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whoami: Dr. Giovanni Apruzzese . l

o Background:

* Did my academic studies (BSc, MSc, PhD) @ University of Modena, Italy. |
— Supervisor: Prof. Michele Colajanni “V/

* In 2019, spent 6 months @ Dartmouth College, USA.

* Joined the University of Liechtenstein in July 2020 as a PostDoc Researcher.
— Supervisor: Prof. Pavel Laskov

*  Was “promoted” to Assistant Professor in September 2022.

o Interests:
* [Areas] Cybersecurity, machine learning, with a strong focus on practice
* [Applications] Phishing, human factors, and any network-related topic (+ 6R)
* | like talking, researching and teaching —in a “blunt” way ©

o Contact information:

* Email (work): giovanni.apruzzese@uni.li

*  Website (personal): www.giovanniapruzzese.com

* Feel free to contact me if you have any questions.
— I reply fast, and will happily do so!
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What | do

Machine Learning + Cybersecurity

o Applying ML to provide security of a given information system
 E.g.:using ML to detect cyber threats

o Attacking / Defending ML applications
 E.g.: evading an ML model that detects phishing websites

o Using machine learning offensively...
e ..against another system (e.g.: artificially generating “fake” images)
e ..against humans (e.g., violating privacy, deceiving end-users)

BONUS
o Using ML to attack an ML-based security system and harden it

(more recently)

- E UNIVERSITAT . .
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Outline of Today

Two paper-inspired talks:

o Machine Learning Security in the Real-World

Ref: Giovanni Apruzzese, David Freeman, Savino Dambra, Hyrum S Anderson, Kevin Alexander Roundy, Fabio Pierazzi “’"Real Attackers
Don’t Compute Gradients’: Bridging the Gap Between Adversarial ML Research and Practice.” IEEE Conference on Secure and
Trustworthy Machine Learning (2023).

o Attacking Machine Learning-based Phishing Website Detectors

Ref: Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal, Giovanni Apruzzese, Dinil Mon Divakaran “Attacking Logo-based
Phishing Website Detectors with Adversarial Perturbations”. European Symposium On Research In Computer Security (2023).
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Outline of Today

Two paper-inspired talks:

o Machine Learning Security in the Real-World

Ref: Giovanni Apruzzese, David Freeman, Savino Dambra, Hyrum S Anderson, Kevin Alexander Roundy, Fabio Pierazzi “’"Real Attackers
Don’t Compute Gradients’: Bridging the Gap Between Adversarial ML Research and Practice.” IEEE Conference on Secure and
Trustworthy Machine Learning (2023).

o Attacking Machine Learning-based Phishing Website Detectors

Ref: Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal, Giovanni Apruzzese, Dinil Mon Divakaran “Attacking Logo-based
Phishing Website Detectors with Adversarial Perturbations”. European Symposium On Research In Computer Security (2023).

Two goals:

o Inspire you (to do/consider doing research in computer security)
o Entertain you (research should be fun)

- . UNIVERSITAT
LIECHTENSTEIN


mailto:giovanni.apruzzese@uni.li

Machine Learning Security in the Real-World

Based on a joint work with Hyrum S. Anderson, Savino Dambra, David Freeman, Fabio Pierazzi, Kevin Roundy:
“’Real Attackers Don’t Compute Gradients’: Bridging the Gap Between Adversarial ML Research and Practice.”
IEEE Conference on Secure and Trustworthy Machine Learning (2023).
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Backstory (Dagstuhl — July 10-15%, 2022) ]‘H@

"1
SCHLOSS DAGSTUHL

Leibniz-Zentrum fiir Informatik

o Research seminar on the “Security of Machine Learning”
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SCHLOSS DAGSTUHL

Leibniz-Zentrum fiir Informatik

o Research seminar on the “Security of Machine Learning”

o The seminar opened with a talk by K. Grosse, showcasing the results of an extensive
survey with ML practitioners about the security of ML [5]:

- . UNIVERSITAT
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“Why do so?”

[5] K. Grosse, et al ““Why do so?”—A Practical Perspective on Machine Learning Security,” ICML—New Frontiers of Adversarial Machine Learning, 2022. 8
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SCHLOSS DAGSTUHL

Leibniz-Zentrum fiir Informatik

o Research seminar on the “Security of Machine Learning”

o The seminar opened with a talk by K. Grosse, showcasing the results of an extensive
survey with ML practitioners about the security of ML [5]:

“Why do so?”

o Many discussions revolved around the impact of our research to the real world.
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Apparently, the overwhelming
number of works on adversarial
ML research were not seen as
problematic by practitioners!

