

Cybersecurity and Machine Learning: Facts and Myths

Giovanni Apruzzese, PhD University of Bologna – October 12th, 2022

whoami: Dr. Giovanni Apruzzese

• Background:

- Did my academic studies (BSc, MSc, PhD) @ University of Modena, Italy.
 - Supervisor: Prof. Michele Colajanni
- In 2019, spent 6 months @ Dartmouth College, USA.
 - Supervisor: Prov. VS Subrahmanian
- Joined the University of Liechtenstein in July 2020 as a PostDoc Researcher.
 - Supervisor: Prof. Pavel Laskov
- Was "promoted" to Assistant Professor in September 2022.

o Interests:

- Cybersecurity, machine learning, and any network-related topic (+)
- I like talking, researching and teaching in a "blunt" way ☺

• Contact information:

- Email (work): giovanni.apruzzese@uni.li
- Website (personal): <u>www.giovanniapruzzese.com</u>
- Feel free to contact me if you have any questions.
 - I reply fast, and will happily do so!

What I do

Machine Learning + Cybersecurity

- Applying ML to *provide security* of a given information system
 - E.g.: using ML to detect cyber threats
- Attacking / Defending ML applications
 - E.g.: evading a ML model that detects phishing websites
- Using machine learning *offensively...*
 - ...against another system (e.g.: artificially generating "fake" images)
 - ...against humans (e.g., violating privacy)

BONUS

 \circ $\:$ Using ML to attack an ML-based security system and harden it

Outline of Today

Fundamentals of Machine Learning and Cybersecurity

• Ref: Giovanni Apruzzese, et al. "The Role of Machine Learning in Cybersecurity." ACM Digital Threats: Research and Practice (2022)

• Using unlabelled data for Machine Learning in Cyberthreat Detection

• Ref: Giovanni Apruzzese, Pavel Laskov, Aliya Tastemirova. "SoK: The Impact of Unlabelled Data for Cyberthreat Detection." IEEE European Symposium on Security and Privacy (2022).

• The security of Machine Learning-based Phishing Website Detectors

• Ref: Giovanni Apruzzese, Mauro Conti, Ying Yuan. "SpacePhish: The Evasion-space of Adversarial Attacks against Phishing Website Detectors using Machine Learning". Annual Computer Security Applications Conference (2022).

Machine Learning Security in the Real-World

• Ref: Giovanni Apruzzese, David Freeman, Savino Dambra, Hyrum S Anderson, Kevin Alexander Roundy, Fabio Pierazzi "Real Attackers Don't Compute Gradients': Bridging the Gap Between Adversarial ML Research and Practice." TBD

o Using Machine Learning to violate the Privacy of Video Gamers

• Ref: Pier Paolo Tricomi, Giovanni Apruzzese, Lisa Facciolo, Mauro Conti. "Attribute Inference Attacks in Online Multiplayer Video Games: a Case Study on Dota2." TBD

o Adversarial Attacks against Humans and Machine Learning

• Ref: Johannes Schneider, Giovanni Apruzzese. "Concept-based Adversarial Attacks: Tricking Humans and Classifiers alike." IEEE Symposium on Security and Privacy – Deep Learning and Security Workshop (2022)

Fundamentals of Machine Learning and Cybersecurity

Machine Learning workflow: Training and Testing

Do you think that training ML models is difficult?

Do you think that training ML models is difficult? – Maths

Do you think that training ML models is difficult? – More Maths

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

Do you think that training ML models is difficult? – More Maths 🙂

Do you think that training ML models is difficult? – One line

#train the classifier (rf_clf) using the training_data (train[features]) with corresponding labels (y)
print("Training...")
rf_clf.fit(train[features],y)
print("Done")

Do you think that training ML models is difficult? – The real problem

#train the classifier (rf_clf) using the training_data (train[features]) with corresponding labels (y)
print("Training...")
rf_clf.fit(train[features],y)
print("Done")

Do you think that training ML models is difficult? – The real problem

#train the classifier (rf_clf) using the training_data (train[features]) with corresponding labels (y)
print("Training...")
rf_clf.fit(train[features],y)
print("Done")

Of course, you're always free to go, learn and improve the *fit* function: https://github.com/scikit-learn/scikit-learn/blob/baf828ca1/sklearn/ensemble/ forest.py#L297

Common issues of ML in Cybersecurity

- Applying Machine Learning requires *data* to train an ML model
- Depending on the "problem" solved by such model, the data may require *labels*
- Obtaining (any) data has a <u>cost</u>, and labelled data is (very) *expensive*

- Machine Learning models are ultimately just a component within a system
- Such ML models *can* be targeted by "Adversarial Attacks"
- Such strategies ultimately aim to compromise the functionality of the ML model.

- The cybersecurity domain implicitly assumes the presence of attackers.
- Attackers are *human beings*, and hence operate with a *cost/benefit* mindset
- Such considerations must be made when analyzing the security of (any) IT system

"There is no such thing as a *foolproof* system. If you believe you have one, then you failed to take into account the creativity of fools" [<u>source</u>]

Common issues of ML in Cybersecurity (cond'd)

Fig. 9. Machine Leaning in the presence of Concept Drift. The ML model expects that the data will not deviate from the one seen during its training. In cybersecurity, however, the environment evolves, and adversaries also become more powerful.

Unlabelled data for Machine Learning in Cyberthreat Detection

Once upon a time...

- At the beginning of 2021, I was having a meeting with Prof. Pavel Laskov, brainstorming about new research directions on Machine Learning (ML)
- Pavel: "We should look at Semisupervised Learning, it's very trendy now!"

Semisupervised Learning

- Labelled data is expensive, but *unlabelled* data is cheap(er)
 - \rightarrow Why not using unlabelled data to improve the proficiency of ML models?

Mixing *labelled* with *unlabelled* data is a ML approach denoted as "Semisupervised Learning" (SsL)

The assumptions of SsL appears to be enticing for Cyberthreat Detection (CTD)

Once upon a time... (cont'd)

- At the beginning of 2021, I was having a meeting with Prof. Laskov,
 brainstorming about new research directions on Machine Learning (ML)
- Pavel: "We should look at Semisupervised Learning, it's very trendy now!"

- It was the first time I directly tackled SsL, so I did what most researchers do when they start focusing on a new topic:
 - I looked into existing literature on SsL applications for CTD...
 - ...and started to **replicate (basic) SsL methods** on public CTD datasets

All that glitters is not gold...

- My initial results portrayed SsL to be **bad**.
 - Like, really bad 🙂
- As a sanity check, I asked a MSc. student (Aliya Tastemirova) to:
 - independently replicate the SsL methods I developed
 - and evaluate their performance on **different CTD datasets**
- Her results confirmed my initial findings.

