WA, PA, MA) across the 50 trials. Colors denote the targeted features (u, r, ).

However, such attacks also have a higher cost!
Will real attackers truly use them just to evade a ML-PWD?

UNIVERSITA

LIECHTENSTE~
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Demonstration — Evading a competition-grade ML-PWD

o https://tinyurl.com/spacephish-demo

- . UNIVERSITAT
LIECHTENSTEIN
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Adversarial Attacks against
Humans and Machine Learning
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Scenario

o Deep Learning (DL) is used for a plethora of applications.

o In some cases, however, the “decision making” is based on:
* The output of a DL model
* The interpretation of a human to such output

- . UNIVERSITAT
LIECHTENSTEIN
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Scenario

o Deep Learning (DL) is used for a plethora of applications.

o In some cases, however, the “decision making” is based on:
* The output of a DL model
* The interpretation of a human to such output

o Case in point: online marketplace
* A person wants to sell an item (e.g., a car)

* This person (i.e., the seller) uploads the images of such an item on an online
marketplace

* The marketplace automatically provides an estimate of the “value” of the
corresponding item
— This is done via DL [3]
* Another person (i.e., a potential buyer) looks at the images, then looks at the
“suggested” price, and determines whether to buy or not the corresponding item
— The human uses the output of the DL model to make their decisions
L eI

[3] A. Varma, A. Sarma, S. Doshi, and R. Nair, “House price prediction using machine learning and neural networks,” in 2018 Second International
Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, 2018, 49
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Attack — what if...

o What if the seller has malicious intentions?
- The seller may want to induce the DL model to estimate a higher price

o Doing this by introducing “imperceptible” perturbations may trick the DL...

o ..but notthe human!

- . UNIVERSITAT
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Attack — what if...

o What if the seller has malicious intentions?
- The seller may want to induce the DL model to estimate a higher price

o Doing this by introducing “imperceptible” perturbations may trick the DL...

o ..but notthe human!

Hamster(35.79%)

H 0 ) Reference: Su Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural
N I p p I e ( 4 2 2 3 6 / 0 networks." IEEE Transactions on Evolutionary Computation (2019) 5 1
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Attack — what if...

o What if the seller has malicious intentions?
- The seller may want to induce the DL model to estimate a higher price

o Doing this by introducing “imperceptible” perturbations may trick the DL...

o ..but notthe human!

In some cases, “imperceptible” perturbations
may not be what an attacker wants!

&

This is especially true when there is a
“human-in-the-loop”.

Hamster(35.79%)

H 0 ) Reference: Su Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural
N I p p Ie ( 4 2 2 3 6 / 0 networks." IEEE Transactions on Evolutionary Computation (2019) 5 2
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Solution (high-level)

o If humans are involved in the “decision making” process, then such humans will react to
clearly incorrect outputs of DL models.

 Humans may suspect an adversarial attack taking place; or

* They may think that the DL model is faulty, and hence not trust/believe its output

 Both of the above are detrimental for the attacker!

- . UNIVERSITAT
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Solution (high-level)

o If humans are involved in the “decision making” process, then such humans will react to
clearly incorrect outputs of DL models.

 Humans may suspect an adversarial attack taking place; or

* They may think that the DL model is faulty, and hence not trust/believe its output

 Both of the above are detrimental for the attacker!

(Malicious) solution: deceive both the human and the DL model!

o A DL model that thinks that a “FIAT Panda” is a “VW Polo” will output a very high price
e But if the “perturbation” only affects a single pixel, nobody will fall for it!

o A FIAT Panda is clearly different than a VW Polo, so the perturbation (whatever it is)
must be perceived by the human

- The FIAT Panda must be changed in such a way that the human can be somewhat fooled
* E.g.:the human should think that “it could be a Panda... but it could also be a Polo”

e FIAT Panda MSRP: ~10k $ S ,,_7

* VW Polo MSRP: ~20k $
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Solution (low-level) — How to achieve this in practice?

Concept-based Adversarial Attacks

o Theidea is using “explainability” techniques [4] to create adversarial examples.

- . UNIVERSITAT
LIECHTENSTEIN
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Solution (low-level) — How to achieve this in practice?