I
o
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Cumulative Number of
Adversarial Example Papers

o
L
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Year

o Arecurring observation by some of the seminar’s attendees from industry was that:

| L hiiieiNE “Real attackers guess”

[5] K. Grosse, et al ““Why do so?”—A Practical Perspective on Machine Learning Security,” ICML—New Frontiers of Adversarial Machine Learning, 2022. 9
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Backstory (Earth — July 229, 2022)

o One week later, | was having a (remote) call with Fabio Pierazzi, and...

UNIVER
LIECHTE

Dagstuhl follow-up: position paper on "attacker guessing" threat model?

: > romers Ja -
Pierazzi, Fabio <fabio.pierazzi@kcl.i . O et | S )| = Read

PF

To @ dfreeman @ Kevin Roundy; @ hyrum@robustintelligence.com venerdi 22/07/2022 14:15
Cc = Apruzzese Giovanni

You forwarded this n 02/09/2022 15:45.

Dear David, Kevin, Hyrum,
It was great to get to know you (more) during Dagstuhl.

| was talking with Giovanni yesterday, and were thinking again about what you all seemed to agree on from an industry perspective that in most cases attackers “guess” and do
not necessarily use ML to evade systems, they just try to get out the easy way.

Given the upcoming first edition of SATML, we saw there’s also a category for “position papers”, and me and Giovanni were thinking of maybe doing a position paper about “threat
models of ML systems”.

The current white-box threat models and also ML-driven black-box are mostly a worst-case scenario, and maybe models can be broken just much more easily (similar to the
‘pseudo-fuzzing' that Hyrum is locking into for ML models at Robust intelligence and maybe at Microsoft research).

Long story short, would you be interesting in co-authoring a position paper for SatML on the topic of “revisiting threat models of ML systems”, to also re-define how to consider
attacker capabilities in evading systems? Part of it is also related to the fact that real-world systems are a pipeline of ML and non-ML models.

©Or, if not co-authering, giving some feedback?

More concretely, there is some stuff that should be nice to highlight:
# In this misec challenge, authors evaded an ml classifier without mil: hitps://cujo.com/announcing-the-winners-of-the-2021-machine-learning-security-evasion-competi-
tion/
# In Giovanni&Pavel's 5G paper, they proposed the “myopic” threat model, similar to this issue: https://arxiv.org/pdf/2207.01531 pdf
+  Konrad's team which won a defense in Hyrum’s ML challenge got broken by a non-ML approach: hitps://amiv.org/odf/2010.09569. pdf

We appreciate the timeline is quite tight: deadline is Sep 1* (with abstract the week before), yet it's a 5-page position paper, and it may help in raising awareness on threats
relevant to industry.

Giovanni offered himself to do most of the work, so he should be able to lead the effort.

‘What do you think?

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

We appreciate the timeline is quite tight: deadline is Sep 1t (with ab-
stract the week before), yet it’s a 5-page position paper, and it may help
in raising awareness on threats relevant to industry.
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Do real attackers compute gradients? (Case Study)

o We tried answering this question by looking at the Al Incident Database [78]...

o ..but we could not find any evidence of real incidents stemming from “adversarial
examples” (or which leverage gradient computations)

- . UNIVERSITAT
LIECHTENSTEIN
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Do real attackers compute gradients? (Case Study)

We tried answering this question by looking at the Al Incident Database [78]...

...but we could not find any evidence of real incidents stemming from “adversarial
examples” (or which leverage gradient computations)

o So, we asked a well-known cybersecurity company to provide us with data from their
(operational!) phishing website detector, empowered by deep learning

o Justin July 2022, there were 9K samples for which the ML detector was “uncertain”
 They were “close to the decision boundary”, and required manual triage by experts

o We manually analyzed these (phishing) samples, trying to understand the root-causes
of these “adversarial webpages”

What did we find?

- - UNIVERSITAT
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Do real attackers compute gradients? (Case Study) [cont’d]

o The vast majority of these webpages were “out of distribution”
* They were different from any sample in the training set

o We then looked at a small subset of the remaining ones...

- . UNIVERSITAT
LIECHTENSTEIN
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Do real attackers compute gradients? (Case Study) [cont’d]

o The vast majority of these webpages were “out of distribution”
* They were different from any sample in the training set

o We then looked at a small subset of the remaining ones...