- We (Pavel, Aliya, and I) had a joint meeting, and we decided to dig deeper:
 - either all of us were wrong...
 - ...or something odd was going on between the lines.

Bad performance?

- In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score by using ~100 labels and thousands of unlabelled samples.
- One could claim such performance to be good...

Bad performance? (cont'd)

- In some cases (e.g., Phishing Detection), SsL methods achieved 0.90 F1-score by using ~100 labels and thousands of unlabelled samples.
- One could claim such performance to be good...
- ...unless a (traditional) supervised learning classifier using *only* 100 labels (without any unlabelled data) achieved an F1-score of **0.91**
- Our initial experiments showed that using unlabelled data provided "uncertain" improvement (if any).
 - In reality, unlabelled data may be cheaper to acquire than labels, but it is not free!

If SsL is bad, then why is it so trendy in research?

• We investigated <u>all</u> (ttbook) existing literature on SsL for CTD, asking ourselves: *"What are the benefits of unlabelled data in SsL?"*

If SsL is bad, then why is it so trendy in research?

• We investigated <u>all</u> (ttbook) existing literature on SsL for CTD, asking ourselves: "What are the benefits of unlabelled data in SsL?"

Task	Paper (1st Author)	Year	Lower Bound	Ablation Study	Upper Bound	Stat. Sign.	Trans Labels	parency Balance	Repr.	Dataset
Network Intrusion Detection	Li [93] Long [94]	2007 2008	1	11	×	×	1	×	0	NSL-KDD NSL-KDD
	Görnitz [95] Seliya [96]	2009	1	1	×	U X	1		i č	NSL-KDD
	Symons [97]	2012	×	1	1	Ó	1	×	×	Kyoto2006
	Wagh [98]	2014	×	×	×	×	1	1	0	NSL-KDD
	Noorbehbahani [35]	2015	×	0		×	1			NSL-KDD, Custom
	Ashfaq [99]	2017	×,	Ň	×	×,	1	×	U V	NSL-KDD Custom
	McElwee [100]	2017	ŝ	ŏ		ŝ	2	×	6	NSL-KDD
	Kumari [68]	2017	1	õ	×	×	1	×	õ	NSL-KDD
	Yang [101]	2018	•	1		×	1	×	×	NSL-KDD, AWID
	Gao [102]	2018	~	•	×	×	~	×	×	NSL-KDD
	Shi [103]	2018	•	0	×	×	1	×	×	NSL-KDD
	Yao [36]	2019	•	0		×.	1		9	NSL-KDD
	Tuan [104] Zhang [65]	2019	â	Ŷ		Š	1	, v		NSL-KDD
	Hara [105]	2020	x	ô		×	x	x l	x I	NSL-KDD
	Ravi [106]	2020	1	×	×	×	1	×	×	NSL-KDD
	Gao [107]	2020	×	1	1	1	~	1	×	NSL-KDD
	Li [108]	2020	×	•	 ✓ 	 	~	×	•	NSL-KDD, Private
	Zhang [70]	2021	•	0	×	•	×		0	CICIDS2017, CTU13
	Liang [109]	2021	~	•	· •	•	-	-		NSL-KDD
Phishing Detection	Gyawali [110]	2011	×	1	 ✓ 	×	~	 ✓ 	•	Private
	Zhao [111]	2013	<i>'</i>	~	 	~	×	-	1	DetMalURL
	Gabriel [15]	2017	•		×.	×	×	×		Private
	Bhattachariee [113]	2017	×	2	2	â	×	×		Private
	Li [55]	2017	2		2	ě	2	2	×	Custom
Malware Detection	Moskovitch [114]	2008	×	1		•	1		x	Custom
	Santos [115]	2000	ŝ	x	2	×	1		i ô i	Custom
	Nissim [116]	2012	×	Ó		ő	×	×	×	Private
	Zhao [117]	2012	×	×	×	×	~	1	0	Private
	Nissim [118]	2014	 	~	×	•	1	1	×	Custom
	Zhang[119]	2015	•	0	×	×	1		×	Private
	Nissim [120]	2016	×				1			Custom
	Chen [121]	2010	1	1	i î	ě	×	×	l õ	Private
	Rashidi [66]	2017	×	1		ŏ	2	2	×	Drebin
	Fu [123]	2019	1	1	×	×	1	×	0	Private
	Irofti [124]	2019	•	Ð	×	•	×	×	1	DREBIN, EMBER
	Pendlebury [86]	2019	×	×	 ✓ 	•	1		1	AndroZoo
	Sharmeen [125]	2020	ź	0	×	• Ū	1			Drebin, AndroZoo
	Koza 1111	2020	2			<u> </u>	1	× 1		MCC Privata
	Noorbehbahani 1131	2020	2	×	×	ŏ	1	2	x	AndMal17
	Li [127]	2020	×	ő	x	ŏ	1	×	6	FalDroid, DREBIN, Genome
	Liang [109]	2021	1	0		Ō	1	1	•	Custom

Revealing the impact of unlabelled data in CTD

The state-of-the-art does not allow to determine whether using unlabelled data is *truly* beneficial in CTD

- As a constructive step, in our paper we:
 - Provide a set of requirements to estimate the benefits (if any) of using unlabelled data in CTD
 - Propose a framework, CEF-SsL, that allows to meet all such requirements in research
 - We experimentally evaluate CEF-SsL on 9 CTD datasets by considering 9 SsL methods.

The security of Machine Learning-based Phishing Website Detectors

Current Landscape of Phishing

- Phishing attacks are continuously increasing
- Most detection methods still rely on *blacklists* of malicious URLs
 - These detection techniques can be evaded easily by "squatting" phishing websites!

Current Landscape of Phishing – Countermeasures

Countering such simple (but effective) strategies can be done via *data-driven* methods 0

Phishing Website Detector

Current Landscape of Phishing – Countermeasures (ML)

• Countering such simple (but effective) strategies can be done via *data-driven* methods

• Such methods (obviously ⁽ⁱ⁾) include (also) Machine Learning techniques:

• Machine Learning-based Phishing Website Detectors (ML-PWD) are very effective! [1]

• Even popular products and web-browsers (e.g., Google Chrome) use them! [2]

[1]: Tian, Ke, et al. "Needle in a haystack: Tracking down elite phishing domains in the wild." Internet Measurement Conference 2018.
 [2]: El Kouari, Oumaima, Hafssa Benaboud, and Saiida Lazaar. "Using machine learning to deal with Phishing and Spam Detection: An overview." Proceedings of the 3rd International Conference on Networking, Information Systems & Security. 2020.

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

- ML-PWD are good but...
- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

• In the context of a ML-PWD, such ε can be introduced in three 'spaces':

35

ML-PWD are good but...