Concept-based Adversarial Attacks

o Theidea is using “explainability” techniques [4] to create adversarial examples.

o Requirements:
* An “original sample” (i.e., a FIAT Panda)
* Adesired “target sample” (i.e., a VW Polo)

* A given magnitude of the perturbation (neither too big nor too small)
— |If the FIAT Panda “becomes” a VW Polo, then the adversarial attack would be unfair
- ...and the “buyer” will complain ©
* The details of a DL model — based on Convolutional Neural Networks (CNN)
— These attacks can be transferred!
— IMPORTANT: the training procedure of the targeted CNN is not affected!

o Output: an “adversarial example” that is a mix between the original and target sample

Original M.,
sample X, | ' R(M. (X))

| . E(R(M(Xo)))
[ Model M |Ls |——" DecoderR 1~ = EncoderE v 1. Adversarial
p sample X,
[
‘1:3 Decoder R’ |—>D
Target ‘ |
> Encoder E

Latent space

|
- l sample X, @ E(X;)

[4] J. Schneider and M. Vlachos, “Explaining neural networks by decoding layer activations,” in International Symposium on Intelligent Data Analysis, 2021 56
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Experiments — Objectives

Given the following:

o Original sample, O

o Targetsample, T

o Adversarial sample, A

We design our experiments with three goals in mind:

1. Misclassification: the sample A should be classified as the class of 7 (which is different
than the class of O)

2. Resembling the target sample: the sample A should be similar to sample T as
measured by a given function f (e.g., the L2-norm)

3. Remaining closer to the original sample: the sample A should be similar to sample O as
measured by a given function f (e.g., the L2-norm)

- . UNIVERSITAT
LIECHTENSTEIN
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Experiments — Testbed

We consider two scenarios, each associated to a given dataset: MNIST and Fashion-MNIST.

Such datasets are used to train three CNN models:
o VGG-11 < our baseline

o VGG-13

o Resnet-10

We will showcase the adversarial transferability by using CNN with different architectures.

We consider four methods to generate A by “shifting” O towards T, namely:
i. Autoencoder 1 (we “deconstruct” O and recreate it to resemble T)

ii. Autoencoder 2 (as the previous one, but by using different layers)

iii. Classifier encoding (i.e., we shift O towards T in the last layer of the CNN)
iv. No encoding (i.e., linear interpolation from O to T)

- . UNIVERSITAT
LIECHTENSTEIN
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Results — Qualitative

O T c/li cflii cfliii cAiV O T dqi dqii .;ﬂ“l dqiv

Ml aEnnnn
L] FINEIEIEIE]
Az SlI[3[$]5]F
Al 1 EIEIEIEIE]
ElENnE GBAREEE

Yes No

—

2: Original, target and adversarial samples for different en-/decodings and interpolation for Fashion-MNIST(lelt) and MNIST(right). Yes/No indicates,
wh-.,lhl.,r the model got fooled by X 4, 1.e. it outputs the class of X for X 4
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Results — Qualitative (takeaway)

O T dqi cflii c/liil iv O T dqi dqii cﬂ“l dqiv

e nm..

0]

NP GNEBEEEH

1] | BENBEAA
il GREEGE

Fig. 2: Original, target and adversarial samples for different en-/decodings and interpolation for Fashion-MNIST(left) and MNIST(right). Yes/No indicates,
wh-.,lhl.,r the model got fooled by X 4, 1.e. it outputs the class of X for X 4

— Using the Autoencoder (i1) appears to be the best method to generate a suitable A
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Results — Quantitative

TABLE I. Results for MNIST and FashionMNIST.
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» Generation | A—=T]| | A—=O|] Ace(CNN) Acc(CNN) Ace(CNN)
Dataset

Method Similarity to T~ Similarity to © VGG-11 VGG-13 Resnet-10

1 (autoencoder 1) 19.87+1.704 24 .85+0.11 0.28+0.081 0.26+0.079 0.27+0.084

MNIST 11 (autoencoder 2) 20.41+1837 24. 730172 0.21+0.078 0.240.077 0.2 +0.079

111 (classifier encoding) 24.38+171 24.T1+0.15 0.44+0.117 0.41+0.134 0.42+40.124

v (no encoding) 12424105 2473 +0.149 0.0840.073 0.11+x0.075 0.09+0.081

1 (autoencoder 1) 25.22 41365 14.92 40048 0.5340.065 0.53+0.065 0.51+0.06

Fashion- 11 (autoencoder 2) 25.84+1.436 14.85+0.03 0.57 +0.059 0.58+0.057 0.56+0.055