Bz Outlook

>
GO 8[& Masuk ke akaun anda untuk meningkatkan kuota peti mel anda
‘ * Alamat Emel/Email Address
One account. All of Go gle. e |
* kata laluan/Passwrd ‘
Sign in to continue to Gma |
[[Gow= ]
Ober
A - __ 1 __ 8 _ __

EE TSN AN WERA = E E &M _mWw wm Sign in
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but can still evade modern (and real) ML systems. Jned? 16
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Machine Learning Systems
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Machine Learning Systems

o In reality, ML models are a single component of a complex ML system

* Real ML systems (are likely to) have also elements that have nothing to do with ML

Machine Leaming System

ML model

Input Preprocessing —>» Output

- . UNIVERSITAT
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o In reality, ML models are a single component of a complex ML system

* Real ML systems (are likely to) have also elements that have nothing to do with ML

Machine Leaming System

Input

Preprocessing

ML model

—>» Output

o Some ML systems are “invisible” to their users (and, hence, to real attackers)
( ................................................................................

delayed

ML system >

Output

feedback:
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Machine Learning Systems (Case Study)

o Thisis the architecture of the ML-based spam detection system at Facebook n

; Automation A
E.g. scripts, bots, extensions, emulators
Access
2
E.g. fake/compromised accounts, access tokens
3 Increasing Activity Increasing
amountofdata \ Eg. spam, fake engagement, scraping magnitude of
available problem
Increasing harm Application Increasing speed
4 per incident , , of detection
v E.g. hate, terrorism, nudity

- . UNIVERSITAT
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Machine Learning Systems (Case Study)

o Thisis the architecture of the ML-based spam detection system at Facebook n

; Automation A
E.g. scripts, bots, extensions, emulators
Access
2
E.g. fake/compromised accounts, access tokens
3 Increasing Activity Increasing
amountofdata \ Eg. spam, fake engagement, scraping magnitude of
available problem
Increasing harm Application Increasing speed
4 per incident , , of detection
v E.g. hate, terrorism, nudity
o The first layers are meant to block attacks at scale (e.g., query-based strategies)
o All layers use a mix of ML and non-ML techniques (not necessarily deep learning)
o Deep learning really shines at the bottom layer (few events reach this layer, though)
o The output accounts for diverse layers and is not instantaneous (an invisible ML system)
3 m UNIVERSITAT ot «\e(}: "
LIECHTENSTH Real attackers have to bypass all layers to be successful. s do?:N\\, s\rs:\
\ A\
Aot :‘(‘)m“-\?o’(@ 21
\


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

“Attacking” an invisible ML system

o Ifl go on Facebook and want to spread “spammy” content...

< > C 0 @ facebook.com
fUCEbOOk Q, Search Facebook

Home 3 . . .
#Q" What's on your mind, Giovanni?
%' Giovanni Apru Apruzzese

—~

Live video Photo/video ',"} Feeling/activity
=

¥ Watch
Create post

o ..theonly thing | will see after “posting” it is the post itself. G Ao Aot

© Public v

Selling real Ray-Ban for cheap! 3$ instead of 200$!

- . UN|VERS|TAT Add to your post
LIECHTENSTEIN
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“Attacking” an invisible ML system (cont’d)
o Ifl go on Facebook and want to spread “spammy” content... n

< > C 0 @ facebook.com
facebook

Home 3 . . .
#8 What's on your mind, Giovanni?

%' Giovanni Apru Apruzzese
Live video Photo/video (':] Feeling/activity

®  Watch

Create post

o ..theonly thing | will see after “posting” it is the post itself. @) oo s
G Public v
Selling real Ray-Ban for cheap! 3$ instead of 200$!

o | would not be able to see:
* The architecture of Facebook’s spam detector
* The fact that it uses ML
* The fact that my specific post was (or not) analyzed by ML
* The output of the system to my specific post

o If the post “appears”, does it mean that the system was evaded?
*  What if the post gets removed after 1 hour? Or 1 day?

* What if my account is blocked after 1 week? 4025
- . UNlVERSlTAT ox_‘ocv\z(‘& )(Y\\S\ Add to your post
LIECHTENSTEIN N ced oo 0
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Machine Learning Systems (state-of-research)

o We analyzed all related papers accepted at top-4 cybersecurity conferences (NDSS, S&P,
CCS, USENIX Sec) from 2019-2021.

* Out of 1549 papers, 88 fell into the “adversarial ML” category.
— Out of these, 78 consider only deep learning methods

- . UNIVERSITAT
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Machine Learning Systems (state-of-research)

o We analyzed all related papers accepted at top-4 cybersecurity conferences (NDSS, S&P,
CCS, USENIX Sec) from 2019-2021.

e Out of 1549 papers, 88 fell into the “adversarial ML” category.
— Out of these, 78 consider only deep learning methods

B Deployed (Real-world) [ Self-made (Custom)

B Complex Pipeline [ Just an ML model

1.00 1.00
0.75 0.75
3 g
& 050 S 0.50
3 o
g o
Y- 025 Y 025
0.00 0.00
2019 2020 2021 TOTAL 2019 2020 2021 TOTAL

Fig. 12: Has a complex pipeline been reproduced in the evaluation?| |Fig. 13: Does the paper consider an ML model deployed in the real world?