UN LIE

- o ...the detection of ML methods *can* be bypassed via (adversarial) *evasion* attacks!
- Adversarial Attacks exploit a perturbation, ε , that induces an ML model, \mathcal{M} , to misclassify a given input, F_x , by producing an incorrect output (y_x^{ε} instead of y_x)

find
$$\varepsilon$$
 s.t. $\mathcal{M}(F_x) = y_x^{\varepsilon} \neq y_x$

• In the context of a ML-PWD, such ε can be introduced in three 'spaces':

Question: Which 'space' do you think an *attacker* is **most likely** to use?
Website-space Perturbations (WsP) in practice – original example

Figure 4: An exemplary (and true) Phishing website, whose URL is https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/.

Website-space Perturbations (WsP) in practice – changing the URL

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/

https://bit.ly/3MZHjt7

Website-space Perturbations (WsP) in practice – changing the HTML

Website-space Perturbations (WsP) in practice – changing URL+HTML

https://www.63y3hfh-fj39f30-f30if0f-f392.weebly.com/

 $\Box >$

https://bit.ly/3MZHjt7

Evaluation – Workflow

- Such attacks appear cheap, but are they effective? Let's assess their impact!
- We develop proficient ML-PWD (high *tpr*, low *fpr*)

Evaluation – Baseline

- Such attacks appear cheap, but are they effective? Let's assess their impact!
- We develop proficient ML-PWD (high *tpr*, low *fpr*)

Table 3: Performance in non-adversarial settings, reported as theaverage (and std. dev.) tpr and fpr over the 50 trials.

- Results comparable to the state-of-the-art ^(C)
- Let's attack such ML-PWD
 - The *tpr* will decrease!

Я	F	Ze	nodo	$\delta \mathrm{phish}$		
	Γ	tpr	fpr	tpr	fpr	
	<i>F</i> ^{<i>u</i>}	0.96±0.008	0.021±0.0077	0.55±0.030	0.037±0.0076	
CN	F^{r}	0.88±0.018	0.155±0.0165	0.81±0.019	0.008 ± 0.0020	
	F^{c}	0.97 ± 0.006	$0.018{\scriptstyle \pm 0.0088}$	0.93±0.013	$0.005{\scriptstyle \pm 0.0025}$	
	<i>F</i> ^{<i>u</i>}	0.98 ± 0.004	0.007±0.0055	0.45±0.022	0.003 ± 0.0014	
RF	F^{r}	0.93 ± 0.013	0.025±0.0118	0.94±0.016	0.006 ± 0.0025	
	<i>F</i> ^{<i>c</i>}	0.98 ± 0.006	$0.007{\scriptstyle\pm0.0046}$	0.97±0.007	$0.001{\scriptstyle \pm 0.0011}$	
	<i>F</i> ^{<i>u</i>}	0.95±0.009	0.037±0.0100	0.24±0.017	0.011 ± 0.0026	
LR	F ^{<i>r</i>}	0.82±0.017	0.144 ± 0.0171	0.74 ± 0.025	0.018 ± 0.0036	
	<i>F</i> ^{<i>c</i>}	0.96±0.007	0.025 ± 0.0077	0.81±0.020	$0.013{\scriptstyle \pm 0.0037}$	

Results – Are WsP effective?

- In some cases, NO
 - This is significant because most past studies show ML-PWD being bypassed "regularly"!
- In some cases, VERY LITTLE
 - This is also significant, because even a 1% decrease in detection rate can be problematic when dealing with *millions of samples*!
- o In other cases, YES
 - This is very significant, because WsP are cheap and are likely to be exploited by attackers!

Bottom line: no free lunch!

Results – What about attacks in the other spaces?

In general, attacks in the other spaces (via PsP and MsP) are more disruptive...

(a) Zenodo. Each plot reports the *tpr* resulting from the 9 advanced attacks (i.e., \widehat{WA} , PA, MA) across the 50 trials. Colors denote the targeted features (*u*, *r*, *c*).

(b) $\delta phish$. Each plot reports the *tpr* resulting from the 9 advanced attacks (i.e., \widehat{WA} , PA, MA) across the 50 trials. Colors denote the targeted features (*u*, *r*, *c*).

However, such attacks also have a *higher cost*! Will real attackers truly use them *just to evade* a ML-PWD?

Demonstration – Evading a competition-grade ML-PWD

<u>https://tinyurl.com/spacephish-demo</u>

Adversarial Attacks against Humans and Machine Learning

Giovanni Apruzzese, PhD giovanni.apruzzese@uni.li

Scenario

- Deep Learning (DL) is used for a plethora of applications.
- In some cases, however, the "decision making" is based on:
 - The <u>output</u> of a *DL model*
 - The interpretation of a *human* to such <u>output</u>

Scenario

- Deep Learning (DL) is used for a plethora of applications.
- In some cases, however, the "decision making" is based on:
 - The <u>output</u> of a *DL model*
 - The interpretation of a *human* to such <u>output</u>

- Case in point: online marketplace
 - A person wants to sell an item (e.g., a car)
 - This person (i.e., the seller) uploads the images of such an item on an online marketplace
 - The marketplace automatically provides an estimate of the "value" of the corresponding item
 - This is done via DL [3]
 - Another person (i.e., a potential buyer) looks at the images, then looks at the "suggested" price, and determines whether to buy or not the corresponding item
 - The human uses the output of the DL model to make their decisions

[3] A. Varma, A. Sarma, S. Doshi, and R. Nair, "House price prediction using machine learning and neural networks," in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, 2018,

Attack – what if...

- What if the seller has malicious intentions?
- \rightarrow The seller may want to induce the DL model to estimate a higher price
- Doing this by introducing "imperceptible" perturbations may trick the DL...
- o ...but not the human!

51

Attack – what if...

- What if the seller has malicious intentions?
- \rightarrow The seller may want to induce the DL model to estimate a higher price
- Doing this by introducing "imperceptible" perturbations may trick the DL...
- o ...but not the human!

Hamster(35.79%) Nipple(42.36%)

52

Attack – what if...

- What if the seller has malicious intentions?
- \rightarrow The seller may want to induce the DL model to estimate a higher price
- Doing this by introducing "imperceptible" perturbations may trick the DL...
- o ...but not the human!

Hamster(35.79%)

Nipple(42.36%)

Solution (high-level)

- If humans are involved in the "decision making" process, then such humans <u>will react</u> to clearly incorrect outputs of DL models.
 - Humans may suspect an adversarial <u>attack taking place</u>; or
 - They may think that the DL model is faulty, and hence <u>not trust/believe its output</u>
 - Both of the above are **detrimental** for the attacker!

Solution (high-level)

- If humans are involved in the "decision making" process, then such humans <u>will react</u> to clearly incorrect outputs of DL models.
 - Humans may suspect an adversarial <u>attack taking place</u>; or
 - They may think that the DL model is faulty, and hence <u>not trust/believe its output</u>
 - Both of the above are **detrimental** for the attacker!