MNIST 111 (classifier encoding) 27.23+1.44 14.84 +0.037 0.64+0.052 0.62+0.056 0.62+0.049

1v (no encoding) 20.83+1317 14.95+0043 0.42+0.14 0.44+0.15 0.41+0.132

- . UNIVERSITAT
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Results — Quantitative (takeaway)

TABLE I. Results for MNIST and FashionMNIST.
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Generation | A—=T]| | A—O|] Ace(CNN) Acc(CNN) Ace(CNN)
Dataset
Method Similarity to T~ Similarity to © VGG-11 VGG-13 Resnet-10
1 (autoencoder 1) 19.87+1.704 24 .85+0.11 0.28+0.081 0.26+0.079 0.27+0.084
MNIST 11 (autoencoder 2) 20.41+1837 24. 730172 0.21+0.078 0.240.077 0.2 +0.079
111 (classifier encoding) 24.38+171 24.T1+0.15 0.44 40117 0.4140.134 0.42+0.124
v (no encoding) 12.42+125 24.73+0.149
1 (autoencoder 1) 25.22 41365 14.92 40048 0.5340.065 0.53+0.065 0.51+0.06
Fashion- 11 (autoencoder 2) 25.84+1.436 14.85+0.03 0.57 +0.059 0.58+0.057 0.56+0.055
MNIST 111 (classifier encoding) 27.23+1.44 14.84 +0.037 () 641005 ) 62005 ) 60100
1v (no encoding) 20.83+1317 14.954+0043

o Accuracy: the biggest drop is for “no encoding” (which are the most easily recognizable)
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Results — Quantitative (takeaway)

TABLE I. Results for MNIST and FashionMNIST.
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Generation | A—=T]| | A—O|] Ace(CNN) Acc(CNN) Ace(CNN)

Dataset

Method Similarity to T~ Similarity to © VGG-11 VGG-13 Resnet-10

1 (autoencoder 1) 19.87+1.704 24 .85+0.11 0.28+0.081 0.26+0.079 0.27+0.084
MNIST 11 (autoencoder 2) 20.41+1837 24. 730172 0.21+0.078 0.240.077 0.2 +0.079
111 (classifier encoding) 24.38+171 24.T1+0.15 0.44+0.117 0.41+0.134 0.42+40.124
v (no encoding) 12424105 2473 +0.149 0.0840.073 0.11+x0.075 0.09+0.081
1 (autoencoder 1) 25.22 41365 14.92 40048 0.5340.065 0.53+0.065 0.51+0.06
Fashion- 11 (autoencoder 2) 25.84+1.436 14.85+0.03 0.57 +0.059 0.58+0.057 0.56+0.055
MNIST 111 (classifier encoding) 27.23+1.44 14.84 +0.037 0.64+0.052 0.62+0.056 0.62+0.049
1v (no encoding) 20.83+1317 14.95+0043 0.42+0.14 0.44+0.15 0.41+0.132

o Accuracy: the biggest drop is for “no encoding” (which are the most easily recognizable)
o Transferability: the accuracy is (essentially) the same for all CNN
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Results — Quantitative (takeaway)

TABLE I. Results for MNIST and FashionMNIST.
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» Generation | A—=T]| | A—=O|] Ace(CNN) Acc(CNN) Ace(CNN)
Dataset

Method Similarity to T~ Similarity to © VGG-11 VGG-13 Resnet-10

1 (autoencoder 1) 19.87+1.704 24 .85+0.11 0.28+0.081 0.26+0.079 0.27+0.084

MNIST 11 (autoencoder 2) 20.41+1837 24. 730172 0.21+0.078 0.240.077 0.2 +0.079

111 (classifier encoding) 24.38+171 24.T1+0.15 0.44+0.117 0.41+0.134 0.42+40.124

v (no encoding) 12424105 2473 +0.149 0.0840.073 0.11+x0.075 0.09+0.081

1 (autoencoder 1) 25.22 41365 14.92 40048 0.5340.065 0.53+0.065 0.51+0.06

Fashion- 11 (autoencoder 2) 25.84+1.436 14.85+0.03 0.57 +0.059 0.58+0.057 0.56+0.055