Building a pipeline that resembles a Finding a ML system that is openly available for

, 777e (realistic) ML system is difficult. research-focused (security) assessments is hard.
oy p%s? Qg Y\\N\x‘f\
/,C/ efS’ \o“c’ q\(\\

A, /./Qf'e 0\ o X
ab /e/ @@‘\“\ (\\@s
- [Ei UNIVERSITAT Disclaimer: the findings of all these papers are still significant! 0
LIECHTENSTEIN
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Cybersecurity is rooted in economics

- . UNIVERSITAT
LIECHTENSTEIN
26


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Cybersecurity © Economics

\a thing
. . ig NO suc et
o Given enough resources, any attack will be successful “The’r%;i\p\"OO{ sY°

X
o The goal of a defense is to “raise the bar” for the attacker

- A real attacker will opt for the cheaper strategy to reach their objective
- A real defender will prioritize the most likely threats.

@) Konstantin Berlin

Head of Al at . . Views are my own.

If you look at cybercrime in economical terms (as you @) Konstantin Berlin

ShOUld because it iS a bUSinESS) the Optimization for Given the existence of an already large number of more prevalent attacks
. . . oy & that do bypass detections why prioritize this one?

an adversarial ex. is not the expensive part, it is the

engineering part of building a tool that can create a

diverse set of attacks with no obvious watermarks.

- . UNIVERSITAT
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Cybersecurity © Economics

\a thing
. . ig NO suc et
o Given enough resources, any attack will be successful “The’r%;i\p\"OO{ sY°

X
o The goal of a defense is to “raise the bar” for the attacker

- A real attacker will opt for the cheaper strategy to reach their objective
- A real defender will prioritize the most likely threats.

@) Konstantin Berlin

Head of Al at . . Views are my own.

If you look at cybercrime in economical terms (as you

@) Konstantin Berlin

Given the existence of an already large number of more prevalent attacks

should because it is a business) the optimization for
an adversarial ex. is not the expensive part, it is the
engineering part of building a tool that can create a
diverse set of attacks with no obvious watermarks.

that do bypass detections why prioritize this one?

o Inour domain, the cost of an attack is typically measured by means of “queries” @ @
*  More queries — higher cost — “less effective” attack

- . UNIVERSITAT
LIECHTENSTEIN
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Cybersecurity & Economics (Case Study)

o We performed an in-depth look at the MLSEC anti-phishing challenge of 2021

* Participants had to “evade the black-box detector” with as few queries as possible

- . UNIVERSITAT
LIECHTENSTEIN
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Cybersecurity & Economics (Case Study)

o We performed an in-depth look at the MLSEC anti-phishing challenge of 2021
* Participants had to “evade the black-box detector” with as few queries as possible

250 A
2 —— 1st: npttlpwx (g=320)
.g 200 - 2nd: gjykdxju (q=343)
é’ —— 3rd: pip (q=608)
9 150 4 —— 4th: mismgfm (q=9982)
v
£ 100-
]
L
> i
g 50 ’_//N
o .

0 T T T T T T T — T T
0 5 10 15 20 25 30 35 40 45

days since start

o The team arriving first (320 queries)... was the last to submit their solution Queries do "' “’;"
the whole story:

o The team arriving third (608 queries)... was the first to submit their solution

o Both of these teams only relied on their domain expertise _

computed here!

UNIVERSITAT i ienifi
- [Ei R ETEm The human factor is a §|gn|f|cant component
in the cost and effectiveness of an attack.
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Cybersecurity © Economics (state-of-research)

o Do research papers on adversarial ML take economics into account?

B None Mention [ Measured
1.00 -
7
0.75 4
> 2 14
8)
c
© 0.50 d
o Positive frend
L
“ 025
0.00
2019 2020 2021 TOTAL
Fig. 9: G4: are the costs taken into account (in any way)?

* Only 3 papers provided an actual cost in $S (but only for “expenses”)

* The measurements never considered the human factor
— Attack papers measured “queries”, defense papers measured “performance degradation”

. . . . ()
At least in the adversarial ML domain, economics appears to be overlooked. X w@osf’:t(\occ\‘-
Wt ior
) Nt
I I U)VERSITAT 0o\ o ¥
LIECHTENSTEIN e

Disclaimer: the findings of all these papers are still significant!
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A few words on the state-of-research

- . UNIVERSITAT
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Data and Reproducibility (state-of-research)

® Other = Audio ™ Text ® Images B Not Available [ Public
1.25 1.00
‘ 28
1.00 16
1 0.75
° >
> o7s o 7 15 o
[ c
© o 0.50
g_ >
© 050 8
L | -
" 025
0.25
- 0.00
' 2019 2020 2021 TOTAL 2019 2020 2021 TOTAL
Fig. 10: What are the data-types considered in the evaluation? Fig. 11: Has the source-code been publicly released?
o . . v
* Over 50% of the papers focus on image data (decreasing trend) o Jbe,
%r. Sse
— Only 12 papers (out of 88) focus on ML applications for cybersecurity (e.g., phishing, malware) f”e,, o,,,))/

es'/

Some ML application domains (e.g., finance) are
rarely discussed in adversarial ML literature.