(Malicious) solution: deceive both the human *and* the DL model!

- A DL model that thinks that a "FIAT Panda" is a "VW Polo" will output a very high price
 - But if the "perturbation" only affects a single pixel, nobody will fall for it!
- A FIAT Panda is clearly different than a VW Polo, so the perturbation (whatever it is) must be *perceived* by the human
- ightarrow The FIAT Panda must be changed in such a way that the human can be somewhat fooled
 - E.g.: the human should think that "it could be a Panda... but it could also be a Polo"

- FIAT Panda MSRP: ~10k \$
- VW Polo MSRP: ~20k \$

Solution (low-level) – How to achieve this in practice?

Concept-based Adversarial Attacks

• The idea is using "explainability" techniques [4] to create adversarial examples.

Solution (low-level) – How to achieve this in practice?

Concept-based Adversarial Attacks

- The idea is using "explainability" techniques [4] to create adversarial examples.
- **Requirements**:
 - An "original sample" (i.e., a FIAT Panda)
 - A desired "target sample" (i.e., a VW Polo)
 - A given magnitude of the perturbation (neither too big nor too small)
 - If the FIAT Panda "becomes" a VW Polo, then the adversarial attack would be unfair
 - − …and the "buyer" will complain ☺
 - The details of a DL model based on Convolutional Neural Networks (CNN)
 - These attacks can be transferred!
 - IMPORTANT: the training procedure of the targeted CNN is *not* affected!
- Output: an "adversarial example" that is a mix between the original and target sample

Experiments – Objectives

Given the following:

- Original sample, 𝒪
- \circ Target sample, $\boldsymbol{\mathcal{T}}$
- Adversarial sample, *A*

We design our experiments with three goals in mind:

- 1. *Misclassification:* the sample \mathcal{A} should be classified as the class of \mathcal{T} (which is different than the class of \mathcal{O})
- 2. Resembling the target sample: the sample \mathcal{A} should be similar to sample \mathcal{T} as measured by a given function f (e.g., the L2-norm)
- 3. Remaining closer to the original sample: the sample \mathcal{A} should be similar to sample \mathcal{O} as measured by a given function f (e.g., the L2-norm)

Experiments – Testbed

We consider two scenarios, each associated to a given dataset: MNIST and Fashion-MNIST.

Such datasets are used to train three CNN models:

- VGG-11 \leftarrow our baseline
- *VGG-13*
- o Resnet-10

We will showcase the adversarial transferability by using CNN with different architectures.

We consider four methods to generate \mathcal{A} by "shifting" \mathcal{O} towards \mathcal{T} , namely:

- i. Autoencoder 1 (we "deconstruct" O and recreate it to resemble T)
- ii. Autoencoder 2 (as the previous one, but by using different layers)
- iii. Classifier encoding (i.e., we shift O towards T in the last layer of the CNN)
- iv. No encoding (i.e., linear interpolation from $\boldsymbol{\mathcal{O}}$ to $\boldsymbol{\mathcal{T}}$)

Results – Qualitative

Fig. 2: Original, target and adversarial samples for different en-/decodings and interpolation for Fashion-MNIST(left) and MNIST(right). Yes/No indicates, whether the model got fooled by X_A , i.e. it outputs the class of X_T for X_A

Fig. 2: Original, target and adversarial samples for different en-/decodings and interpolation for Fashion-MNIST(left) and MNIST(right). Yes/No indicates, whether the model got fooled by X_A , i.e. it outputs the class of X_T for X_A

Using the Autoencoder (ii) appears to be the best method to generate a suitable $\boldsymbol{\mathcal{A}}$

Results – Quantitative

Dataset	Generation Method	$ \mathcal{A} - \mathcal{T} $ Similarity to \mathcal{T}	$ \mathcal{A} - \mathcal{O} $ Similarity to \mathcal{O}	Acc(CNN) VGG-11	Acc(CNN) VGG-13	Acc(CNN) Resnet-10
	i (autoencoder 1)	19.87±1.794	$24.85{\scriptstyle\pm0.11}$	0.28±0.081	0.26±0.079	0.27±0.084
MNIST	ii (autoencoder 2)	20.41±1.837	24.73 ± 0.172	0.21±0.078	0.2 ± 0.077	0.2 ± 0.079
	iii (classifier encoding)	24.38 ± 1.71	24.71 ± 0.15	0.44 ± 0.117	0.41 ± 0.134	0.42 ± 0.124
	iv (no encoding)	12.42 ± 1.25	24.73 ± 0.149	0.08 ± 0.073	0.11 ± 0.075	0.09 ± 0.081
	i (autoencoder 1)	25.22±1.365	14.92 ± 0.048	0.53 ± 0.065	0.53 ± 0.065	0.51 ± 0.06
Fashion- MNIST	ii (autoencoder 2)	25.84 ± 1.436	14.85 ± 0.03	0.57 ± 0.059	0.58 ± 0.057	0.56 ± 0.055
	iii (classifier encoding)	27.23 ± 1.44	14.84 ± 0.037	0.64 ± 0.052	0.62 ± 0.056	0.62 ± 0.049
	iv (no encoding)	20.83 ± 1.317	14.95 ± 0.043	0.42 ± 0.14	0.44 ± 0.15	0.41 ± 0.132

TABLE I. Results for MNIST and FashionMNIST.

TABLE I. Results for MNIST and FashionMNIST.

Dataset	Generation Method	$ \mathcal{A}\!-\!\mathcal{T} $ Similarity to \mathcal{T}	$ \mathcal{A} - \mathcal{O} $ Similarity to \mathcal{O}	Acc(CNN) VGG-11	Acc(CNN) VGG-13	Acc(CNN) Resnet-10
	i (autoencoder 1)	19.87 ± 1.794	24.85 ± 0.11	0.28±0.081	0.26±0.079	0.27±0.084
MNIST	ii (autoencoder 2)	20.41 ± 1.837	24.73 ± 0.172	0.21 ± 0.078	0.2 ± 0.077	0.2 ± 0.079
	iii (classifier encoding)	24.38 ± 1.71	24.71±0.15	0.44 ± 0.117	0.41 ± 0.134	0.42 ± 0.124
	iv (no encoding)	12.42 ± 1.25	24.73±0.149	0.08 ± 0.073	0.11 ± 0.075	0.09 ± 0.081
	i (autoencoder 1)	25.22±1.365	14.92±0.048	0.53 ± 0.065	0.53±0.065	0.51 ± 0.06
Fashion- MNIST	ii (autoencoder 2)	25.84 ± 1.436	14.85 ± 0.03	0.57 ± 0.059	0.58 ± 0.057	0.56 ± 0.055
	iii (classifier encoding)	27.23 ± 1.44	14.84 ± 0.037	0.64 ± 0.052	0.62 ± 0.056	0.62 ± 0.049
	iv (no encoding)	20.83 ± 1.317	14.95 ± 0.043	0.42 ± 0.14	0.44 ± 0.15	0.41±0.132

• *Accuracy:* the biggest drop is for "no encoding" (which are the most easily recognizable)

TABLE I. Results for MNIST and FashionMNIST.