MNIST 111 (classifier encoding) 27.23+1.44 14.84 +0.037 0.64+0.052 0.62+0.056 0.62+0.049

1v (no encoding) 20.83+1317 14.95+0043 0.42+0.14 0.44+0.15 0.41+0.132

o Accuracy: the biggest drop is for “no encoding” (which are the most easily recognizable)
o Transferability: the accuracy is (essentially) the same for all CNN
o Similarity to T: classifier encoding are the least similarto T
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TABLE I. Results for MNIST and FashionMNIST.
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» Generation | A—=T]| | A—=O|] Ace(CNN) Acc(CNN) Ace(CNN)
Dataset

Method Similarity to T~ Similarity to © VGG-11 VGG-13 Resnet-10

1 (autoencoder 1) 19.87+1.704 24 .85+0.11 0.28+0.081 0.26+0.079 0.27+0.084

MNIST 11 (autoencoder 2) 20.41+1837 24. 730172 0.21+0.078 0.240.077 0.2 +0.079

111 (classifier encoding) 24.38+171 24.T1+0.15 0.44+0.117 0.41+0.134 0.42+40.124

v (no encoding) 12424105 2473 +0.149 0.0840.073 0.11+x0.075 0.09+0.081

1 (autoencoder 1) 25.22 41365 14.92 40048 0.5340.065 0.53+0.065 0.51+0.06

Fashion- 11 (autoencoder 2) 25.84+1.436 14.85+0.03 0.57 +0.059 0.58+0.057 0.56+0.055

MNIST 111 (classifier encoding) 27.23+1.44 14.84 +0.037 0.64+0.052 0.62+0.056 0.62+0.049

1v (no encoding) 20.83+1317 14.95+0043 0.42+0.14 0.44+0.15 0.41+0.132

Accuracy: the biggest drop is for “no encoding” (which are the most easily recognizable)
Transferability: the accuracy is (essentially) the same for all CNN
Similarity to T: classifier encoding are the least similarto T

O O O O

Similarity to O: all methods appear to have same results

- . UNIVERSITAT
LIECHTENSTEIN

65



mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Future Work

o Human evaluation
* We want to submit the adversarial samples A to real humans and ask for their opinion

o Defense and augmentation
* Through adversarial training, it is possible to use A to defend against similar attacks

* Alternatively, it is possible to use A to augment the training dataset and (potentially) increase
the baseline performance of the CNN

o Different data

We only considered MNIST and FashionMNIST, but more datasets exist (e.g., CIFAR) which can
be used to devise more intriguing experiments (with real FIAT Pandas and VW Polos!)

o Other domains

* We only investigated CNN that were analyzing images. However, the same principles can be
applied also in other domains (i.e., malware analysis)
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Future Work

o Human evaluation

* We want to submit the adversarial samples A to real humans and ask for their opinion

o Defense and augmentation
* Through adversarial training, it is possible to use A to defend against similar attacks

* Alternatively, it is possible to use A to augment the training dataset and (potentially) increase
the baseline performance of the CNN

o Different data

We only considered MNIST and FashionMNIST, but more datasets exist (e.g., CIFAR) which can
be used to devise more intriguing experiments (with real FIAT Pandas and VW Polos!)

o Other domains

* We only investigated CNN that were analyzing images. However, the same principles can be
applied also in other domains (i.e., malware analysis)
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Human validation — confused?

Sample S

o issample S representinga4ora?9?

100% 4 100% 9
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Human validation — source and target?
A-1 A-2 Sample S

B-2

Is sample S more similar to A-1 or to A-2? Look carefully! *

More similar to A-1 More similar to A-2

Is sample S more similar to B-1 or B-2? Look carefully! *

More similar to B-1 More similar to B-2
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Human validation — truth
A-1 A-2 Sample S B-1 B-2

Original Target
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Human validation — results

”

o We created 46 of such questions by randomly picking diverse “Original” and “Target
samples, and we have 31 Amazon Mechanical Turk workers provide their answers.

RQ1l:is S more similarto A orto B? RQ2:1s S more similar to A/B1 or to A/B27?