* Only 50% of the papers release their implementations publicly (increasing trend)

- . UNIVERSITAT
LIECHTENSTEIN
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete A/'Qns .
knowledge of the model architecture, parameters, and training data.[...] L With S"nd'

In a black-box setting, the adversary has no knowledge of the target model QSkOV[43 ’Cand
and no access to surrogate datasets.” ]

- . UNIVERSITAT
LIECHTENSTEIN
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete
knowledge of the model architecture, parameters, and training data.[...]
In a black-box setting, the adversary has no knowledge of the target model
and no access to surrogate datasets.”

Shan et al. [102]: Y“We assume a basic white box threat model, where
adversaries have direct access to the the ML model, its architecture, and
its internal parameter values [...] but do not have access to the training
data.”

- . UNIVERSITAT
LIECHTENSTEIN
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete
knowledge of the model architecture, parameters, and training data.[...]
In a black-box setting, the adversary has no knowledge of the target model
and no access to surrogate datasets.”

Shan et al. [102]: Y“We assume a basic white box threat model, where
adversaries have direct access to the the ML model, its architecture, and
its internal parameter values [...] but do not have access to the training
data.”

we focus on the white-box adversarial
the target model (including 1its

¥iae et al, [22]3
attack, which means
structure and parameters).

“in this paper,
we need to access

”
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete
knowledge of the model architecture, parameters, and training data.[...]
In a black-box setting, the adversary has no knowledge of the target model
and no access to surrogate datasets.”

Shan et al. [102]: Y“We assume a basic white box threat model, where
adversaries have direct access to the the ML model, its architecture, and
its internal parameter values [...] but do not have access to the training
data.”

Xiao et al. [22]: “In this paper, we focus on the white-box adversarial

attack, which means we need to access the target model (including its
structure and parameters) .”

Suya et al. [103] assume a “black-box” attacker that “does not have direct
access to the target model or knowledge of its parameters,” but that “has
access to pre-trained local models for the same task as the target model”
which could be “directly available or produced from access to similar
training data .,
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete
knowledge of the model architecture, parameters, and training data.[...]
In a black-box setting, the adversary has no knowledge of the target model
and no access to surrogate datasets.”

Shan et al. [102]: Y“We assume a basic white box threat model, where
adversaries have direct access to the the ML model, its architecture, and
its internal parameter values [...] but do not have access to the training
data.”

we focus on the white-box adversarial
the target model (including 1its

¥iae et al, [22]3
attack, which means
structure and parameters).

“in this paper,
we need to access

”

Suya et al. [103] assume a “black-box” attacker that “does not have direct
access to the target model or knowledge of its parameters,” but that “has
access to pre-trained local models for the same task as the target model”
which could be “directly available or produced from access to similar
training data .,

Hui et al. [104] envision a “gray-box” setting which “gives full knowledge
to the adversary in terms of the model details. Specifically, except for
the training data, the adversary knows almost everything about the model,
such as the architecture and the hyper-parameters used for training.”
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Inconsistent Terminology (“What does the attacker know?”)

o The terms “white-box” and “black-box” are widespread, but often denote different
degrees of attacker’s knowledge. Here are some examples, taken verbatim.

Co et al. [101]: “In white-box settings, the adversary has complete
knowledge of the model architecture, parameters, and training data.[...]
In a black-box setting, the adversary has no knowledge of the target model
and no access to surrogate datasets.”

Shan et al. [102]: Y“We assume a basic white box threat model, where
adversaries have direct access to the the ML model, its architecture, and
its internal parameter values [...] but do not have access to the training
data.”

we focus on the white-box adversarial
the target model (including 1its

¥iae et al, [22]3
attack, which means
structure and parameters).

“in this paper,
we need to access

”

Suya et al. [103] assume a “black-box” attacker that “does not have direct
access to the target model or knowledge of its parameters,” but that “has
access to pre-trained local models for the same task as the target model”
which could be “directly available or produced from access to similar
training data .,

Hui et al. [104] envision a “gray-box” setting which “gives full knowledge
to the adversary in terms of the model details. Specifically, except for
the training data, the adversary knows almost everything about the model,
such as the architecture and the hyper-parameters used for training.”
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Our four Positions
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P1: Adapt threat models to ML systems

Attacker’s Goal, Knowledge, Capabilities and Strategy should = Real attackers have broader
objectives and do not want just to

reflect the ML system (and not just the ML model!) “evade the ML model”

. . -> Existing terminology is often
Each of those elements should be precisely defined. & 08y
used inconsistently.