Dataset	Generation Method	$ \mathcal{A} - \mathcal{T} $ Similarity to \mathcal{T}	$ \mathcal{A} - \mathcal{O} $ Similarity to \mathcal{O}	Acc(CNN) VGG-11	Acc(CNN) VGG-13	Acc(CNN) Resnet-10
	i (autoencoder 1)	19.87±1.794	24.85 ± 0.11	0.28 ± 0.081	0.26±0.079	0.27±0.084
MNIST	ii (autoencoder 2)	20.41±1.837	24.73±0.172	0.21 ± 0.078	0.2 ± 0.077	0.2 ± 0.079
	iii (classifier encoding)	24.38 ± 1.71	24.71±0.15	0.44 ± 0.117	0.41 ± 0.134	0.42 ± 0.124
	iv (no encoding)	12.42 ± 1.25	24.73±0.149	0.08±0.073	0.11 ± 0.075	0.09 ± 0.081
	i (autoencoder 1)	25.22±1.365	14.92±0.048	0.53±0.065	0.53±0.065	0.51±0.06
Fashion- MNIST	ii (autoencoder 2)	25.84 ± 1.436	14.85 ± 0.03	0.57 ± 0.059	0.58 ± 0.057	0.56 ± 0.055
	iii (classifier encoding)	27.23 ± 1.44	14.84 ± 0.037	0.64 ± 0.052	0.62 ± 0.056	0.62 ± 0.049
	iv (no encoding)	20.83 ± 1.317	14.95 ± 0.043	0.42 ± 0.14	0.44 ± 0.15	0.41±0.132

• Accuracy: the biggest drop is for "no encoding" (which are the most easily recognizable)

• Transferability: the accuracy is (essentially) the same for all CNN

TABLE I. Results for MNIST and FashionMNIST.

Dataset	Generation Method	$ \mathcal{A} - \mathcal{T} $ Similarity to \mathcal{T}	$ \mathcal{A} - \mathcal{O} $ Similarity to \mathcal{O}	Acc(CNN) VGG-11	Acc(CNN) VGG-13	Acc(CNN) Resnet-10
MNIST	i (autoencoder 1) ii (autoencoder 2) iii (classifier encoding) iv (no encoding)	$\begin{array}{r} 19.87 \pm 1.794 \\ 20.41 \pm 1.837 \\ 24.38 \pm 1.71 \\ 12.42 \pm 1.25 \end{array}$	$\begin{array}{r} 24.85 \pm 0.11 \\ 24.73 \pm 0.172 \\ 24.71 \pm 0.15 \\ 24.73 \pm 0.149 \end{array}$	$\begin{array}{c} 0.28 \pm 0.081 \\ 0.21 \pm 0.078 \\ 0.44 \pm 0.117 \\ 0.08 \pm 0.073 \end{array}$	$\begin{array}{c} 0.26 {\pm 0.079} \\ 0.2 {\pm 0.077} \\ 0.41 {\pm 0.134} \\ 0.11 {\pm 0.075} \end{array}$	$\begin{array}{r} 0.27 {\scriptstyle \pm 0.084} \\ 0.2 {\scriptstyle \pm 0.079} \\ 0.42 {\scriptstyle \pm 0.124} \\ 0.09 {\scriptstyle \pm 0.081} \end{array}$
Fashion- MNIST	i (autoencoder 1) ii (autoencoder 2) iii (classifier encoding) iv (no encoding)	$\begin{array}{r} 25.22 \pm 1.365 \\ 25.84 \pm 1.436 \\ 27.23 \pm 1.44 \\ 20.83 \pm 1.317 \end{array}$	$\begin{array}{r} 14.92 {\scriptstyle \pm 0.048} \\ 14.85 {\scriptstyle \pm 0.03} \\ 14.84 {\scriptstyle \pm 0.037} \\ 14.95 {\scriptstyle \pm 0.043} \end{array}$	$\begin{array}{r} 0.53 {\scriptstyle \pm 0.065} \\ 0.57 {\scriptstyle \pm 0.059} \\ 0.64 {\scriptstyle \pm 0.052} \\ 0.42 {\scriptstyle \pm 0.14} \end{array}$	$\begin{array}{r} 0.53 {\scriptstyle \pm 0.065} \\ 0.58 {\scriptstyle \pm 0.057} \\ 0.62 {\scriptstyle \pm 0.056} \\ 0.44 {\scriptstyle \pm 0.15} \end{array}$	$\begin{array}{c} 0.51 {\scriptstyle \pm 0.06} \\ 0.56 {\scriptstyle \pm 0.055} \\ 0.62 {\scriptstyle \pm 0.049} \\ 0.41 {\scriptstyle \pm 0.132} \end{array}$

• *Accuracy:* the biggest drop is for "no encoding" (which are the most easily recognizable)

- *Transferability*: the accuracy is (essentially) the same for all CNN
- \circ Similarity to ${m T}$: classifier encoding are the least similar to ${m T}$

TABLE I. Results for MNIST and FashionMNIST.