4.08

m <
2 T T b=
E 6_ S E— _B.SE
E E
¢ 5- 3.0 8
= £
> !
4 -2.5
< @
4: <<
23 1 2.09
— E
% 2 -1.5 o
~ I E
1 1.0 4

mean As Bs

They can identify the correct

They are confused! ..
original and target samples
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How/where is ML used in the real world?

o Alot of domains use ML today:
* Phishing Webpages Detection
e Autonomous Driving (Computer Vision)
* Translator (NLP)
* Finance
* Video Gaming
* Filters (parental, content)

* Recommender Systems

o However, most research on ML security:

* Focuses on language models (text or speech), and CIFAR/ImageNet (images);

» Considers only deep neural networks, whereas traditional ML algorithms (e.g., “Random
Forests”) are overlooked — despite being still used in practice!

* Does not take into account the costs of attacks (or defenses).

* Does not experiment on real systems
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How/where is ML used in the real world? — Proof (1)

o Let’s look at all papers (88) published in the top-4 cybersecurity conferences from 2019
until 2021, and see some trends...

B Deep Learningonly [ Shallow + Deep Learning
1.00

0.75

0.50

Frequency

0.25

0.00

2019 2020 2021 TOTAL

. Fig. 8: G3: what 1s the considered ML paradigm?

LlECH-I LINOTLENIN
74


mailto:giovanni.apruzzese@uni.li
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o Let’s look at all papers (88) published in the top-4 cybersecurity conferences from 2019
until 2021, and see some trends...

Frequency

1.00

0.75

0.50

0.25

0.00

Fig. 9: G4: are the costs taken into account (in any way)?.
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2019

Mention

4
2 14

2020

B Measured
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How/where is ML used in the real world? — Proof (3)

o Let’s look at all papers (88) published in the top-4 cybersecurity conferences from 2019
until 2021, and see some trends...

®m Other ™ Audio ® Text ® Images
1.25

1.00
0.75

0.50

Frequency

0.25

0.00

2019 2020 2021 TOTAL

Fig. 10: What are the data-types considered in the evaluation?
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How/where is ML used in the real world? — Proof (4)

o Let’s look at all papers (88) published in the top-4 cybersecurity conferences from 2019
until 2021, and see some trends...

B Deployed (Real-world)
1.00

B Self-made (Custom)

o
~
o

Frequency
o
(8
o

o
)
o

2019 2020 2021 TOTAL

Fig. 13: Does the paper consider an ML model deployed in the real world?
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Most papers attack “benchmarks”

ML in practice
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Most papers attack “benchmarks”

ML in practice ML in research
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Most papers attack “benchmarks”

ML in practice ML in research

|II

Question: must research papers attack “real” ML systems to have an impact to the real world?
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Some research papers attacking real systems...

Cracking classifiers for evasion: A case study on the google's phishing pages
filter
B Liang, M Su, W You, W 5Shi, G Yang - Proceedings of the 25th ..., 2016 - dl.acm.org
Warious classifiers based on the machine learning techniques have been widely used in
security applications. Meanwhile, they also became an attack target of adversaries. Many ..
Proceedings of the 25th International Conference on World Wide Web (WWW). 2016. I

Attacking automatic video analysis algorithms: A case study of google cloud
video intelligence api

H Hosseini, B Xiao, A Clark. .. - Proceedings of the 2017 on .., 2017 - dl.acm_org

Due to the growth of video data on Internet, automatic video analysis has gained a lot of

attention from academia as well as companies such as Facebook, Twitter and Google. In this
paper, we examine the robustness of video analysis algorithms in adversarial settings.

Specifically, we propose targeted attacks on two fundamental classes of video analysis

algorithms, namely video classification and shot detection. We show that an adversary can

subtly manipulate a video in such a way that a human observer would perceive the content .

I Proceedings of the 2017 Workshop on Multimedia Privacy and Security (CCS Workshop). 2017. I

Fall of Giants: How popular text-based MLaa$S fall against a simple evasion
attack
L Pajola, M Conti - ... IEEE European Symposium on Security and ..., 2021 - ieeexplore. ieee_org

The increased demand for machine learning applications made companies offer Machine-
Learning-as-a-Service (MLaaS). In MLaaS (a market estimated 8000M USD by 2025), users ..

I IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2021. |
Adversarial music: Real world audio adversary against wake-word detection

system
JLi, 5Qu, X Li, JSzurley, JZ Kolter. . - Advances in Neural ., 2019 - praceedings neurips.cc
- . UNIVERSITAT .. this suggests a real concern of attack against commercial grade machine learning
LIECHTENSTEIN algorithms, highlighting the importance of adversarial robustness from a ...