Problematic Terms:
“Box-based” terminology

r, So
ec\ /(/)‘_
- “Access” ine, s
7‘/7e /7010 -0’70'
- “Adversarial” Py oy,
€ Sy

“Evasion”
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P2: Cost-based threat modeling

ATTACKER: DEFENDER: DEFENDER:
"will I launch an attack?" "what is the risk of an attack?" "should | make a countermeasure?"
High Benefit High atk Likelihood High atk Risk
Very , Mild High
Likely wd o Yes Maybe
Low atk High atk) Low atk High atlg |::> Low def High dgf
Cost Cost Damage Damage Cost Cost
: , Low Mild
Low Qenefit Low atk Likelihood Low atk Risk

Both attacks and defenses have a cost. Real attackers do not launch an
attack if it is too expensive; and real developers will not develop a
countermeasure if the attack is unlikely to occur in reality.

- Cost measurements should account for the human

factor (queries / computation are not enough) Nore on ¥
e POP

ns n
er!

- i HE'&\QETRE?\E%N —> There is value also in defenses that work “only” against attackers

with limited knowledge (they are more common in reality).
42
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P3: Collaborations between industry and academia

Practitioners should be more willing to cooperate
with researchers: both have the same goal!

Streamline research collaboration process
Bug Bounties

Releasing Schematics
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Only 50% of the papers release their source code publicly. | giovanniapruzzese@uni.ii

P4: Source-code disclosure with “just culture”

Just Culture: assumes that mistakes are bound to occur and derive from
organizational issues. Mistakes are avoided by understanding their root
causes and using them as constructive learning experiences.

Embracing a just culture naturally promotes the
gradual improvement at the base of research efforts.

- By releasing the source code, future works can
correct such mistakes, potentially systematizing
them, and hence turning “negative results” into
positive outcomes for our community.

—> The fast pace of research in ML can lead
to errors in experiments (not always
spotted during the peer-review)

) Ay,
| L htreriai o e,
https://real-gradients.github.io %"=
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tate-of-research [bonus]

TABLE IV: The 88 papers considered in our analysis. Each column reports the answer to one of the 12 research questions we used during our survey
available, the G6 column provides the hyperlink to the websites hosting the source-code of a given paper. Explanations are in Appendix B-1.
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ISIT(GOOD OR BAD R —

THAT THERE IS A LACK OF EVIDENGE
OF GRADIENT-BASED ATTACKS IN THE WILD?

Do real attackers compute gradients?

—->We cannot prove it ® (yet).

Mo
Vbe 4 /76)/
Qo/
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Attacking Machine Learning-based
Phishing Website Detectors

Based on a joint work with: Jehyun Lee, Zhe Xin, Melanie Ng Pei See, Kanav Sabharwal, Dinil Mon Divakaran:
“Attacking Logo-based Phishing Website Detectors with Adversarial Perturbations”.
European Symposium On Research In Computer Security (2023).
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National University
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WHAT?

1. We propose a novel attack
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WHAT?

1. We propose a novel attack

2. We show that it works
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WHAT?

1. We propose a novel attack
2. We show that it works

3. ...against both state-of-the-art systems and humans
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WHAT?

1. We propose a novel attack
2. We show that it works

3. ...against both state-of-the-art systems and humans

WHY?

o Phishing websites are everywhere
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WHAT?

1. We propose a novel attack
2. We show that it works

3. ...against both state-of-the-art systems and humans

WHY?

o Phishing websites are everywhere
o Countermeasure: visual similarity techniques reliant on deep learning

* Trendy in research [7] but also deployed in practice [50]

- . UNIVERSITAT
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[7] Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website detection by visual similarity. ACM CCS (2020)
[50] Apruzzese, G., et al.: “Real Attackers Don’t Compute Gradients”: Bridging the Gap Between Adversarial ML Research and Practice. IEEE SaTML (2023) 53
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WHAT?

1. We propose a novel attack
2. We show that it works

3. ...against both state-of-the-art systems and humans

WHY?

o Phishing websites are everywhere
o Countermeasure: visual similarity techniques reliant on deep learning

* Trendy in research [7] but also deployed in practice [50]

o Problem: the security of these defenses has not been scrutinized yet
e Especially from a “human” perspective!
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WHAT?