Dataset	Generation $ \mathcal{A} - \mathcal{T} $ MethodSimilarity to \mathcal{T}		$ \mathcal{A} - \mathcal{O} $ Similarity to \mathcal{O}	Acc(CNN) VGG-11	Acc(CNN) VGG-13	Acc(CNN) Resnet-10
MNIST	i (autoencoder 1) ii (autoencoder 2) iii (classifier encoding) iv (no encoding)	$\begin{array}{r} 19.87 \pm 1.794 \\ \hline 20.41 \pm 1.837 \\ \hline 24.38 \pm 1.71 \\ \hline 12.42 \pm 1.25 \end{array}$	$\begin{array}{r} 24.85 \pm 0.11 \\ 24.73 \pm 0.172 \\ 24.71 \pm 0.15 \\ 24.73 \pm 0.149 \end{array}$	$\begin{array}{r} 0.28 \pm 0.081 \\ \hline 0.21 \pm 0.078 \\ \hline 0.44 \pm 0.117 \\ \hline 0.08 \pm 0.073 \end{array}$	$\begin{array}{c} 0.26 \pm 0.079 \\ 0.2 \pm 0.077 \\ 0.41 \pm 0.134 \\ 0.11 \pm 0.075 \end{array}$	$\begin{array}{r} 0.27 \pm 0.084 \\ 0.2 \pm 0.079 \\ 0.42 \pm 0.124 \\ 0.09 \pm 0.081 \end{array}$
Fashion- MNIST	i (autoencoder 1) ii (autoencoder 2) iii (classifier encoding) iv (no encoding)	$\begin{array}{r} 25.22 \pm 1.365 \\ \hline 25.84 \pm 1.436 \\ \hline 27.23 \pm 1.44 \\ \hline 20.83 \pm 1.317 \end{array}$	$\begin{array}{r} 14.92 {\scriptstyle \pm 0.048} \\ 14.85 {\scriptstyle \pm 0.03} \\ 14.84 {\scriptstyle \pm 0.037} \\ 14.95 {\scriptstyle \pm 0.043} \end{array}$	$\begin{array}{r} 0.53 {\pm} 0.065 \\ \hline 0.57 {\pm} 0.059 \\ \hline 0.64 {\pm} 0.052 \\ \hline 0.42 {\pm} 0.14 \end{array}$	$\begin{array}{c} 0.53 \pm 0.065 \\ \hline 0.58 \pm 0.057 \\ \hline 0.62 \pm 0.056 \\ \hline 0.44 \pm 0.15 \end{array}$	$\begin{array}{r} 0.51 {\scriptstyle \pm 0.06} \\ 0.56 {\scriptstyle \pm 0.055} \\ 0.62 {\scriptstyle \pm 0.049} \\ 0.41 {\scriptstyle \pm 0.132} \end{array}$

• *Accuracy:* the biggest drop is for "no encoding" (which are the most easily recognizable)

- *Transferability*: the accuracy is (essentially) the same for all CNN
- \circ Similarity to ${m T}$: classifier encoding are the least similar to ${m T}$
- Similarity to **O**: all methods appear to have same results

Future Work

• Human evaluation

• We want to submit the adversarial samples \mathcal{A} to real humans and ask for their opinion

• Defense and augmentation

- Through *adversarial training*, it is possible to use \mathcal{A} to defend against similar attacks
- Alternatively, it is possible to use *A* to augment the training dataset and (potentially) increase the baseline performance of the CNN

o Different data

• We only considered MNIST and FashionMNIST, but more datasets exist (e.g., CIFAR) which can be used to devise more intriguing experiments (with real FIAT Pandas and VW Polos!)

• Other domains

• We only investigated CNN that were analyzing images. However, the same principles can be applied also in other domains (i.e., malware analysis)

Future Work

- Human evaluation
 - We want to submit the adversarial samples \mathcal{A} to real humans and ask for their opinion

o **Defense** and **augmentation**

- Through *adversarial training*, it is possible to use \mathcal{A} to defend against similar attacks
- Alternatively, it is possible to use *A* to augment the training dataset and (potentially) increase the baseline performance of the CNN

o Different data

• We only considered MNIST and FashionMNIST, but more datasets exist (e.g., CIFAR) which can be used to devise more intriguing experiments (with real FIAT Pandas and VW Polos!)

• Other domains

• We only investigated CNN that were analyzing images. However, the same principles can be applied also in other domains (i.e., malware analysis)

Human validation – confused?

Sample S

• is sample S representing a 4 or a 9?

	1	2	3	4	5	6	7	
100% 4	\bigcirc	100% 9						

Human validation – source and target?

Human validation – truth

Human validation – results

• We created 46 of such questions by randomly picking diverse "Original" and "Target" samples, and we have 31 Amazon Mechanical Turk workers provide their answers.

Machine Learning in the Real World

G. Apruzzese, A.E. Cinà, A. Mitrokotsa, V. Shmatikov

SCHLOSS DAGSTUHL Leibniz-Zentrum für Informatik
How/where is ML used in the real world?

- A lot of domains use ML today:
 - Phishing Webpages Detection
 - Autonomous Driving (Computer Vision)
 - Translator (NLP)
 - Finance
 - Video Gaming
 - Filters (parental, content)
 - Recommender Systems
 - ...
- However, most **research** on ML security:
 - Focuses on language models (text or speech), and CIFAR/ImageNet (images);
 - Considers only *deep neural networks*, whereas traditional ML algorithms (e.g., "Random Forests") are overlooked despite being still used in practice!
 - Does not take into account the *costs* of attacks (or defenses).
 - Does not experiment on real systems

How/where is ML used in the real world? - Proof (1)

 Let's look at <u>all</u> papers (88) published in the top-4 cybersecurity conferences from 2019 until 2021, and see some trends...

UNIVE Fig. 8: G3: what is the considered ML paradigm?

How/where is ML used in the real world? - Proof (2)

 Let's look at <u>all</u> papers (88) published in the top-4 cybersecurity conferences from 2019 until 2021, and see some trends...

How/where is ML used in the real world? - Proof (3)

 Let's look at <u>all</u> papers (88) published in the top-4 cybersecurity conferences from 2019 until 2021, and see some trends...

How/where is ML used in the real world? - Proof (4)

 Let's look at <u>all</u> papers (88) published in the top-4 cybersecurity conferences from 2019 until 2021, and see some trends...

Most papers attack "benchmarks"

ML in practice

Most papers attack "benchmarks"

ML in practice

ML in research

Most papers attack "benchmarks"

ML in practice

ML in research

Question: must research papers attack "real" ML systems to have an impact to the real world?

Some research papers attacking real systems...

Cracking classifiers for **evasion**: A case study on the google's phishing pages filter

B Liang, M Su, W You, W Shi, G Yang - Proceedings of the 25th ..., 2016 - dl.acm.org

Various classifiers based on the machine learning techniques have been widely used in

security applications. Meanwhile, they also became an attack target of adversaries. Many ...

Proceedings of the 25th International Conference on World Wide Web (WWW). 2016.

Attacking automatic video analysis algorithms: A case study of google cloud video intelligence api <u>H Hosseini, B Xiao, A Clark</u>... - Proceedings of the 2017 on ..., 2017 - dl.acm.org Due to the growth of video data on Internet, automatic video analysis has gained a lot of attention from academia as well as companies such as Facebook, Twitter and Google. In this paper, we examine the robustness of video analysis algorithms in adversarial settings. Specifically, we propose targeted attacks on two fundamental classes of video analysis algorithms, namely video classification and shot detection. We show that an adversary can subtly manipulate a video in such a way that a human observer would perceive the content ... Proceedings of the 2017 Workshop on Multimedia Privacy and Security (CCS Workshop). 2017.

Fall of Giants: How popular text-based MLaaS fall against a simple evasion attack

L Pajola, M Conti - ... IEEE European Symposium on Security and ..., 2021 - ieeexplore.ieee.org

The increased demand for machine learning applications made companies offer Machine-

Learning-as-a-Service (MLaaS). In MLaaS (a market estimated 8000M USD by 2025), users ...