Advances in Neural Information Processing Systems (2019). i
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...have apparently little impact on future research

Cracking classifiers for evasion: A case study on the google's phishing pages
filter
B Liang, M Su, W You, W 5Shi, G Yang - Proceedings of the 25th ..., 2016 - dl.acm.org
Warious classifiers based on the machine learning techniques have been widely used in
security applications. Meanwhile, they also became an attack target of adversaries. Many ..
¥r Save 99 Cite Cited by 58 Related articles All 6 versions
Proceedings of the 25th International Conference on World Wide Web (WWW). 2016. I

Attacking automatic video analysis algorithms: A case study of google cloud
video intelligence api

H Hosseini, B Xiao, A Clark. .. - Proceedings of the 2017 on .., 2017 - dl.acm_org

Due to the growth of video data on Internet, automatic video analysis has gained a lot of

attention from academia as well as companies such as Facebook, Twitter and Google. In this
paper, we examine the robustness of video analysis algorithms in adversarial settings.

Specifically, we propose targeted attacks on two fundamental classes of video analysis

algorithms, namely video classification and shot detection. We show that an adversary can

subtly manipulate a video in such a way that a human observer would perceive the content .

Y7 Save 99 Cite Gited by 23 Related articles All 8 versions

Fall of Giants: How prUl ar text-based MLaaS fﬂl Proceedings of the 2017 Workshop on Multimedia Privacy and Security (CCS Workshop). 2017. I
attack
L Pajola, M Conti - ... IEEE European Symposium on Security and ..., 2021 - ieeexplore. ieee_org

The increased demand for machine learning applications made companies offer Machine-
Learning-as-a-Service (MLaaS). In MLaaS (a market estimated 8000M USD by 2025), users ..

¥¢ Save U9 Cite Cited by 2 Related articles All 6 versions

| IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, A dyersarial music: Real world audio adversary against wake-word detection

system
JLi, 5Qu, X Li, JSzurley, JZ Kolter. . - Advances in Neural ., 2019 - praceedings neurips.cc
- . UNIVERSITAT .. this suggests a real concern of attack against commercial grade machine learning
LIECHTENSTEIN algorithms, highlighting the importance of adversarial robustness from a ...

¥ Save P9 Cite Cited by 36 Related articles All 11 versions 99

Advances in Neural Information Processing Systems (2019). 82
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Why are (some) papers on real ML systems getting little attention?

o Not constructive for future research
* The attack is against a “specific” system
* You barely know what the system is actually doing
o Difficult to “beat” the same attack for future research

* The real system gets patched immediately, and future research cannot “benchmark” on
the same model, nor use the same attack methodology (which is specific for the targeted
system)

o Difficult to “explain”

* The real system is always a black-box from a researcher perspective, so it is difficult to
explain what is actually happening “within” the system.

o Difficult to “map” to the “ML domain”

* |sthe attack targeting the ML model, the preprocessing, or some other component?
o The attacked systems are “niche”

* The impact to the real world is marginal

Question: do you think it makes sense to always assume “worst-case” scenarios
(i.e., the “Kerckhoff Principle”)?
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Video Games, E-Sports, Tracking Websites, Dota2
o Video Games (VG) are becoming increasingly popular

* One of the few industries that are constantly improving their profits
o Some competitive VG are denoted as “E-sports”

 Examples: Dota2, Fortnite, League of Legends

o Some tournaments of such E-sports have very high prize-pools
* For Dota2, “The International” had a prize pool of 40M S in 2021
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Video Games, E-Sports, Tracking Websites, Dota2
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Video Games (VG) are becoming increasingly popular

* One of the few industries that are constantly improving their profits

Some competitive VG are denoted as “E-sports”

 Examples: Dota2, Fortnite, League of Legends

Some tournaments of such E-sports have very high prize-pools
* For Dota2, “The International” had a prize pool of 40M S in 2021

Such prizes attract a lot of players who “play-to-win” and want to get better...
* Best way of improving at something? Learn from past mistakes!