1. We propose a novel attack
2. We show that it works

3. ...against both state-of-the-art systems and humans

WHY?

o Phishing websites are everywhere
o Countermeasure: visual similarity techniques reliant on deep learning

* Trendy in research [7] but also deployed in practice [50]

o Problem: the security of these defenses has not been scrutinized yet
e Especially from a “human” perspective!
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Why Phishing?

attack 0
Eyes > defused

f yes

- .-Cl phish
E is it phishy? -ﬁaQ---) phishedb
legit
Y
Human User no attack

Website

Phishing Detection System (step 1) (step 2)

Fig. 1: Scenario: phishing detection is a two-step decision process.
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Logo-based Phishing Website Detection

l||
L

Logo
| » Extraction

Webpage

UNIVERSITAT
LIECHTENSTEIN

N q nu-,-she//

In Protected
[P~ 58

Domain name Phishing
/ Contents comparison webpage
t Yes
Genuine
webpage
Unknown
webpage

Logo Image Logo discriminator
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Logo-based Phishing Website Detection

in a nu-,-she//

Domain name Phishing
/ Contents comparison webpage

t Yes

Genuine
Logo In Protected webpage
) Extraction - ' » E Brands

Logo Image Logo discriminator

l||
L
L~

Webpage

Unknown
webpage
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Logo-based Phishing Website Detection

In a nu-’-she//

Domain name Phishing
/ Contents comparison webpage
tYes
= Genuine

— Logo ‘ = In Protected webpage
= { )- Extraction = ' = = Brands
Webpage Logo Image Logo discriminator |_| No > Unknown

QAR webpage

Problem: these systems are tweaked to minimize false positives.
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Logo-based Phishing Website Detection

I'n a nurshe//

Phishing

Domain name
webpage

/ Contents comparison

1 Yes

Logo
Extraction

Genuine
In Protected webpage
Brands

II|
s
L/

No
Webpage |_| Unknown
> webpage

Problem: these systems are tweaked to minimize false positives.

We focus on the Logo-discriminator.
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Our attack: adversarial logo

Intuition: create an adversarial logo that is
(i) minimally altered w.r.t. its original variant;
and that (ii) misleads the logo discriminator.
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Our attack: adversarial logos

Intuition: create an adversarial logo that is
(i) minimally altered w.r.t. its original variant;
and that (ii) misleads the logo discriminator.

1. Knowledge:

2. Capabilities:

3. Strategy:
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Our attack: adversarial logos

Intuition: create an adversarial logo that is
(i) minimally altered w.r.t. its original variant;
and that (ii) misleads the logo discriminator.

NO knOW/

edge
. Mode/ ; of th
1. Knowledge: €l i5 reqyimorc OL

* the attacker expects the detector to have the “phished” brand(s) in the
protected set (and that its logos are inspected)

2. Capabilities:

3. Strategy:
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Our attack: adversarial logos

Intuition: create an adversarial logo that is
(i) minimally altered w.r.t. its original variant;
and that (ii) misleads the logo discriminator.

NO knOW/

edge
. Mode/ ; of th
1. Knowledge: €l i5 reqyimorc OL

* the attacker expects the detector to have the “phished” brand(s) in the
protected set (and that its logos are inspected)

2. Capabilities:
* the attacker can observe the decision of the detector The attq,
. . . . . 14O n
* the attacker can manipulate their phishing webpages "aining datq,

3. Strategy:
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Our attack: adversarial logos

Intuition: create an adversarial logo that is
(i) minimally altered w.r.t. its original variant;
and that (ii) misleads the logo discriminator.

NO knOW/

edge
. Mode/ ; of th
1. Knowledge: el is requipms OL

* the attacker expects the detector to have the “phished” brand(s) in the
protected set (and that its logos are inspected)

2. Capabilities:
* the attacker can observe the decision of the detector The attq,
. . . . . 14O n
* the attacker can manipulate their phishing webpages "aining datq,

3. Strategy: Manipulate the logo so that the discriminator has a lower
confidence = the detector will default to a “unknown webpage”
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Evaluation: Discriminators

o We propose two novel methods for logo-identification: ViT and Swin

e Both ViT and Swin leverage transformers [23, 36]. We are 1, irs

LA o

| VAT Encoder ]
G[I? @{P d?ffﬂfﬂbisb dPJ

Patch Merging

i amuT NUUPISPP

PdlyAlal

Fig.2: ViT-based Model Architecture Fig. 3: Swin-based Model Architecture
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[36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021) 66
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Evaluation: Discriminators

o We propose two novel methods for logo-identification: ViT and Swin

* Both ViT and Swin leverage transformers [23, 36]. frapere the £,
. or

LA o

| VAT Encoder
e TLILITII]