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2021.

Adversarial music: Real world audio adversary against wake-word detection system

88

J Li, S Qu, X Li, J Szurley, JZ Kolter... - Advances in Neural ..., 2019 - proceedings.neurips.cc

... this suggests a real concern of **attack** against commercial grade **machine learning** algorithms, highlighting the importance of **adversarial** robustness from a ...

Advances in Neural Information Processing Systems (2019).

...have apparently little impact on future research

Cracking classifiers for evasion : A case stud filter	dy on the google's phishing pages				
B Liang, M Su, <u>W You,</u> W Shi, <u>G Yang</u> - Proceedings of the 2	25th, 2016 - dl.acm.org				
Various classifiers based on the machine learning technique	s have been widely used in				
security applications. Meanwhile, they also became an attac	k target of adversaries. Many				
🛠 Save 9 Cite Cited by 58 Related articles All 6 ver	sions				
Proceedings of the 25th International Conference on World Wide Web ((WWW). 2016.				
	Attacking automatic video analysi video intelligence api	s algorithms: A case study of google cloud			
	H Hosseini, <u>B Xiao, A Clark</u> Proceedings	of the 2017 on, 2017 - dl.acm.org			
	Due to the growth of video data on Internet, attention from academia as well as compani paper, we examine the robustness of video	automatic video analysis has gained a lot of es such as Facebook, Twitter and Google. In this analysis algorithms in adversarial settings.			
	Specifically, we propose targeted attacks on	two fundamental classes of video analysis			
	algorithms, namely video classification and subtly manipulate a video in such a way that	shot detection. We show that an adversary can			
	☆ Save 99 Cite Cited by 23 Related a	ticles All 8 versions			
Fall of Giants: How popular text-based ML as	S fa Proceedings of the 2017 Workshop on Multi	media Privacy and Security (CCS Workshop). 2017.			
attack					
L Paiola. M Conti IEEE European Symposium on Secu	rity and 2021 - ieeexplore ieee org				
The increased demand for machine learning applications m	nade companies offer Machine-				
Learning-as-a-Service (MLaaS). In MLaaS (a market estimated	ated 8000M USD by 2025), users				
☆ Save 57 Cite Cited by 2 Related articles All 6 vers	sions				
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,	Adversarial music: Peal world audio	adversary against wake word detection			
	system	adversary against wake-word detection			
	J Li, S Qu, X Li, J Szurley, JZ Kolter Advances	in Neural, 2019 - proceedings.neurips.cc			
	this suggests a real concern of attack against commercial grade machine learning				
LIECHTENSTEIN	algorithms, highlighting the importance of advers	arial robustness from a			
	☆ Save 57 Cite Cited by 36 Related articles	All 11 versions 🔊			
	Advances in Neural Information Processing Syst	ems (2019). 82			

Why are (some) papers on real ML systems getting little attention?

- Not constructive for future research
 - The attack is against a "specific" system
 - You barely know what the system is actually doing
- Difficult to "beat" the same attack for future research
 - The real system gets patched immediately, and future research cannot "benchmark" on the same model, nor use the same attack methodology (which is *specific* for the targeted system)
- Difficult to "explain"
 - The real system is <u>always</u> a black-box from a researcher perspective, so it is difficult to explain what is actually happening "within" the system.
- Difficult to "map" to the "ML domain"
 - Is the attack targeting the ML model, the preprocessing, or some other component?
- The attacked systems are "niche"
 - The impact to the real world is marginal

Question: do you think it makes sense to always assume "worst-case" scenarios (i.e., the "Kerckhoff Principle")?

Using Machine Learning to violate the Privacy of Video Gamers

Video Games, E-Sports, Tracking Websites, Dota2

- Video Games (VG) are becoming increasingly popular
 - One of the few industries that are constantly improving their profits
- Some competitive VG are denoted as "E-sports"
 - Examples: Dota2, Fortnite, League of Legends
- Some tournaments of such E-sports have very high prize-pools
 - For Dota2, "The International" had a prize pool of 40M \$ in 2021

Video Games, E-Sports, Tracking Websites, Dota2

- Video Games (VG) are becoming increasingly popular
 - One of the few industries that are constantly improving their profits
- Some competitive VG are denoted as "E-sports"
 - Examples: Dota2, Fortnite, League of Legends
- Some tournaments of such E-sports have very high prize-pools
 - For Dota2, "The International" had a prize pool of 40M \$ in 2021
- Such prizes attract a lot of players who "play-to-win" and want to get better...
 - Best way of improving at something? Learn from past mistakes!
- ...which, in the E-sport ecosystem, it can be easily done via <u>Tracking Websites</u>

A tracking website (TW)

Dendi Overview ✓ + У □						24 minutes ago 6,218-5,477 - LAST MATCH RECORD	82 52.80% WIN RATE
Overview Matches Heroes Hero Master	ry Items Reco	rds Scenarios A	ctivity Trends Achi	evements Match	hups		
ROLES AND LANES FROM RECENTLY ANAL	YZED MATCHES				MORE	ACTIVITY LAST 3 MONTHS	
5 88% CORE				₹ 12%		May Jun	Jul
✓ MID LANE			2	t†	도	Sun • • • • • • • •	
	Matchee Wir	0% KDA	Dole	lano	+ MORE	Wed	• • •
Invoker	706 52.0	1706 A 00	M Core	∠unc. ⊀ Mid Lane			
8 days ago	700 52.5	4.00			_	Sat	
Shadow Fiend 2 months ago	681 49.6	3% 3.09	[≸] Core	🗡 Mid Lane			
Pudge 24 minutes ago	671 55.8	9% 3.39	[≉] Core	🗡 Mid Lane		FRIENDS THIS WEEK	
						Friend	Matches Win Rate
	D I I	T	D		MORE	syndereN 🗸 🕂	8 37.50%
Hero	Result	lype	Durat	ion KDA		Pale Horse	4 25.00%
Immortal	9 x 24 minutes	ago All Pick	17:34	7/0/4		👸 Monke	4 25.00%
Dragon Knight Immortal	Lost Match 🏂 💉 14 hours ag	Ranked	d 🛔 49:02	9/4/14		Gremlo	4 25.00%
Zeus	Won Match	n Ranked	d 🛔 🔰 <u>41:13</u>	10/5/24		👩 Crow	4 25.00%
	7 Y 13 Hours ag					521	3 100.00%
6,300 ARBITRARY POINTS RECENT ACH	IEVEMENTS				MORE	miniorc00	3 66.67%
Jungle Medicine 2 months ago40Death S months	h Prophet hths ago 25	Deathball 4 months a	ago 15	Shadow Shaman 7 months ago	25	ALTASES STEAM 0.1.35194328	
Batrider 11 months ago	25	Witch Doc 12 months	ctor ; ago		25	Name	Last Used
						Somnambula 	24 minutes ago 3 days ago