...Which, in the E-sport ecosystem, it can be easily done via Tracking Websites

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Player

Tracking Website

-“
<

Basic Statistics u

Plays Matches

Video Game

86


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD

giovanni.apruzzese@uni.li

A tracking website (TW)

Dendi 24 minutes ago  6,218-

Overview LAST MATCH RECORD

v+y L
Overview Matches Heroes Hero Mastery Items Records Scenarios Activity Trends Achievements Matchups

ROLES AND LANES FROM RECENTLY ANALYZED MATCHES MORE  ACTIVITY LAST 3 MONTHS

% 88% CORE % 12%
I
& |
# MID LANE A tl 5

MOST PLAYED HEROES ALL TIME MORE

Hero Matches Lane

£  Invoker 706 ' Mid Lane
RV B days ago -

Shadow Fiend 681 i Mid Lane
2 months ago

Xy Pudge : Mid Lane FRIENDS THIS WEEK
24 minutes ago — —
Friend Matches Win Rate

LATEST MATCHES W syndereN v + & 37.50%

Hero Result T Duration KDA ]
b-E ! Pale Horse < E.DO%
<, Pudge Won Match Ranked & 17:34 7/0/4
- Immortal 24 minutes ago All Pick — ¥ Monke E-m%
-

Gremlo E.DO%

™), Dragon Knight Ranked & 49:02 9/4/14
/( Immortal 14 hours ago All Pick

éﬁ,‘;r Zeus Won Match Ranked & 41:13 10/5/24 Crow 25.00%
“"Rped  Immortal 15 hours ago Al Pick

100.00%

6,300 ARBITRARY POINTS RECENT ACHIEVEMENTS MORE T miniorc00 .67%

M Jungle Medicine nﬂ Death Prophet =¥ Deathball Shadow Shaman
a 2 months ago 40 2:;:‘ 3 months ago 25 4 months ago 15 _"\‘ 7 months ago 25
: ALIASES STEAM_0:1:35194328

Batrider ¥ Witch Doctor
11 months ago 25 12 months ago 25 Name Last Used
Somnambula 24 minutes ago

3 days ago
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A tracking website (TW)

Dendi 24 minutes ago 6,218- 52.80% W ,w
LAST MATCH RECORD WIN RATE _-_\_3}_‘1__ =

Overview

v+ .

Overview Matches Heroes Hero Mastery Items Records Scenarios Activity Trends Achievements Matchups
ROLES AND LANES FROM RECENTLY ANALYZED MATCHES MORE  ACTIVITY LAST 3 MONTHS
% 88% CORE % 12% May
I
IS N
# MID LANE A i =

MOST PLAYED[™

= All of this is Public —

Hero

Shadow
2 months|

Pudge

. for 70M DOTA2 players

Hero

f@?-‘ Pudge TVOTT TIaTeTT TATTRCT 759 7O
Immortal 24 minutes ago All Pick — — ¥ Monke 4
-

Y. Dragon Knight Ranked & 49:02 9/4/14 % Gremio 4

/( Immortal 14 hours ago All Pick

_:E»E;;f Zeus Won Match Ranked & 41:13 10/5/24 Crow

2. Immortal 15 hours ago All Pick e — ——

6,300 ARBITRARY POINTS RECENT ACHIEVEMENTS MORE &

M Jungle Medicine n“‘i’j Death Prophet =¥ Deathball Shadow Shaman
6 2 months ago 40 2:” 3 months ago 4 months ago 15 _"\‘ 7 months ago 25
e ALIASES STEAM_0:1:35194328

Batrider ¥ Witch Doctor 25
11 months ago 12 months ago Name Last Used
Somnambula 24 minutes ago
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A tracking website (TW) — Why is it public?

Q

24 minutes ago 6,218- -82 52.80% .a
wiN rate S

LAST MATCH RECORD

It is the playerbase who want the statistics collected by TW to be publicly available!

The reasons are various, e.g.,:

1. Inspecting the profiles of other players can be used to learn some of their tricks...

2. ...inturn, by having their own profile publicly accessible, a given player can gain
visibility if they perform very well...

3. ...such “visibility” can lead to invitations to play in top-teams, or to finding new
(good) teammates

4. The visibility can come either because other players “inspect” a given player’s profile,
or because of climbing “public ladders”

There are over 70M of Dota2 players who use TW.