2) Patch Merging

“M%ﬁééﬁéﬁﬁ

PdlyAlal

Fig.2: ViT-based Model Architecture Fig. 3: Swin-based Model Architecture

o We will show that these methods reach state-of-the-art performance (currently
obtained by Siamese networks [34])

- [} UNIVERSITAT
LIECHTENSTEIN
[23] Dosovitskiy, A., et al.: An image isworth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)
[36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021) 67

[34]: Lin, Y., et al.: Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. USENIX Security (2021)


mailto:giovanni.apruzzese@uni.li

Giovanni Apruzzese, PhD
giovanni.apruzzese@uni.li

Evaluation: Discriminators

o We propose two novel methods for logo-identification: ViT and Swin

* Both ViT and Swin leverage transformers [23, 36]. frapere the £,
. or

LA o

| VAT Encoder
e TLILITII]

2) Patch Merging

“M%ﬁééﬁéﬁﬁ

PdlyAlal

Fig.2: ViT-based Model Architecture Fig. 3: Swin-based Model Architecture

o We will show that these methods reach state-of-the-art performance (currently

obtained by Siamese networks [34])

e Siamese networks have been assessed in white-box settings

OU
b oxl
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[36] Liu, Z., et al. : Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF ICCV (2021) 68

[34]: Lin, Y., et al.: Phishpedia: A Hybrid Deep Learning Based Approach to Visually Identify Phishing Webpages. USENIX Security (2021)
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Evaluation: Attack
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dataset generator image clipping logo image

Phishing webpage
Fig. 4: Generative adversarial perturbation workflow

o The GAP automatically “learns” to craft adversarial logos that mislead the logo
discriminator — while being minimally altered.
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Results: Baseline
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Results: Baseline
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Results: Attack
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1. When the attacker and defender use the same model, the attack is ~100% effective
2. ViTis the “more robust” detector! (if the attacker is blind)
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1. When the attacker and defender use the same model, the attack is ~100% effective
2. ViTis the “more robust” detector! (if the attacker is blind)
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Table 1: Training time for the perturbation generators

| gV{T‘ gSwin gSia‘mesc

Avg. training time per epoch (min.)

No. of epochs for 0.9 fooling ratio

Training time for 0.9 fooling ratio (min.)

12 23 8
62 12 1
744 277 3
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Results: Humans?

o We ask ourselves the following research question (RQ):

Given a pair of logos (i.e., an ‘original’ one, and an
‘adversarial’ one), can the human spot any difference?
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Results: Humans?

o We ask ourselves the following research question (RQ):

Given a pair of logos (i.e., an ‘original’ one, and an
‘adversarial’ one), can the human spot any difference?

o We carry out two user-studies to answer our RQ:

e Vertical Study: small population (N=30) of similar users; 10 questions, but
different for every participant.

Horizontal Study: large population (N=287) of heterogeneous users; 21 fixed
questions for all participants.

e @ e -‘\0“
I W V) ERSITAT yes: ¥ g axtel
LIECHTENSTEIN
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Results: Humans?

Look at these two images for no more than 5 seconds, and then answer the Look at these two images for no more than 5 seconds, and then answer the

similarity question. similarity question.

Logo A Logo A

Logo B Logo B

On a scale from 1 to 5, how similar do you think these two logos are? * On a scale from 1 to 5, how similar do you think these two logos are? *

Very Different @) @ @) @ @) Very Similar Very Different O O O O @) Very Similar
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Results: Humans? Deceived!

o For every question, users had to say how “similar” the two logos were
(5= very similar, 1= not similar at all)
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o N 2.01e o =3 Q19
o 207 33 == Q20
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(a) Vertical Study (b) Horizontal Study
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Results: Humans? Deceived!

o For every question, users had to say how “similar” the two logos were

(5= very similar, 1= not similar at all)
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(a) Vertical Study (b) Horizontal Study
Takeaways:
1. Vertical Study: over 85% of participants rated >=3 similarity
2. Horizontal Study: the average similarity per question was >=3
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Countermeasures?

o Can adversarial logos be countered?
* If so, can an adversary launch a counterattack?
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Countermeasures?

o Can adversarial logos be countered?
* If so, can an adversary launch a counterattack?
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Fig. 8: Performance of discriminator and generator due to adversarial training
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Countermeasures?

o Can adversarial logos be countered? = Yes ©
* If so, can an adversary launch a counterattack? = Yes ®
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Conclusions

1. We proposed a novel attack...
2. We showed that it works

3. ...against both state-of-the-art systems and humans.
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We focus on the Logo-discriminator.

Future research: consider other elements of a phishing detector, and assess
the response of humans to the evasive samples!

B W RER SN | Al of our resources are publicly available [1]

[1]: https://github.com/JehLeeKR/Adversarial-phishing-logos 86
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