A tracking website (TW)

→ Dendi Overview → + → □	- C						24 minutes ago LAST MATCH	6,218-5,477-8 RECORD	2 52.809 WIN RA	TE
Overview Matches He	eroes Hero Mastery Items	Records S	Scenarios Activity	Trends Achiever	ments Matchup)S				
	Rom recently analyzed match	HES			Đ	MORE	ACTIVITY LAST 3 MONTHS			MORE
% 88% CORE					% 12%		May	Jun Ju	ıl	
💉 MID LANE				5	ti 5	Ŧ	Mon			•
							Tue			
Hero									•	
Invoker									•	
K 2 8 days ag					SF					
Shadow 2 months										
Pudge 24 minute										
							nov		tches	Win Rate
LATEST MATCH			VIL			4	IJdV	EIS		37.50%
Hero										25.00%
Pudge Immortal	9001 🏂 💉 24 n	ninutes ago		17:34	//0/4	_	😵 Monke		4	25.00%
Dragon Knight Immortal	Los 🥦 🗡 14 h	t Match ours ago	Ranked 🐣 All Pick	49:02	9/4/14	_	Gremlo		4	25.00%
Zeus	Wo	n Match	Ranked	41:13	10/5/24		Crow		4	25.00%
Immortal	🥦 🗡 15 h	ours ago	All Pick				S21		3	100.00%
6,300 ARBITRARY PC	DINTS RECENT ACHIEVEMENTS				Đ	MORE	miniorc00		3	66.67%
Jungle Medicine 2 months ago	40 Death Prophet 3 months ago	25	Deathball 4 months ago	15 / Sh	nadow Shaman months ago	25	ALIASES STEAM 0:1:3519432	8		
Batrider 11 months ago		25	Witch Doctor 12 months ago			25	Name		Last Use	d
							Somnambula		24 minute	es ago
									3 days ag	0

A tracking website (TW) – Why is it public?

Dendi Overview	24 minutes ago 6,218-5,477-82 52.80% LAST MATCH RECORD WIN RATE							
It is the playerbase who want the statistics collected by TW to be publicly available!								
The reasons are various, e.g.,:								
1. Inspecting the profiles of other players can be used to learn some of their tricks								
2 in turn, by having their own profile publicly accessible	e, a given player can gain							
visibility if they perform very well								
3such "visibility" can lead to invitations to play in top-	teams, or to finding new							
(good) teammates								
4. The visibility can come either because other players "inspect" a given player's profile,								
or because of climbing "public ladders"								
There are over 70M of Dota2 players who use TW.								
Jungle Medicine 40 Reath Prophet 25 No Deathball 15 Shadow Shaman 25								
A Prioritals ago 20 A A A A A A A A A A A A A A A A A A	LIASES STEAM_0:1:35194328							
11 months ago 25 12 months ago 25	Name Last Used Somnambula 24 minutes ago							
	3 days ago							

A tracking website (TW) – Why are they A PROBLEM?

Dendi Overview	24 minutes ago 6,218-5,477-82 52.80% LAST MATCH RECORD WIN RATE							
	The second secon							
It is the playerbase who want the statistics collected by TW to be publicly available!								
The reasons are various, e.g.,:								
1. Inspecting the profiles of other players can be used to learn some of their tricks								
2in turn, by having their own profile publicly accessible, a given player can gain								
visibility if they perform very well								
3such "visibility" can lead to invitations to play in top-teams, or to finding new								
(good) teammates								
4. The visibility can come either because other players	s "inspect" a given player's profile,							
or because of climbing "public ladders"								
There are over 70M of Dota2 players who use TW.								
Problem: such "availability" exposes E-sports' players to the risk of								
"Attribute Inference Attacks" (AIA)								
Batrider 25 Witch Doctor 25	ALIASES STEAM_0:1:35194328							
	Somnambula 24 minutes ago							
Jungle "Attribute Inference Attacks" 2 months ago	(AIA) ALIASES STEAM_0:1:35194328 Name Last Used Somnambula 24 minutes ago 3 days ago							

Threat Model

Assessment

- We proactively assess such a threat, because *nobody* ever did something similar in the E-sports ecosystem. We focus on Dota2
- We conduct an informed survey, asking ~500 Dota2 players to provide us with private (non-sensitive) information about their real-life (e.g., age, gender, occupation, whether they buy Dota2 content, and some personality traits)
- We use the handle (i.e., nickname) of such players to collect their (publicly available) Dota2 in-game statistics from popular TW (opendota).

Assessment (cont'd)

- We proactively assess such a threat, because *nobody* ever did something similar in the E-sports ecosystem. We focus on Dota2
- We conduct an informed survey, asking ~500 Dota2 players to provide us with private (non-sensitive) information about their real-life (e.g., age, gender, occupation, whether they buy Dota2 content, and some personality traits)
- We use the handle (i.e., nickname) of such players to collect their (publicly available) Dota2 in-game statistics from popular TW (opendota).
- We find a correlation (!) between the players in-game statistics and their real life.
 - Such a finding suggests that AIA can be successful!
- We (ethically) perform diverse AIA: we use 80% of our data to train ML models, and predict the personal attributes of the players included in the remaining 20%.

Results – One-to-One AIA

Results – Many-to-Many AIA

Table 6: Indiscriminate 'many-to-many' AIA (mid column). Compared to the baseline (cf. Fig. 5), the accuracy substantially increases.

	Sophisticated AIA (30 matches)	Indiscriminate AIA (30 matches)	Improvement
age	67.15±6.87	89.15±4.66	+22.00%
purch.	68.99±3.81	96.13±2.86	+27.14%
open.	51.30±3.87	77.86±3.39	+26.56%
consc.	53.24±4.88	80.19±4.12	+26.95%
extrav.	53.78±3.90	81.51±4.40	+27.73%
agreeab.	50.71±4.65	76.84±5.59	+26.13%
neurot.	55.74±3.88	80.64±4.02	+24.90%

Results – Many-to-One AIA

...so what now?

- Hard counters? Nope!
 - The entire E-sport ecosystem would be disrupted

• Compromise? Yes!

- The users should be informed that having their in-game statistics to be publicly accessible by TW exposes them to AIA
- What about other games? Many E-sports share the same ecosystem with Dota2
 - AIA are theoretically possible also in other VG, but a correlation has to be found first
- We sent an email to Valve (yesterday) to inform them of such vulnerability.
 - We are unsure about whether they will take any action in the short-term

Cybersecurity and Machine Learning: Facts and Myths

Giovanni Apruzzese, PhD University of Bologna – October 12th, 2022