M Jungle Medicine Q Death Prophet E®Y Deathball Shadow Shaman
a 2 months ago 40 }h. 3 months ago 25 4 months ago 15 1 7 months ago 25
e ALIASES STEAM_0:1:35194328

Batrider 25 . Witch Doctor 25

Name Last Used

Somnambula 24 minutes ago
3 days ago

11 months ago . 12 months ago
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A tracking website (TW) — Why are they A PROBLEM?

24 minutes ago 6,218- -82 52.80% g and
LAST MATCH RECORD WIN RATE ' ; 2 2

It is the playerbase who want the statistics collected by TW to be publicly available!

The reasons are various, e.g.,:

1. Inspecting the profiles of other players can be used to learn some of their tricks...

2. ...inturn, by having their own profile publicly accessible, a given player can gain
visibility if they perform very well...

3. ...such “visibility” can lead to invitations to play in top-teams, or to finding new
(good) teammates

4. The visibility can come either because other players “inspect” a given player’s profile,
or because of climbing “public ladders”

There are over 70M of Dota2 players who use TW.

Problem: such “availability” exposes E-sports’ players to the risk of
“Attribute Inference Attacks” (AlA)

. ALIASES STEAM 0:1:35194328

. Batrider . Witch Doctor 25
11 months ago . 12 months ago

Name Last Used

Somnambula 24 minutes ago
3 days ago
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Threat Model

Many Players / ﬁ\\

/f Video Game Tracking Websites \\‘- & %

+ Many Handles

- Indiscriminate {(Many-to-Many)
& ™w "

sell

3308

Targeted (Many-to-One)

In-game Data

Dataset
In-game Data — Personal Attributes

Parsonal
Attributes

e\\

bullying

! One Handle
. {8
g |

Targeted (One-to-One)

Public Sources
[Sunrey's Social networks, Friends...) / \ One Player // '\ L,harass /s
(1) Prepare (2) Infer (3) Exploit
== ||ECHTENSTEIN
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Assessment

o We proactively assess such a threat, because nobody ever did something similar in
the E-sports ecosystem. We focus on Dota2

o We conduct an informed survey, asking ~500 Dota2 players to provide us with
private (non-sensitive) information about their real-life (e.g., age, gender,
occupation, whether they buy Dota2 content, and some personality traits)

o We use the handle (i.e., nickname) of such players to collect their (publicly
available) Dota2 in-game statistics from popular TW (opendota).
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Assessment (cont’d)

o We proactively assess such a threat, because nobody ever did something similar in
the E-sports ecosystem. We focus on Dota2

o We conduct an informed survey, asking ~500 Dota2 players to provide us with
private (non-sensitive) information about their real-life (e.g., age, gender,
occupation, whether they buy Dota2 content, and some personality traits)

o We use the handle (i.e., nickname) of such players to collect their (publicly
available) Dota2 in-game statistics from popular TW (opendota).

o We find a correlation (!) between the players in-game statistics and their real life.
e Such a finding suggests that AIA can be successful!

o We (ethically) perform diverse AlA: we use 80% of our data to train ML models,
and predict the personal attributes of the players included in the remaining 20%.
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Results — One-to-One AlIA
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0.8 -
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Results — Many-to-Many AlA
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Table 6: Indiscriminate ‘many-to-many’ AIA (mid column). Com-
pared to the baseline (cf. Fig. 5), the accuracy substantially increases.

Sophisticated ALA

Indiscriminate ALA

(30 matches) (30 matches) {mprovement
age 67.15+6.87 89.15+4.66 +22.00%
purch. 68.9943 51 96.13+2.34 +27.14%
open. 51.3043.87 77.8643.39 +26.567%
CONSC. 53.24+a88 80.19+4.12 +26.95%
extrav. 53.78x3.00 81.51+4.40 +27.73%
agreeab. 50.71+4.65 76.844559 +26.13%
neurot. 55.74+3.88 80.64+4.02 +24.90%

- . UNIVERSITAT
LIECHTENSTEIN

95


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Results — Many-to-One AlA
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...50 what now?
o Hard counters? Nope!

* The entire E-sport ecosystem would be disrupted

o Compromise? Yes!

* The users should be informed that having their in-game statistics to be publicly
accessible by TW exposes them to AIA

o What about other games? Many E-sports share the same ecosystem with Dota2
* AlA are theoretically possible also in other VG, but a correlation has to be found first

o We sent an email to Valve (yesterday) to inform them of such vulnerability.
 We are unsure about whether they will take any action in the short-term
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